
IEICE TRANS. COMMUN., VOL.E99–B, NO.8 AUGUST 2016
1629

INVITED PAPER Special Section on Advanced Information and Communication Technologies and Services in Conjunction with Main Topics of APCC2015

Design and Deployment of Enhanced VNode Infrastructure
— Deeply Programmable Network Virtualization

Kazuhisa YAMADA†a), Akihiro NAKAO††, Members, Yasusi KANADA†††, Yoshinori SAIDA††††,
Koichiro AMEMIYA†††††, Nonmembers, and Yuki MINAMI†, Member

SUMMARY We introduce the design and deployment of the latest ver-
sion of the VNode infrastructure, VNode-i. We present new extended
VNode-i functions that offer high performance and provide convenient deep
programmability to network developers. We extend resource abstraction to
the transport network and achieve highly precise slice measurement for re-
source elasticity. We achieve precise resource isolation for VNode-i. We
achieve coexistence of high performance and programmability. We also
enhance AGW functions. In addition, we extend network virtualization
from the core network to edge networks and terminals. In evaluation ex-
periments, we deploy the enhanced VNode-i on the JGN-X testbed and
evaluate its performance. We successfully create international federation
slices across VNode-i, GENI, and Fed4FIRE. We also present experimental
results on video streaming on a federated slice across VNode-i and GENI.
Testbed experiments confirm the practicality of the enhanced VNode-i.
key words: network virtualization, deep programmability, resource ab-
straction, resource isolation, testbed, international federation

1. Introduction

The current communications infrastructure has flourished as
it is based on the Internet Protocol (IP), which is best known
for its basis in the Internet. However, there are limits to the
Internet, and to address all the various problems facing the
current communications infrastructure, an information and
communications base that has an innovative design must
be constructed [1]. Network virtualization [2], [3] has re-
cently attracted attention and is one technology that can help
achieve this innovative communications infrastructure. We
are promoting an advanced network virtualization technol-
ogy [4] with the aim of constructing an information and com-
munications base that incorporates innovative design ideas.
From a general viewpoint, a communication infrastructure
consists of “links” that provide network resources for trans-
mitting data and “nodes” that provide computing resources
and storage resources to execute programs for interpreting
protocols and processing data. Advanced network virtu-

Manuscript received November 26, 2015.
Manuscript revised March 18, 2016.
†The authors are with NTT Network Innovation Laboratories,

NTT Corporation, Yokosuka-shi, 239-0847 Japan.
††The author is with The University of Tokyo, Tokyo, 105-0011

Japan.
†††The author is with Hitachi Ltd., Kokubunji-shi, 185-8601

Japan.
††††The author is with NEC Corporation, Tokyo, 108-8001 Japan.
†††††The author is with Fujitsu Laboratories Ltd., Kawasaki-shi,
211-8588 Japan.

a) E-mail: yamada.kazuhisa@lab.ntt.co.jp
DOI: 10.1587/transcom.2015CCI0002

alization technology virtualizes whole networks based on
this general viewpoint and offers many advantages to net-
work users. Specifically, advanced network virtualization
technology meets five requirements: resource abstraction,
resource isolation, resource elasticity, deep programmabil-
ity, and authentication, authorization and accounting (AAA).
This technology enables the creation and design of new gen-
eration networks from a clean slate and so inspires innovative
thinking. In addition, advanced network virtualization tech-
nology provides a new generation information and communi-
cations infrastructure that can host multiple virtual networks
at the same time. To achieve advanced network virtual-
ization technology, we designed and developed a network
virtualization infrastructure called VNode-i [5]–[7].

In this paper, we introduce the design and deployment
of the latest version of VNode-i. We present new functions
that offer high performance and provide convenient deep pro-
grammability to network developers. We extend resource ab-
straction to the transport network and achieve highly precise
slice measurement for resource elasticity. We achieve pre-
cise resource isolation for VNode-i. We achieve coexistence
of high performance and programmability. We also enhance
AGW functions. In addition, we extend network virtualiza-
tion from the core network to edge networks and terminals.
In evaluation experiments, we deploy the enhanced VNode-
i on the JGN-X [8] testbed and evaluate its performance.
We also successfully create an international federation slice
across VNode-i, GENI [9] in the US, and Fed4FIRE [10] in
the EU. Finally, we show the results of a video streaming
experiment on a federated slice across VNode-i and GENI.
Through some experiments on the testbed, we confirm the
feasibility of the enhanced VNode-i. Table 1 shows an ab-
breviation and acronym list.

2. VNode-i

2.1 Characteristics of VNode-i

One of the features of VNode-i is deep programmability.
Here, we describe a comparison between VNode-i and state-
of-the-art technology for network programmability. Includ-
ing Software Defined Networking (SDN) and Network Func-
tion Virtualization (NFV), research and development related
to the introduction of network programmability has been
promoted actively in recent years. SDN has achieved flex-
ible network flow control by introducing programmability

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers



1630
IEICE TRANS. COMMUN., VOL.E99–B, NO.8 AUGUST 2016

Table 1 Abbreviation and acronym list.

Table 2 Programmability comparison.

into the control plane to apply the OpenFlow [11] technol-
ogy. For SDN, offer of Open Source Software (OSS) such
as the Open Network Operating System (ONOS) [12] and
OpenDaylight [13] has also started.

On the other hand, NFV is aimed at flexible provision of
network appliances by introducing programmability to the
data plane. The European Telecommunications Standards
Institute (ETSI) is currently in the process of standardizing
NFV [14]. VNode-i can provide the programmability of the
control plane and the data plane at the same time. In addi-
tion, VNode-i is aimed at achieving deeper programmability.
Specifically, VNode-i achieves in-network processing and
wide-area generic processing such as cache and transcod-
ing. Furthermore, VNode-i can handle a new protocol to
replace the current TCP/IP architecture. Table 2 shows a
programmability comparison of SDN, NFV, and VNode-i.

2.2 Original VNode-i

In this section, we briefly describe the original VNode-i.
Figure 1 shows its basic construction. VNode-i provides
programmability to both the control/management plane and
data plane by establishing slices. Each slice can have a
different network topology and software functions. VNode-
i consists of multiple VNodes, access gateways (AGWs),
and a network virtualization management system (NVMS).
We describe the VNode, AGW, NVMS, and a slice in the
following sections.

2.2.1 VNode

A VNode is the main component of VNode-i. A VNode is
an integrated node unit consisting of the Programmer and
Redirector. VNodes provide virtualized resources such as a
slice according to the slice design specifications.

Fig. 1 VNode-i.

1) Programmer: We construct a VNode in two parts, Pro-
grammer and Redirector, because the technologies for pro-
viding virtualized computing resources and link resources
may advance at different speeds. The Programmer provides
various processing components such as general-purpose
servers, network processors, and OpenFlow switches to yield
various combinations of virtualized computing resources.
The Programmer provides virtual machines (VMs) as slice
nodes that work as processing components. We can de-
ploy various software functions on a VM to enhance service
functionalities.
2) Redirector: The Redirector provides virtualized link re-
sources such as bandwidth and buffer size as virtual links
to connect slice nodes. We achieve the desired Quality of
Service (QoS) by instructing the Redirector to transfer traf-
fic data with particular characteristics such as a streaming
service.

2.2.2 AGW

An AGW is a border node between the end-user access side
and the VNode-i domain. An AGW authenticates user ter-
minals (UTs) and accommodates UTs into the slice that they
are authorized to access.

2.2.3 NVMS

The NVMS manages and controls all VNode-i resources.
The NVMS provides a portal site to slice developers/owners
as well as AAA functions. Slice developers/owners can
reserve resources via the portal with operational security.
Slice developers can create slices via a GUI on a web browser.

2.2.4 Slice

A slice is a set of connected computation resources and
link resources. These resources are virtualized and isolated.
Therefore, we can configure our own network topology and
deploy our own software functions into network nodes, i.e.,
VNode-i provides programmability.
1) Node sliver: A node sliver is a set of virtualized node



YAMADA et al.: DESIGN AND DEPLOYMENT OF ENHANCED VNODE INFRASTRUCTURE — DEEPLY PROGRAMMABLE NETWORK VIRTUALIZATION
1631

resources such as CPU time, memory, and storage. We
can assign these resources to nodes of a slice and install an
operating system such as Linux on the nodes by writing a
slice design specification that respects the limitations of the
physical resources. Node slivers work as various processing
components and are mapped into the Programmer of the
VNodes.
2) Link sliver: A link sliver is a set of link resources such
as bandwidth, burst size for QoS control, and queuing delay.
The slice design specification determines how resources are
assigned to the links of a slice. Link slivers are mapped into
the Redirector of the VNodes.

3. Enhanced VNode-i

This section presents new VNode-i functions that achieve
high performance and make deep programmability easier
for network developers to access while satisfying the five
requirements described in the Introduction. In addition, we
extend network virtualization from the core network to edge
networks, terminals, and other network virtualization infras-
tructures. The specific functions are described below.

3.1 Edge Network Virtualization

Network virtualization technology that covers the entire
gamut from edge networks to terminals as well as the core
network is necessary to achieve the slice concept. In gen-
eral, edge and core networks have different requirements.
In network virtualization, sufficient resources and a highly
precise band guarantee are required so that as many slices as
possible can share the resources of the core network. On the
other hand, various types of terminals must be contained in
a scalable slice and virtualization technology must be easy
to introduce. Therefore, we decided to use the core and edge
networks to constitute the infrastructure.

We developed FLARE, a light-weight and low-power
consumption network virtualization node for edge networks.
Figure 2 shows the FLARE node architecture. The hardware
of the FLARE node connects many-core processors that exe-
cute packet processing on the data plane and x86 architecture
Intel processors that control packet processing on the control
plane with a PCIe interface. Using a VM constructed using
the lightweight Linux container (LXC) technique, virtual-
ization is executed on both types of processors, and an out-
side FLARE node management server creates a slice in the
FLARE node. Since the slice is created on many-core pro-
cessors, isolating the processing between slices is achieved
by assigning a core to each slice. In addition, the FLARE
node offers a slicer-slice, which is a special slice for allocat-
ing packets in a slice based on tag information that is added
to the I/O port or a packet. Using the slicer-slice, individ-
ual network processing is enabled in each slice. Figure 2
shows an Ethernet switch established on slice 1, a switch
for packets whose MAC address length is extended is estab-
lished on slice 2, and an OpenFlow switch is established on
programmable slice n.

Fig. 2 FLARE node.

Fig. 3 Service network and transport network control.

3.2 Extended Resource Abstraction and Elasticity

VNode-i achieves flexible and integrated resource manage-
ment by abstraction and virtualization of physical resources.
We extend resource abstraction to the transport network and
achieve integrated control and management of slices and the
transport network.

The network infrastructure that provides general net-
work services consists of a “service network” (service nodes
that provide network service) and a “transport network” that
connects and transmits packets between service nodes. The
transport network transfers packets independent of the ser-
vice contents and is used in common by multiple services.
The service network also consists of VNodes and the trans-
port network, which consists of existing switches and routers.
Therefore, integrated control and management of the ser-
vice and transport networks are necessary in VNode-i. Fig-
ure 3 shows an integrated control and management system for
VNode-i. We designed a service network controller (SNC)
that controls and manages the service network and a trans-
port network controller (TNC) that controls and manages
the transport network as the NVMS. The TNC automatically
allocates physical resources to the transport path that is nec-
essary to establish a link sliver at slice creation in cooperation
with the SNC. Transport network resources are managed as
a transport path in the SNC, and the SNC notifies the TNC
of the resource requirements such as the bandwidth to create
a slice. The TNC allocates the required transport path with
the prepared physical resources and offers it to the SNC.

Due to resource elasticity, VNode-i can dynamically
change the resources allocated to a slice and can maintain ser-



1632
IEICE TRANS. COMMUN., VOL.E99–B, NO.8 AUGUST 2016

Fig. 4 Highly precise slice measurements based on NVMS-NMM coop-
eration.

vice quality and resource optimization. To achieve resource
optimization, the performance of each slice in VNode-i
must be precisely measured. To this end, we developed the
Network Monitoring Manager (NMM). Figure 4 shows the
highly precise slice measurement system based on NVMS-
NMM cooperation. The Developer, the slice owner, indi-
cates the ID of the slice to be measured, the measurement
point in the slice, and the date and time for measurement
reservation from the NVMS Portal screen. The NVMS of-
fers measurement link information and slice identification
information to the NMM. Then, the NMM configures the
optical switches to set the measurement point and the filter
in the existing network monitoring equipment, PRESTA 10G
[15]. The NMM notifies the developer of the measurement
results through the NVMS.

3.3 Precise Resource Isolation

Preventing resource interference between slices is critical for
network virtualization. For example, a slice must not con-
sume bandwidth to the extent that it imposes an unfair delay
on other slices. A function to avoid such resource inter-
ference is resource isolation. An early version of VNode-i
offered a basic resource isolation function in the Redirec-
tor. Its basic function is described below. The Redirector
incorporates an L3 switch with a VLAN function, IP rout-
ing function, and QoS functions, which are Weighted Fair
Queues (WFQs) and policing. WFQs can achieve high-
performance bandwidth control for each slice, but since it
employs relatively expensive high-speed memory, the num-
ber of supported slices is limited.

The latest version of Redirector provides resource iso-
lation based on WFQs as well as more precise resource iso-
lation control for each link sliver. It includes a hierarchical
shaper, a new hardware module. The previous Redirector
used three broadband WFQs and offered per-slice resource
isolation. The hierarchical shaper prepares up to 4000 nar-
rowband WFQs in addition to the three broadband WFQs, so
resource isolation for each link sliver is achieved. The latest
Redirector uses the broadband WFQs for slices with more
than 1 Gbps bandwidth and the narrowband WFQs for all
other slices. The hierarchical shaper provides precision re-
source isolation that is scalable from 10 kbps to over 1 Gbps.
Another problem is to achieve resource isolation throughout
VNode-i including the Programmer, AGW, and transport

Fig. 5 Resource isolation between Programmer and Redirector.

network. We establish cooperation in resource management
among the Programmer, Redirector, and AGW to address
this problem. Specifically, the SNC supplements the link
sliver specifications to ensure isolation in the slice design
file and orders resource isolation for the Programmer and
AGW. The Programmer and AGW achieve the indicated re-
source isolation, so resource isolation is achieved throughout
VNode-i. Figure 5 shows resource isolation cooperation be-
tween the Programmer and Redirector. The Slice developer
only defines the link sliver (LS01) bandwidth for resource
isolation using the slice design file. The SNC automati-
cally supplements the bandwidth of the vport (vp1) on the
node sliver (NS00). The Programmer sets the bandwidth of
vp1 in accordance with the supplemented slice design file,
which achieves resource isolation between the Programmer
and Redirector.

3.4 Coexistence of High Performance and Programmabil-
ity

The Programmer, which is one of the VNode components,
provides programmability for network processing. In ad-
dition, high-speed packet forwarding is also required for
the Programmer. To achieve both functions, we actualized
various network functions as programs by preparing two
kinds of mechanisms: one, the slow path, provides a flexi-
ble programing environment using VMs on general-purpose
servers; the other, the fast path, provides a programming
environment in which network processors transfer packets
at high speed. With regard to the slow path, we address the
problem of achieving high computing performance given the
gap in the network I/O performance.

Figure 6 shows the Programmer architecture. We use
OpenFlow switches to connect the computer resources in the
device. This allows us to build a network node that com-
bines various computer resources freely. The packet con-
verter converts the packet format (MAC-in-MAC to VLAN
format) between that for the Redirector and the Programmer.
We use a software switch (vSwitch) in a slow path processor
for VM communications. In conventional slow path proces-
sors, software switching performance and processor I/O are
performance bottlenecks. To achieve coexistence between



YAMADA et al.: DESIGN AND DEPLOYMENT OF ENHANCED VNODE INFRASTRUCTURE — DEEPLY PROGRAMMABLE NETWORK VIRTUALIZATION
1633

Fig. 6 Programmer architecture.

high performance and programmability, we apply the hard-
ware offload technique to the slow path. In addition, we
enhance the network I/O performance by applying 10 GbE
NIC hardware. We add new 10 GbE NICs that support the
Single Root I/O Virtualization (SR-IOV) function to slow
path processors; this ensures high performance switching
and forwarding for VM communications. If the Offload op-
eration is specified, the VM communicates with the NIC
directly, without passing through the vSwitch. We achieve
dynamic onload/offload switching technology per slice and
integrated management of the vSwitch and NIC for flexible
resource assignment. Figure 7 shows performance evalu-
ation results for the slow path. Offload represents results
when applying the hardware offload technique, and onload
represents results without the offload technique. The SUM
of the CPU Load is the total CPU utilization of the guest
OS, and HOST is only for the host OS. The wire-speed of 10
Gbps can be achieved with offload. On the other hand, the
throughput is less than 3 Gbps and the performance degrades
when more than 2 VMs are active using I/O without offload.
In addition, the CPU usage is lower with offload in all cases.
The figure shows that the throughput performance improves
and that the CPU utilization of the host OS decreases when
using the offload technique. The results show that the pro-
posed method is effective in improving the performance.

3.5 Enhancement of AGW

The AGW is gateway equipment for slices in VNode-i. The
AGW is deployed at VNode-i edges and provides connectiv-
ity and authentication between slices and physical devices
or networks using various protocols including proprietary
ones. The enhanced functions of the AGW are described
hereafter.

The first enhanced function is connectivity. The AGW
identifies the users and connects user devices or networks
with slices using various protocols. We provide VLAN ac-
commodation in addition to the conventional Security Ar-

Fig. 7 Performance evaluation results for slow path.

Table 3 AGW performance.

Fig. 8 AGW architecture.

chitecture for Internet Protocol (IPsec) accommodation.
The second enhanced function is easy-opt-in. The

AGW authenticates the users and their corresponding packets
using the IPsec protocol when users connect their terminals
to the slices through the gateway. However, it takes labor to
set the IPsec information manually, so the enhanced AGW
uses Internet Key Exchange protocol version 1 (IKEv1) to
perform automatic key exchange in the network.

The third enhanced function is programmability. The
latest version of the AGW provides programmable virtual
nodes (Node Sliver VM) on programmable virtual node
blocks and enables execution of network/data processing ap-
plications at the edge of the slices.



1634
IEICE TRANS. COMMUN., VOL.E99–B, NO.8 AUGUST 2016

Fig. 9 Deployment of VNode on JGN-X testbed.

The fourth enhanced function is a customizable proto-
col stack on the gateway block. This functionality allows
configuration of the gateway interface in accordance with
the protocols used in user terminals and/or networks.

Additionally, the latest AGW provides higher perfor-
mance for frame transfer even on commodity Intel architec-
ture (IA) servers (Table 3). Higher performance is achieved
through the Packet Processing Middleware (PPM) function-
alities, Zero Copy I/O, and parallel processing framework
utilizing multiple/multi-core processors.

Figure 8 shows the internal architecture and the com-
munication path in the AGW. The AGW must have a small
footprint with emphasis on economy rather than high per-
formance. This is because VNode-i has more AGWs than
VNodes as AGWs will be widely distributed at VNode-i
edges including near or at user locations.

In order to satisfy these requirements, we adopted the
following policies in designing the AGW. First, all AGW
functionalities, the programmable virtual node, and manage-
ment functionalities, should be provided on a single com-
modity IA server. Second, the number of programmable
virtual nodes provided by this AGW should be scalable as
needed by adding IA servers running the programmable vir-
tual node provider.

4. Deploying VNode-i on Testbed

We deployed the latest version of VNode-i on the JGN-X
testbed by establishing 7 VNodes and 6 AGWs. Approxi-
mately 40 slices were used in the evaluation experiment as
shown in Fig. 9.

We evaluated the throughput performance on the JGN-
X testbed. Figure 10(a) shows the configuration for perfor-
mance evaluation. We created node slivers on VNodes at
Nagoya (NS01) and Osaka (NS02), and test packets were
transmitted from NS01 to NS02. Figure 10(b) shows the
configuration for performance evaluation for the previous
version of VNode-i. We created node slivers on 2 VNodes

Fig. 10 Configuration for performance evaluation.

Fig. 11 Throughput performance evaluation.

in the test environment. Figure 11 shows the evaluation
results. Since the Programmer Offload functionality is lim-
ited, 1500 Byte length following the packet transfer is limited
to the value of the discrete bandwidth. Specifically, in the
1300 Byte length of the packet transfer, the transfer band-
width is limited to 390 Mbps, 737 Mbps, 1387 Mbps, and
2340 Mbps. When performing a packet transmission ex-
ceeding these transfer bandwidths, the received packet rate
exceeds the limited transfer bandwidth. On the other hand,
for a packet transfer of 1500 Byte length or more, because
there are no constraints, the transmission packet rate and
packet receive rate are consistent. From the evaluation re-
sults, for the packet length of 1300 Byte, although up to
the transmission rate of 2 Gbps receive rate is as expected,
when the transmission rate of 2.7 Gbps the receive rate is
2 Gbps, which is below expectation. Therefore, the through-
put performance for 1300 Byte packet length is confirmed as
2 Gbps. On the other hand, for the packet length 8000 Byte,
since the receive rate was as expected for the transmission
rate 2.7 Gbps, the throughput performance of 2.7 Gbps or
more has been confirmed. In a throughput performance
comparison, the previous version of VNode-i exhibited a
limit of 900 Mbps, and so we confirmed an improvement in
performance.

In another evaluation, we installed one small VNode



YAMADA et al.: DESIGN AND DEPLOYMENT OF ENHANCED VNODE INFRASTRUCTURE — DEEPLY PROGRAMMABLE NETWORK VIRTUALIZATION
1635

Fig. 12 International federation experiment among Japan, US, and EU.

Fig. 13 Streaming over federated slice.

at the University of Utah and established an international
federation with ProtoGENI, which is a network virtualiza-
tion testbed of the GENI project in the US. Federation was
also achieved with Fed4FIRE, which is a European network
virtualization testbed and demonstrates slice construction
in a global multi-domain environment. Figure 12 shows
the construction of the international federation experiment.
Federation was established using the Slice Exchange Point
(SEP) [16], [17] within the small VNode at the University
of Utah. We successfully created and evaluated large-scale
international federation slices.

To confirm feasibility, we actually created a federation
slice on VNode-i and GENI, and conducted some experi-
ments on the slice. One example is introduced below. We
transmitted a video stream from Japan to the US via a feder-
ation slice and measured resource utilization of both infras-
tructures under different conditions. We achieved multicast
streaming and adaptive bit rate streaming by deploying the
packet copy and transcoding functions.

The experimental configuration is shown in Fig. 13. It
has three node slivers. NS01 is the video server and NS02 is
a relay node; both were created on VNode-i. NS03, a relay
node, is created on GENI. Table 4 shows the physical spec-
ifications and node sliver specifications for both domains.
Because of practical limitations, these specifications are not

Table 4 Physical specifications and node sliver specifications.

Table 5 Comparison between VNode and GENI.

equal.
We transmitted streaming content from Japan to the

US and multicasting was achieved by installing a splitter
in NS02. We achieved multicasting by deploying a very
simple function that copies the packets and sets additional
destination IP addresses. We call the multicasting function
the splitter. In this case, the splitter is a simple program
written in C. One stream was transcoded in NS02 and the
other was transcoded in NS03. We installed a generic OS,
Ubuntu server 12.04, on relay nodes and ran VideoLAN
Client (VLC) [18] 2.0.8 on them as the transcoding function.
These node slivers are virtual machines virtualized by KVM
in both domains but other generic OSs can be used. There-
fore, the same software functions were deployed on VNode
and GENI. We used dstat to measure the resource utilization
of both infrastructures [19]. In VNode-i, we deployed a QoS
function, based on policing and shaping, for link slivers, so
as to guarantee the link bandwidth of 50 Mbps (burst size is
50 kB). The QoS and guaranteed link bandwidth functions
were achieved by the Redirector.

We show the measured results in Table 5. CPU utiliza-
tion was measured by dstat on the node sliver. These values
represent the measured load of the deployed functions. Ta-
ble 5 gives the memory usage, which was also measured by
dstat. These values show the processor memory used by all
node processes and therefore do not include buffer memory
or cache memory. CPU utilization of the VNode node sliver
includes the multicasting function as well as the transcoding
function. CPU loads created by the multicasting function are
not large. We measured it separately and found it to be ap-
proximately 5%. We note, however, that CPU utilization was
higher in the VNode domain since the CPU in the GENI node
sliver works in Hyper-Threading mode. Therefore, it imple-
ments transcoding with a higher degree of parallelism. The
GENI node sliver used more memory and so had lower CPU
utilization. We confirmed that both streams were transcoded
correctly and that the content played smoothly at the client.

5. Conclusion

In this paper, we introduced the design and deployment of
the latest version of VNode-i. It offers new functions to



1636
IEICE TRANS. COMMUN., VOL.E99–B, NO.8 AUGUST 2016

achieve high performance and to provide convenient deep
programmability to network developers. We extended re-
source abstraction to the transport network and achieved
highly precise slice measurement for resource elasticity.
We achieved precise resource isolation for VNode-i. We
achieved coexistence of high performance and programma-
bility. We also enhanced AGW functions. In addition, we
extended network virtualization from the core network to
edge networks and terminals. We deployed the enhanced
VNode-i on the JGN-X testbed in evaluation experiments
and evaluated its performance. We successfully created an
international federation slice among VNode-i, GENI and
Fed4FIRE. We also described a video streaming experiment
using a federated slice across VNode-i and GENI. Through
testbed experiments, we were able to confirm the practicality
of the enhanced VNode-i.

Acknowledgments

The research results have been achieved as part of the “New
generation network R&D program for innovative network
virtualization platform and its applications”, ordered by
Commissioned Research of the National Institute of Informa-
tion and Communications Technology (NICT). The authors
thank the VNode project members.

References

[1] “AKARI” Architecture Design project. [Online] Available: http://
www.nict.go.jp/en/photonic_nw/archi/akari/akari-top_e.html

[2] N.M.M.K. Chowdhury and R. Boutaba, “A survey of network vir-
tualization,” Computer Networks, vol.54, no.5, pp.862–876, April
2010.

[3] N.M.M.K. Chowdhury and R. Boutaba, “Network virtualization:
State of the art and research challenges,” IEEE Commun. Mag.,
vol.47, no.7, pp.20–26, July 2009.

[4] Network Virtualization Study Group (NVSG). (2012, June) Ad-
vanced Network Virtualization: Definition, Benefits, Applications,
and Technical Challenges. [Online]. Available: https://nvlab.nakao-
lab.org/nv-study-group-white-paper.v1.0.pdf

[5] A. Nakao, “VNode: A deeply programmable network testbed
through network virtualization,” 3rd IEICE Technical Committee
on Network Virtualization, 2012.

[6] Y. Kanada, K. Shiraishi, and A. Nakao, “Network-resource isolation
for virtualization nodes,” IEICE Trans. Commun., vol.E96-B, no.1,
pp.20–30, 2013.

[7] Y. Katayama, T. Yamamoto, Y. Tsukishima, K. Yamada, N.
Takahashi, A. Takahara, and A. Nakao, “Design and implementa-
tion of network virtualization management system,” IEICE Trans.
Commun., vol.E97-B, no.11, pp.2286–2301, 2014.

[8] New Generation Network Testbed JGN-X. [Online]. Available:
http://www.jgn.nict.go.jp/english/index.html

[9] Global Environment for Network Innovations (GENI) Project. [On-
line]. Available: http://www.geni.net

[10] Federation for Future Internet Research and Experimentation
(Fed4FIRE). [Online]. Available: http://www.fed4fire.eu

[11] “Openflow.” [Online] Available: http://archive.openflow.org
[12] “ONOS.” [Online] Available: http://onosproject.org/
[13] “OpenDaylight.” [Online] Available: http://www.opendaylight.org/
[14] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,

W. Khan, M. Fargano, C. Cui, H. Deng, J. Benitez, U. Michel, H.
Damker, K. Ogaki, T. Matsuzaki, M. Fukui, K. Shimano, D. Delisle,

Q. Loudier, C. Kolias, I. Guardini, E. Demaria, R. Minerva, A.
Manzalini, D. López, F.J.R. Salguero, F. Ruhl, and P. Sen, “Net-
work functions virtualisation — Introductory white paper,” [Online]
Available: http://portal.etsi.org/nfv/nfv_white_paper.pdf

[15] K. Shimizu, K. Sebayashi, and M. Maruyama, “Successful high-
precision QoS measurement in widely deployed 10-Gbit/s networks
based on general-purpose personal computers,” NTT Technical Re-
view, vol.7, no.3, 2009.

[16] T. Tarui, Y. Kanada, M. Hayashi, and A. Nakao, “Federating hetero-
geneous network virtualization platforms by slice exchange point,”
2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), pp.746–749, 2015.

[17] Common API 2.0 [Online] Available: https://nvlab.nakao-lab.org/
Common_API_V2.0.pdf

[18] VideoLAN Client (VLC). [Online]. Available: https://www.videolan.
org/vlc/

[19] dstat. [Online]. Available: http://dag.wiee.rs/home-made/dstat/

Kazuhisa Yamada received the B.E. degree
in electronics engineering from Gunma Uni-
versity, Gunma, Japan, in 1987. In 1987, he
joined NTT Electrical Communication Labora-
tories, Yokosuka-shi, Japan, where he has been
engaged in research on a programmable trans-
port system. Since 1998, he has been developing
carrier network operation systems. Since 2003,
he has been developing a digital television relay
network operation system. His current research
interests include network virtualization and net-

work management technologies for future networks. He is a senior research
engineer at the NTT Network Innovation Laboratories.

Akihiro Nakao received B.S. degree (1991)
in Physics and M.E. degree (1994) in Information
Engineering from the University of Tokyo. He
was at IBM Yamato Laboratory, Tokyo Research
Laboratory, and IBM Texas Austin from 1994
to 2005. He received the M.S. degree (2001)
and Ph.D. degree (2005) in Computer Science
from Princeton University. He has been teach-
ing as an associate professor (2005–2014) and as
a professor (2014–present) in Applied Computer
Science, at Interfaculty Initiative in Information

Studies, Graduate School of Interdisciplinary Information Studies, the Uni-
versity of Tokyo.

Yasusi Kanada received the B.E. degree in
mathematical engineering from the University
of Tokyo in 1979 and M.E. degree in informa-
tion engineering from the University of Tokyo
in 1981. He has been working for Hitachi, Ltd.
since 1981. He stayed in Carnegie Mellon Uni-
versity from 1988 to 1990, and stayed in Tsukuba
Laboratory of Real World Computing Partner-
ship (RWCP) from 1992 to 1995. He received
the Ph.D. degree from the University of Tokyo
in 1992.

http://www.nict.go.jp/en/photonic_nw/archi/akari/akari-top_e.html
http://www.nict.go.jp/en/photonic_nw/archi/akari/akari-top_e.html
http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/10.1109/mcom.2009.5183468
http://dx.doi.org/10.1109/mcom.2009.5183468
http://dx.doi.org/10.1109/mcom.2009.5183468
https://nvlab.nakao-lab.org/nv-study-group-white-paper.v1.0.pdf
https://nvlab.nakao-lab.org/nv-study-group-white-paper.v1.0.pdf
https://nvlab.nakao-lab.org/nv-study-group-white-paper.v1.0.pdf
https://nvlab.nakao-lab.org/nv-study-group-white-paper.v1.0.pdf
http://dx.doi.org/10.1587/transcom.e96.b.20
http://dx.doi.org/10.1587/transcom.e96.b.20
http://dx.doi.org/10.1587/transcom.e96.b.20
http://dx.doi.org/10.1587/transcom.e97.b.2286
http://dx.doi.org/10.1587/transcom.e97.b.2286
http://dx.doi.org/10.1587/transcom.e97.b.2286
http://dx.doi.org/10.1587/transcom.e97.b.2286
http://www.jgn.nict.go.jp/english/index.html
http://www.jgn.nict.go.jp/english/index.html
http://www.geni.net
http://www.geni.net
http://www.fed4fire.eu
http://www.fed4fire.eu
http://archive.openflow.org
http://onosproject.org/
http://www.opendaylight.org/
http://portal.etsi.org/nfv/nfv_white_paper.pdf
http://portal.etsi.org/nfv/nfv_white_paper.pdf
http://portal.etsi.org/nfv/nfv_white_paper.pdf
http://portal.etsi.org/nfv/nfv_white_paper.pdf
http://portal.etsi.org/nfv/nfv_white_paper.pdf
http://portal.etsi.org/nfv/nfv_white_paper.pdf
http://portal.etsi.org/nfv/nfv_white_paper.pdf
http://dx.doi.org/10.1109/inm.2015.7140366
http://dx.doi.org/10.1109/inm.2015.7140366
http://dx.doi.org/10.1109/inm.2015.7140366
http://dx.doi.org/10.1109/inm.2015.7140366
https://nvlab.nakao-lab.org/Common_API_V2.0.pdf
https://nvlab.nakao-lab.org/Common_API_V2.0.pdf
https://www.videolan.org/vlc/
https://www.videolan.org/vlc/
http://dag.wiee.rs/home-made/dstat/


YAMADA et al.: DESIGN AND DEPLOYMENT OF ENHANCED VNODE INFRASTRUCTURE — DEEPLY PROGRAMMABLE NETWORK VIRTUALIZATION
1637

Yoshinori Saida received the B.S. and M.S.
degrees in Electronic Engineering from Kyushu
University in 1991 and 1993, respectively. In
1993, he joined NEC Corporation, Tokyo, Japan,
where he has been engaged in research on a soft-
ware platform for mobile terminals. He is a
manager in the NEC Corporation.

Koichiro Amemiya received the B.S. and
M.S. degrees in applied physics from the Univer-
sity of Tokyo, Japan, in 2000 and 2002 respec-
tively. In 2002 he joined Fujitsu Laboratories
Ltd., Kawasaki, Japan, where he has been en-
gaged in the research of distributed computing.
He is a senior researcher in the Software Lab-
oratories in Fujitsu Laboratories Ltd. He is a
member of the IPSJ.

Yuki Minami received the Bachelor of Infor-
mation Science and Master of Information Sci-
ence degrees from Osaka University, Japan, in
2009 and 2011, respectively. He joined the NTT
Network Innovation Laboratories in 2011 and he
engaged in research and development on network
virtualization technology.


