Asuka KAKEHASHI Kenichi HIGUCHI
The combination of peak-to-average power ratio (PAPR) reduction and predistortion (PD) techniques effectively reduces the nonlinear distortion of a transmission signal caused by power amplification and improves power efficiency. In this paper, assuming downlink amplify-and-forward (AF)-type relaying of multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) signals, we propose a joint method that combines a PD technique with our previously reported PAPR reduction method utilizing the null space of a MIMO channel. In the proposed method, the reported PAPR reduction method reduces the PAPR at a relay station (RS) as well as that at a base station (BS) by using only signal processing at the BS. The PD process at the BS and RS further reduces the nonlinear distortion caused by nonlinear power amplification. Computer simulation results show that the proposed method enhances the effectiveness of PD at the BS and RS and achieves further coverage enhancement compared to conventional methods.
Nihad A. A. ELHAG Liang LIU Ping WEI Hongshu LIAO Lin GAO
The concept of dual function radar-communication (DFRC) provides solution to the problem of spectrum scarcity. This paper examines a multiple-input multiple-output (MIMO) DFRC system with the assistance of a reconfigurable intelligent surface (RIS). The system is capable of sensing multiple spatial directions while serving multiple users via orthogonal frequency division multiplexing (OFDM). The objective of this study is to design the radiated waveforms and receive filters utilized by both the radar and users. The mutual information (MI) is used as an objective function, on average transmit power, for multiple targets while adhering to constraints on power leakage in specific directions and maintaining each user’s error rate. To address this problem, we propose an optimal solution based on a computational genetic algorithm (GA) using bisection method. The performance of the solution is demonstrated by numerical examples and it is shown that, our proposed algorithm can achieve optimum MI and the use of RIS with the MIMO DFRC system improving the system performance.
Orthogonal frequency division multiplexing with index modulation (OFDM-IM) is a novel scheme where the information bits are conveyed through the subcarrier activation pattern (SAP) and the symbols on the active subcarriers. Specifically, the subcarriers are partitioned into many subblocks and the subcarriers in each subblock can have two states, active or idle. Unfortunately, OFDM-IM inherits the high peak-to-average power ratio (PAPR) problem from the classical OFDM. The OFDM-IM signal with high PAPR induces in-band distortion and out-of-band radiation when it passes through high power amplifier (HPA). Recently, there are attempts to reduce PAPR by exploiting the unique structure of OFDM-IM, which is adding dither signals in the idle subcarriers. The most recent work dealing with the dither signals is using dithers signals with various amplitude constraints according to the characteristic of the corresponding OFDM-IM subblock. This is reasonable because OFDM subblocks have distinct levels of robustness against noise. However, the amplitude constraint in the recent work is efficient for only additive white Gaussian noise (AWGN) channels and cannot be used for maximum likelihood (ML) detection. Therefore, in this paper, based on pairwise error probability (PEP) analysis, a specific constraint for the dither signals is derived over a Rayleigh fading channel.
Clipping is an efficient and simple method that can reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. However, clipping causes in-band distortion referred to as clipping noise. To resolve this problem, a novel iterative estimation and cancellation (IEC) scheme for clipping noise is one of the most popular schemes because it can significantly improve the performance of clipped OFDM systems. However, IEC exploits detected symbols at the receiver to estimate the clipping noise in principle and the detected symbols are not the sufficient statistic in terms of estimation theory. In this paper, we propose the post-processing technique of IEC, which fully exploits given sufficient statistic at the receiver and thus further enhances the performance of a clipped OFDM system as verified by simulations.
Xiaoran CHEN Xin QIU Xurong CHAI
Orthogonal frequency division multiplexing (OFDM) technique has been widely used in communication systems in pursuit of the most efficient utilization of spectrum. However, the increase of the number of orthogonal subcarriers will lead to the rise of the peak-to-average power ratio (PAPR) of the waveform, thus reducing the efficiency of the power amplifiers. In this letter we propose a phase-changed PAPR reduction technique based on windowing function architecture for OFDM systems. This technique is based on the idea of phase change, which makes the spectrum of output signal almost free of regrowth caused by peak clipping. It can reduce more than 28dBc adjacent channel power ratio (ACPR) compared with the traditional peak windowing clipping methods in situation that peak is maximally suppressed. This technique also has low algorithm complexity so it can be easily laid out on hardware. The proposed algorithm has been laid out on a low-cost field-programmable gate array (FPGA) to verify its effectiveness and feasibility. A 64-QAM modulated 20M LTE-A waveform is used for measurement, which has a sampling rate of 245.67M.
To reduce peak-to-average power ratio, we propose a method of choosing suitable vectors in a partial transmit sequence technique. Conventional approaches require that a suitable vector be selected from a large number of candidates. By contrast, our method does not include such a selecting procedure, and instead generates random vectors from the Gaussian distribution whose covariance matrix is a solution of a relaxed problem. The suitable vector is chosen from the random vectors. This yields lower peak-to-average power ratio than a conventional method.
Expectation propagation (EP) decoding is proposed for sparse superposition coding in orthogonal frequency division multiplexing (OFDM) systems. When a randomized discrete Fourier transform (DFT) dictionary matrix is used, the EP decoding has the same complexity as approximate message-passing (AMP) decoding, which is a low-complexity and powerful decoding algorithm for the additive white Gaussian noise (AWGN) channel. Numerical simulations show that the EP decoding achieves comparable performance to AMP decoding for the AWGN channel. For OFDM systems, on the other hand, the EP decoding is much superior to the AMP decoding while the AMP decoding has an error-floor in high signal-to-noise ratio regime.
By exploiting the inherent sparsity of wireless channels, the channel estimation in an orthogonal frequency division multiplexing (OFDM) system can be cast as a compressed sensing (CS) problem to estimate the channel more accurately. Practically, matching pursuit algorithms such as orthogonal matching pursuit (OMP) are used, where path delays of the channel is guessed based on correlation values for every quantized delay with residual. This full search approach requires a predefined grid of delays with high resolution, which induces the high computational complexity because correlation values with residual at a huge number of grid points should be calculated. Meanwhile, the correlation values with high resolution can be obtained by interpolation between the correlation values at a low resolution grid. Also, the interpolation can be implemented with a low pass filter (LPF). By using this fact, in this paper we substantially reduce the computational complexity to calculate the correlation values in channel estimation using CS.
Yong DING Shan OUYANG Yue-Lei XIE Xiao-Mao CHEN
When trying to estimate time-varying multipath channels by applying a basis expansion model (BEM) in orthogonal frequency division multiplexing (OFDM) systems, pilot clusters are contaminated by inter-carrier interference (ICI). The pilot cluster ICI (PC-ICI) degrades the estimation accuracy of BEM coefficients, which degrades system performance. In this paper, a PC-ICI suppression scheme is proposed, in which two coded symbols defined as weighted sums of data symbols are inserted on both sides of each pilot cluster. Under the assumption that the channel has Flat Doppler spectrum, the optimized weight coefficients are obtained by an alternating iterative optimization algorithm, so that the sum of the PC-ICI generated by the encoded symbols and the data symbols is minimized. By approximating the optimized weight coefficients, they are independent of the channel tap power. Furthermore, it is verified that the proposed scheme is robust to the estimation error of the normalized Doppler frequency offset and can be applied to channels with other types of Doppler spectra. Numerical simulation results show that, compared with the conventional schemes, the proposed scheme achieves significant improvements in the performance of PC-ICI suppression, channel estimation and system bit-error-ratio (BER).
Donggu KIM Hoojin LEE Joonhyuk KANG
This paper derives highly accurate and effective closed-form formulas for the average upper bound on the pairwise error probability (PEP) of the multi-carrier index keying orthogonal frequency division multiplexing (MCIK-OFDM) system with low-complexity detection (i.e., greedy detection) in two-wave with diffuse power (TWDP) fading channels. To be specific, we utilize an exact moment generating function (MGF) of the signal-to-noise ratio (SNR) under TWDP fading to guarantee highly precise investigations of error probability performance; existing formulas for average PEP employ the approximate probability density function (PDF) of the SNR for TWDP fading, thereby inducing inherent approximation error. Moreover, some special cases of TWDP fading are also considered. To quantitatively reveal the achievable modulation gain and diversity order, we further derive asymptotic formulas for the upper bound on the average PEP. The obtained asymptotic expressions can be used to rapidly estimate the achievable error performance of MCIK-OFDM with the greedy detection over TWDP fading in high SNR regimes.
This paper studies a novel iterative detection algorithm for data detection in orthogonal frequency division multiplexing systems in the presence of phase noise (PHN) and channel estimation errors. By simplifying the maximum a posteriori algorithm based on the theory of variational inference, an optimization problem over variational free energy is formulated. After that, the estimation of data, PHN and channel state information is obtained jointly and iteratively. The simulations indicate the validity of this algorithm and show a better performance compared with the traditional schemes.
Yu ZHAO Xihong CHEN Lunsheng XUE Jian LIU Zedong XIE
In this paper, we present the channel estimation (CE) problem in the orthogonal frequency division multiplexing system with offset quadrature amplitude modulation (OFDM/OQAM). Most CE methods rely on the assumption of a low frequency selective channel to tackle the problem in a way similar to OFDM. However, these methods would result in a severe performance degradation of the channel estimation when the assumption is not quite inaccurate. Instead, we focus on estimating the channel impulse response (CIR) itself which makes no assumption on the degree of frequency selectivity of the channels. After describing the main idea of this technique, we present an iterative CE method that does not require zero-value guard symbols in the preamble and consequently improves the spectral efficiency. This is done by the iterative estimation of the unknown transmitted data adjacent to the preamble. Analysis and simulation results validate the efficacy of the proposed method in multipath fading channels.
Kee-Hoon KIM Hyun-Seung JOO Jong-Seon NO Dong-Joon SHIN
Many selected mapping (SLM) schemes have been proposed to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal sequences. In this paper, an efficient selection (ES) method of the OFDM signal sequence with minimum PAPR among many alternative OFDM signal sequences is proposed; it supports various SLM schemes. Utilizing the fact that OFDM signal components can be sequentially generated in many SLM schemes, the generation and PAPR observation of the OFDM signal sequence are processed concurrently. While the u-th alternative OFDM signal components are being generated, by applying the proposed ES method, the generation of that alternative OFDM signal components can be interrupted (or stopped) according to the selection criteria of the best OFDM signal sequence in the considered SLM scheme. Such interruption substantially reduces the average computational complexity of SLM schemes without degradation of PAPR reduction performance, which is confirmed by analytical and numerical results. Note that the proposed method is not an isolated SLM scheme but a subsidiary method which can be easily adopted in many SLM schemes in order to further reduce the computational complexity of considered SLM schemes.
Jun-Young WOO Kee-Hoon KIM Kang-Seok LEE Jong-Seon NO Dong-Joon SHIN
It is known that in the selected mapping (SLM) scheme for orthogonal frequency division multiplexing (OFDM), correlation (CORR) metric outperforms the peak-to-average power ratio (PAPR) metric in terms of bit error rate (BER) performance. It is also well known that four times oversampling is used for estimating the PAPR performance of continuous OFDM signal. In this paper, the oversampling effect of OFDM signal is analyzed when CORR metric is used for the SLM scheme in the presence of nonlinear high power amplifier. An analysis based on the correlation coefficients of the oversampled OFDM signals shows that CORR metric of two times oversampling in the SLM scheme is good enough to achieve the same BER performance as four times and 16 times oversampling cases. Simulation results confirm that for the SLM scheme using CORR metric, the BER performance for two times oversampling case is almost the same as that for four and 16 times oversampling cases.
Sheng-Ju KU Yuan OUYANG Chiachi HUANG
The technique of partial transmit sequences (PTS) is effective in reducing the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. However, the conventional PTS (CPTS) scheme has high computation complexity because it needs several inverse fast Fourier transform (IFFT) units and an optimization process to find the candidate signal with the lowest PAPR. In this paper, we propose a new low-complexity PTS scheme for OFDM systems, in which a hybrid subblock partition method (SPM) is used to reduce the complexity that results from the IFFT computations and the optimization process. Also, the PAPR reduction performance of the proposed PTS scheme is further enhanced by multiplying a selected subblock with a predefined phase rotation vector to form a new subblock. The time-domain signal of the new subblock can be obtained simply by performing a circularly-shift-left operation on the IFFT output of the selected subblock. Computer simulations show that the proposed PTS scheme achieves a PAPR reduction performance close to that of the CPTS scheme with the pseudo-random SPM, but with much lower computation complexity.
Hayato FUKUZONO Yusuke ASAI Riichi KUDO Koichi ISHIHARA Masato MIZOGUCHI
In this paper, we propose demodulators for the Golden and Alamouti codes in amplify-and-forward (AF) cooperative communication with one relay. The proposed demodulators output exact log likelihood ratios (LLRs) with recursion based on the Jacobian logarithm. The cooperative system with the proposed demodulator for the Golden code has the benefit of efficient data transmission, while the system for the Alamouti code has low demodulation complexity. Quantitative analyses of computational complexity of the proposed demodulators are conducted. The transmission performance for various relay location and power settings is evaluated on cooperative orthogonal frequency division multiplexing (OFDM)-based wireless local area network (LAN) systems. In evaluations, the optimal relay location and power settings are found. The cooperative system with the proposed demodulators for the Golden and Alamouti codes offers 1.5 and 1.9 times larger areas where 10.8 and 5.4Mbit/s can be obtained than a non-cooperative (direct) system in a typical office environment, respectively.
In this letter, we prove that for fading multiuser orthogonal frequency division multiplexing networks, a simple fixed rate scheduling scheme with only 1 bit channel state information feedback is capable of achieving the optimal performance in the wideband limit. This result indicates that the complexities of both the feedback and channel coding schemes can be reduced with nearly no system performance penalty in wideband wireless communication environments.
Dongpei LIU Hengzhu LIU Botao ZHANG Jianfeng ZHANG Shixian WANG Zhengfa LIANG
High-performance FFT processor is indispensable for real-time OFDM communication systems. This paper presents a CORDIC based design of variable-length FFT processor which can perform various FFT lengths of 64/128/256/512/1024/2048/4096/8192-point. The proposed FFT processor employs memory based architecture in which mixed radix 4/2 algorithm, pipelined CORDIC, and conflict-free parallel memory access scheme are exploited. Besides, the CORDIC rotation angles are generated internally based on the transform of butterfly counter, which eliminates the need of ROM making it memory-efficient. The proposed architecture has a lower hardware complexity because it is ROM-free and with no dedicated complex multiplier. We implemented the proposed FFT processor and verified it on FPGA development platform. Additionally, the processor is also synthesized in 0.18 µm technology, the core area of the processor is 3.47 mm2 and the maximum operating frequency can be up to 500 MHz. The proposed FFT processor is better trade off performance and hardware overhead, and it can meet the speed requirement of most modern OFDM system, such as IEEE 802.11n, WiMax, 3GPP-LTE and DVB-T/H.
Rainfield Y. YEN Hong-Yu LIU Chia-Sheng TSAI
For maximum-likelihood (ML) estimation to jointly track carrier frequency offset (CFO) and channel impulse response (CIR) in orthogonal frequency division multiplexing (OFDM) systems, we present a finite high order approximation method utilizing the MATLAB ‘roots' command on the log-likelihood function derived from the OFDM received signal, coupled with an adaptive iteration algorithm. The tracking performance of this high order approximation algorithm is found to be excellent, and as expected, the algorithm outperforms the other existing first order approximation algorithms.
This paper addresses conjugate-gradient (CG) based pilot-assisted channel estimation and equalization in doubly selective channels for orthogonal frequency division multiplexing (OFDM) block transmissions. With the help of the discrete prolate spheroidal sequence, which shows flat mean-square error (MSE) curves for the reconstructed channels in the presence of Doppler frequency mismatch, a basis expansion model for a parsimonious channel representation over multiple OFDM blocks is developed, a system equation for the least square channel estimation under widely used pilot lattices, where the pilot symbols are irregularly placed in the subcarrier domain, is formulated by introducing carving matrices, and the standard CG method is applied to the system. Relying on the CG method again, the linear minimum mean-square error channel equalization is pursued without performing any matrix inversion, while elevating the convergence speed of the iterative algorithm with a simple preconditioner. Finally, we validate our schemes with numerical experiments on the integrated services digital broadcasting-terrestrial system in doubly-selective channels and determine the normalized MSE and uncoded bit error rate.