Keyword Search Result

[Keyword] time-difference-of-arrival (TDOA)(2hit)

1-2hit
  • A Robust Semidefinite Source Localization TDOA/FDOA Method with Sensor Position Uncertainties

    Zhengfeng GU  Hongying TANG  Xiaobing YUAN  

     
    PAPER-Sensing

      Pubricized:
    2020/10/15
      Vol:
    E104-B No:4
      Page(s):
    472-480

    Source localization in a wireless sensor network (WSN) is sensitive to the sensors' positions. In practice, due to mobility, the receivers' positions may be known inaccurately, leading to non-negligible degradation in source localization estimation performance. The goal of this paper is to develop a semidefinite programming (SDP) method using time-difference-of arrival (TDOA) and frequency-difference-of-arrival (FDOA) by taking the sensor position uncertainties into account. Specifically, we transform the commonly used maximum likelihood estimator (MLE) problem into a convex optimization problem to obtain an initial estimation. To reduce the coupling between position and velocity estimator, we also propose an iterative method to obtain the velocity and position, by using weighted least squares (WLS) method and SDP method, respectively. Simulations show that the method can approach the Cramér-Rao lower bound (CRLB) under both mild and high noise levels.

  • Target Localization Using Instrumental Variable Method in Sensor Network

    Yong Hwi KIM  Ka Hyung CHOI  Tae Sung YOON  Jin Bae PARK  

     
    PAPER-Sensing

      Vol:
    E96-B No:5
      Page(s):
    1202-1210

    An instrumental variable (IV) based linear estimator is proposed for effective target localization in sensor network by using time-difference-of-arrival (TDOA) measurement. Although some linear estimation approaches have been proposed in much literature, the target localization based on TDOA measurement still has a room for improvement. Therefore, we analyze the estimation errors of existing localization estimators such as the well-known quadratic correction least squares (QCLS) and the robust least squares (RoLS), and demonstrate advantages of the proposition by comparing the estimation errors mathematically and showing localization results through simulation. In addition, a recursive form of the proposition is derived to consider a real time application.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.