
324
IEICE TRANS. COMMUN., VOL.E102–B, NO.2 FEBRUARY 2019

PAPER
A Study on Optimal Beam Patterns for Single User Massive MIMO
Transmissions

Maki ARAI†a), Member, Kei SAKAGUCHI†, Senior Member, and Kiyomichi ARAKI†, Fellow, Honorary Member

SUMMARY This paper proposes optimal beam patterns of analog
beamforming for SU (Single User) massive MIMO (Multi-Input Multi-
Output) transmission systems. For hybrid beamforming in SU massive
MIMO systems, there are several design parameters such as beam patterns,
the number of beams (streams), the shape of array antennas, and so on. In
conventional hybrid beamforming, rectangular patch array antennas imple-
mented on a planar surface with linear phase shift beam patterns have been
used widely. However, it remains unclear whether existing configurations
are optimal or not. Therefore, we propose a method using OBPB (Optimal
Beam Projection Beamforming) for designing configuration parameters of
the hybrid beamforming. By using the method, the optimal beam patterns
are derived first, and are projected on the assumed surface to calculate the
achievable number of streams and the resulting channel capacity. The re-
sults indicate OBPB with a spherical surface yields at least 3.5 times higher
channel capacity than conventional configurations.
key words: massive MIMO, beamforming, beam pattern, directivity, spher-
ical mode expansion, capacity maximization

1. Introduction

Future wireless communication systems must offer larger
channel capacity because of the popularization of wire-
less devices such as smartphones and tablets. To increase
the channel capacity, massive MIMO (Multi-Input Multi-
Output) technology using a large number of antenna ele-
ments, at least at the BS (Base Station), is important [1], [2],
and the technology is expected to be deployed in 5G cellu-
lar networks and beyond. In the case of MU (Multi-User)
massive MIMO, the channel (system) capacity increases in
proportion to the number of antenna elements if UEs (User
Equipment) are well separated in space [3]. However, in the
case of SU (Single User) massive MIMO, this is not true and
the number of streams for spatial multiplexing is limited due
to both smaller antenna surface at the UE and the increased
antenna correlation at the BS.

Hybrid beamforming, which combines analog beam-
forming and digital pre/post-processing, is a reasonable way
to realize massive MIMO systems in low cost and low power
consumption [4]–[7]. In conventional hybrid beamforming,
rectangular patch array antennas implemented on a planar
surface with linear phase shift beam patterns have been used
widely [8], [9]. In the case of MU massive MIMO with UEs
well separated in the space, it works well by just steering
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main beams to locations (angles seen from the BS) of the
UEs. However, in the case of SU massive MIMO, it will
not work well since steering main beams to the single UE
is just increasing antenna correlation at the BS. Therefore,
there are remaining research issues in the case of SU mas-
sive MIMO in terms of beam patterns, the number of beams
(streams), the shape of an array antenna, and so on.

In this paper, we introduce a method using OBPB (Op-
timal Beam Projection Beamforming) proposed in [10] for
designing antenna configuration parameters of the SU mas-
sive MIMO. The goal of the study is to maximize chan-
nel capacity by increasing the effective number of beams
(streams) in a given propagation channel with special beam
patterns and shapes of antenna designed by the OBPB. Dif-
ferent from the conventional design methods, the OBPB de-
rives optimal beam patterns to be matched with the prop-
agation channel first, and projects the optimal beam pat-
terns to the assumed antenna surface such as sphere to syn-
thesize conditional beam patterns. In the method that we
proposed, the optimal solutions of the transmit and receive
sides are derived by sequential calculations on a computer.
Thus, there is no information exchanged between BS and
UE. The necessary information to derive the solutions is
only the joint angular profile to make the corresponding an-
tenna radiation patterns for usage. Thus, only measurements
and feedbacks to determine the joint angular profile are re-
quired without any other information exchanges to calculate
the optimal patterns even in real operation. Since OBPB
utilizes as much space of the antenna surface as possible, the
larger number of orthogonal beams (streams) can be created.
Table 1 compares the antenna configuration and metrics of
OBPB with those of conventional methods for the analog
beamforming. From the analysis, it is found that the chan-
nel capacity realized by the OBPB with a spherical surface
approaches the optimal capacity and is 3.5 times or larger
than that of the conventional configurations.

This paper is organized as follows. In Sect. 2, sys-
tem model of SU massive MIMO and antenna configuration
of the conventional hybrid beamforming are described. In
Sect. 3, the proposed method using OBPB is introduced to
design conditionally optimal antenna configuration parame-
ters. Section 4 designs conditionally optimal beam patterns
in a given environment and calculate the achievable num-
ber of streams and the resulting channel capacity with deep
discussions about the results. Finally, Sect. 5 concludes this
paper.

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers
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Table 1 Analog beamforming configuration.

Conventional Proposed
Shape Planar Spherical, Planar

Category Full-array, Sub-array Hemisphere, 1/32-sphere, Plane
Beamforming Linear Phase Shift Beamforming (LPSB) Optimal Beam Projection Beamforming (OBPB) [10]
Antenna type Patch array Continuous surface

Beam selection metric Received power, Determinant Determinant
Rank adaptation metric Capacity Capacity

2. Conventional Hybrid Beamforming for SU-Massive
MIMO System

There are two categories of configurations, such as full-array
and sub-array in the conventional hybrid beamforming for
the SU-massive MIMO. The antenna elements are consid-
ered as the rectangular patch array antennas implemented
on a planar surface with LPSB (Linear Phase Shift Beam-
forming). The beam patterns are selected to maximize the
received power of each stream or to maximize the determi-
nant of a channel correlation matrix by using a combinato-
rial search.

2.1 SU-Massive MIMO System Model

The massive MIMO system is achieved by using dozens,
hundreds or more antenna elements at least at the BS to
improve channel (system) capacity as shown in Fig. 1. In
the massive MIMO system, combining analog beamform-
ing and digital pre/post-processing is a reasonable way for
low cost and low power consumption. It is called as hybrid
beamforming and its procedure consists of long-term and
short-term operations as shown in Fig. 2.

The receive uplink signals of M streams in the SU-
massive MIMO system at time t is defined as

yBS(t) = WT
d (t)WT

a H0(t)sUE(t) + nBS(t)

= WT
d (t)H(t)sUE(t) + nBS(t) (1)

H(t) = WT
a H0(t), (2)

where Wd(t)∈CM×M is a digital pre/post-processing weight
matrix, Wa ∈ C

NBS×M is an analog beamforming weight
matrix, sUE ∈ C

NUE×1 is a vector of transmit signal and
nBS ∈C

M×1 is a noise vector. H0(t) is a channel matrix and
its component is defined by a channel response between the
i-th BS antenna and the j-th UE antenna h0,i j. H(t) is a chan-
nel matrix including the analog beamforming weight matrix.
M is the number of streams defined as M ≤ min{NBS,NUE}

and NBS,NUE are the numbers of BS and UE antennas re-
spectively. In this paper, it is assumed that the transmit
power is divided equally for all streams. Under the equally
distributed power condition, the instantaneous channel ca-
pacity is derived as follows.

C(t) = log2 det
(
IM + WT

d (t)H(t)HH(t)W∗
d(t)

P
MPn

)
,

(3)

Fig. 1 SU-massive MIMO system model.

Fig. 2 Hybrid beamforming procedure of massive MIMO system.

where IM is an M ×M unity matrix, P is the transmit power
and Pn is the noise power. When an SVD (Singular Value
Decomposition) is considered, the digital signal processing
weight matrix is unitary. Thus, the channel capacity is ex-
pressed as

C(t) = log2 det
(
IM + H(t)HH(t)

P
MPn

)
. (4)

2.2 Antenna Configuration for Hybrid Beamforming

There are mainly two types of massive MIMO antenna con-
figurations, i.e. the full-array and sub-array as shown in
Fig. 3. In the configurations, phase shifters are used to
achieve analog beamforming weights. In the case of the
full-array configuration, each RF chain is connected to all
antenna elements. The weight vector between the m-th RF
chain and NBS antenna elements is given by

wa,m = [wa,1m, · · · , wa,NBSm]T. (5)
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Fig. 3 Hybrid beamforming antenna configuration.

The analog beamforming weight matrix for the full-array
configuration is expressed as

Wa = [wa,1, · · · ,wa,M]. (6)

On the other hand, in the sub-array configuration, the
antennas are divided into several groups and each RF chain
is connected to a sub-array group with NBS,sub antenna ele-
ments, defined as NBS,sub = NBS/M = NBS,sub,V × NBS,sub,H
sub-array antenna elements in order to simplify the feeding
circuit. The weight vector between the m-th RF chain and
NBS,sub antenna elements is given by

wa,m = [wa,1m, · · · , wa,NBS,subm]T. (7)

The analog beamforming weight matrix for the sub-array
configuration is expressed as

Wa =


wa,1 0 · · · 0

0 wa,2
...

...
. . . 0

0 · · · 0 wa,M

 . (8)

2.3 Analog Beamforming Weight Matrix by Using LPSB

When the linear phase shift beam patterns are used for
the analog beamforming, the weight matrix is expressed
based on a DFT (Discrete Fourier Transform) matrix D ∈
CNBS×a2NBS , where a is a beam interval coefficient determined
by an integer. For example, it is assumed in Fig. 4 that 2-
dimensional NBS,V × NBS,H rectangular array is used for the
full-array. The weight component for the n = (u, v)-th an-
tenna element with the phase shifter corresponding to the
m = (p, q)-th beam pattern is expressed as follows.

dnm = dupdvq =
1
√

NBS
exp

(
− j2π(u − 1)(p − 1)

aNBS,V

)

Fig. 4 2-dimensional rectangular full-array configuration.

Fig. 5 2-dimensional rectangular sub-array configuration.

· exp
(
− j2π(v − 1)(q − 1)

aNBS,H

)
, (9)

where u, v are the row indices of the DFT matrix in
{1, · · · ,NBS,V} and {1, · · · ,NBS,H} respectively. p, q are the
column indices of the DFT matrix in {1, · · · , aNBS,V} and
{1, · · · , aNBS,H}. When the value a becomes large, the main
lobes of the beams become near.

In the case of the sub-array as shown in Fig. 5, the
weight component for the n = (u, v)-th antenna element with
the phase shifter corresponding to the m = (p, q)-th beam
pattern is also expressed as

dnm = dupdvq =
1√

NBS,sub
exp

(
− j2π(u − 1)(p − 1)

aNBS,sub,V

)
· exp

(
− j2π(v − 1)(q − 1)

aNBS,sub,H

)
, (10)

where the indices u, v are integers in {1, · · · ,NBS,sub,V}

and {1, · · · ,NBS,sub,H} corresponding to the row indices of
the DFT matrix. and the indices p, q are integers in
{1, · · · , aNBS,sub,V} and {1, · · · , aNBS,sub,H} corresponding to
the column indices of the DFT matrix.

2.4 Beam Selection Using Received Power of Each
Stream

We consider two methods for selecting analog beamform-
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ing weights. First, the analog beamforming weight vectors
are chosen to maximize the received power of each stream.
Next, the weight is selected to be descending order of the
achievable received power of the stream.

wm = arg max
dm′∈D\Wm−1

E[dT
m′H(t)HH(t)d∗m′ ] (11)

Wm−1 = [w1, · · · ,wm−1], (12)

where dm′ is the m′-th column vector of the matrix D. This
method is simple because the only BS or UE side’s infor-
mation is needed for the calculation. However, the channel
capacity degrades due to high correlation between the se-
lected beams made by analog beamforming in this method.

2.5 Beam Selection Using Determinant of Channel Corre-
lation Matrix

Since the analog weight matrix is deterministic, the optimal
values are derived by using not the instantaneous channel
capacity but the average channel capacity. When Pt

MPn
is suf-

ficiently large, the average channel capacity is given by

C̄ = E[C(t)]

= log2 det
(
E

[
IM + H(t)HH(t)

] P
MPn

)
≈ log2 det

(
E

[
H(t)HH(t)

] Pt

MPn

)
∝ detE

[
H(t)HH(t)

]
, (13)

Therefore, to maximize the average channel capacity is
equivalent to maximize the determinant of the channel cor-
relation matrix.

wm = arg max
dm′∈D\Wm−1

det
(
E[W̃T

mm′H(t)HH(t)W̃∗
mm′ ]

)
(14)

Wm−1 = [w1, · · · ,wm−1] (15)

W̃mm′ = [w1, · · · ,wm−1,dm′ ]. (16)

By using this method, the weights can be derived consider-
ing both the maximization of the beam gain and the reduc-
tion of correlation between the selected beams. Therefore,
the channel capacity can be improved compared to the first
method using the received power.

3. Analog Beamforming by Using OBPB

OBPB is used to derive the effective number of beams
(streams) and beam patterns and described by using the
system model based on an SME (Spherical Mode Expan-
sion) [11]. By using OBPB, optimal beam patterns are de-
rived first to maximize the average channel capacity with the
given propagation channel. After that, semi-optimal beam
patterns are calculated under a given condition of antenna
surface. In this section, we introduce how to derive the semi-
optimal beam patterns by projecting the optimal beam pat-
terns to the assumed antenna surface and synthesizing the

Fig. 6 Spherical coordinate.

Fig. 7 MIMO system model with SME.

conditional beam patterns radiated from the surface.

3.1 SU-Massive MIMO System Model with SME

The channel matrix is expressed by using BS and UE an-
tenna directivities as follows.

H(t)

=

∫
ψBS

∫
ψUE

~gBS(ψBS)~~h(ψUE, ψBS, t)~gUE(ψUE)dψUEdψBS

= QT
BS,M

∫
ψBS

∫
ψUE

~kBS(ψBS)~~h(ψUE, ψBS, t)

~kUE(ψUE)dψUEdψBSQ∗UE,M (17)

~gBS(ψBS) = QT
BS,M

~kBS(ψBS) (18)

~gUE(ψUE) = QT
UE,M

~kUE(ψUE), (19)

where the departure or arrival angles at BS and UE are
ψBS = (θBS, φBS) in a spherical coordinate shown in Fig. 6.
And ψUE = (θUE, φUE). QBS,M ∈C

JBS×M ,QUE,M ∈C
JUE×M are

matrices of spherical mode coefficients which determine the
beam patterns for M streams. JBS and JUE are numbers of
the spherical modes. ~kBS(ψBS) ∈ CJBS×1, ~kUE(ψUE) ∈ CJUE×1

are vectors of far-field pattern functions which are canonical
solutions of Helmholtz equation.

From Eq. (13), the maximization of the average chan-
nel capacity is equal to that of the determinant of the channel
correlation matrix. When SME is used, the channel corre-
lation matrix which transmits and receives M streams is ex-
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pressed as follows.

RBS,h = E[H(t)HH(t)]

=

∫
ψBS

∫
ψUE

~gBS(ψBS) ·
(
~gT

UE(ψUE) · ~~Ph(ψBS, ψUE)

· ~g∗UE(ψUE)
)
· ~gH

BS(ψBS)dψUEdψBS

=

∫
ψBS

QT
BS
~kBS(ψBS) · ~Ph,BS(ψBS)

· ~kH
BS(ψBS)Q∗BSdψBS. (20)

~~Ph(ψBS, ψUE) is a joint angular profile, which is the time-
averaged power of the channel response from a certain de-
parture angle to a certain arrival angle. ~Ph,BS(ψBS) is a
marginal angular profile at BS, which is determined by the
channel response and the beam patterns of UE antennas.
These angular profiles are defined as follows.

~~Ph(ψBS, ψUE) = E
[ ∣∣∣∣∣~~h(ψBS, ψUE, t)

∣∣∣∣∣2 ]
(21)

~Ph,BS(ψBS)

=

∫
ψUE

~~Ph(ψBS, ψUE) · ~gT
UE(ψUE) · ~g∗UE(ψUE)dψUE. (22)

At the UE side, the channel correlation matrix is expressed
in the same way at the BS.

3.2 Iterative Beam Pattern Optimization

By using the SU-massive MIMO system model with SME,
we obtain the optimal beam patterns of BS and UE. The op-
timization method described in [10] is expanded in the case
of the different antenna volume at BS and UE. Since the
beam patterns are determined by the spherical mode coef-
ficients (SMCs), we introduce the optimization method of
SMCs of BS and UE. In the method, the analog beamform-
ing weights and beam patterns of antenna elements are con-
sidered as a matrix of SMCs and far-field pattern functions.
The determinant of the channel correlation matrix can be
maximized by controlling the matrix of SMCs QBS,M . Since
the channel correlation matrix is semi-positive definite ma-
trix, it can be transformed by the eigenvalue decomposition
using the matrix of SMCs. The maximum determinant of
the channel correlation matrix is expressed as follows.

max det RBS,h = max det(QT
BS,MRBS,sphQ∗BS,M)

=

M∏
j=1

(uH
BS jRBS,sphuBS j) =

M∏
j=1

λBS j, (23)

where uBS j is an eigenvector and λBS j( j = 1, · · · , J) is an
eigenvalue of the spherical mode correlation matrix RBS,sph ∈

CJBS×JBS . The equality is achieved when qT
BSiRBS,sphq∗BS j =

0 (i , j) is satisfied. Thus, the vectors to maximize the de-
terminant of the channel correlation matrix are derived by
the eigenvectors from the first to the M-th order of RBS,sph

Fig. 8 Calculation procedure of iterative optimization at BS and UE.

as shown in Fig. 8. These calculations should be repeated
until the value of objective function converges. The conver-
gence conditions at BS and UE are indicated respectively as
follows.∣∣∣∣∣∣∣det

R(2i)
a

M
− det

R(2i−1)
b

M

∣∣∣∣∣∣∣ < ε (24)∣∣∣∣∣∣∣det
R(2i+1)

b

M
− det

R(2i)
a

M

∣∣∣∣∣∣∣ < ε, (25)

where “a” means BS or UE, “b” means UE or BS and ε is
an allowable difference.

3.3 Rank Adaptation

The rank of the channel correlation matrix depends on the
numbers of BS and UE antennas or those of BS and UE
spherical modes, and the initial condition defined by the an-
gular profile. Thus, the optimal rank, i.e., the optimal num-
ber of streams, should be derived to maximize the average
channel capacity. From the results of the analog beamform-
ing weights’ selection or iterative calculation, the optimal
number of streams can be obtained as follows.

Mopt = arg max
M

M∑
m=1

C̄m
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= arg max
M

M∑
m=1

E
[
log2

(
1 + λm

Pt

MPn

)]
, (26)

where λm is an eigenvalue of the matrix RBS,h.

3.4 Convergence of the Objective Function

The objective function to maximize the determinant of the
channel correlation matrix converges because it is bounded
above and monotonically increasing. Since the number of
streams is limited, the determinant of the channel correlation
matrix is bounded above by the product of a finite number
of eigenvalues determined by the number of streams. Fur-
thermore, when the duality of the channels is assumed, the
channel correlation matrix of the (2n + 1)-th calculation is
expressed by using Q(2n+1)

BS and R(2n+1)
BS,sph and by using Q(2n)

UE

and R(2n+2)
UE,sph.

Q(2n+1)T
BS R(2n+1)

BS,sphQ(2n+1)∗
BS = Q(2n)T

UE R(2n+2)
UE,sphQ(2n)∗

UE (27)

where superscripts indicate the iteration counts. By the
(2n + 2)-th calculation, the matrix of SMCs is derived and
the determinant is the same or larger than that of the pre-
vious calculation. Thus, the determinant is monotonically
increasing as follows.

det Q(2n)T
UE R(2n+2)

UE,sphQ(2n)∗
UE ≤

M(2n+2)∏
m=1

λ(2n+2)
m

= det U(2n+2)HR(2n+2)
UE,sphU

= det Q(2n+2)T
UE R(2n+2)

UE,sphQ(2n+2)∗
UE ,

(28)

where U(2n+2) and λ(2n+2)
m are the eigenvectors’ matrix and

the m-th eigenvalue of R(2n+2)
UE,sph respectively.

From the above, the objective function converges be-
cause it is bounded above and monotonically increasing.
Additionally, the convergence may be slow when the chan-
nels between BS and UE are correlated as shown in Sect. 5.2
of [10]. In such a case, the calculation is finished based on
the iteration counts, elapsed time, and so on.

3.5 Projection to Conditional Beam Patterns

The method to derive the semi-optimal beam patterns at BS
are introduced and the same way is used at UE. In general,
the current distribution is derived by solving the following
integral equation.

qopt
BS,m =

∫
VBS

~JBS,m(rBS, θBS, φBS) ·~fBS(rBS, θBS, φBS)dVBS,

(29)

where qopt
BS,m ∈ C

JBS×1 is a vector of SMCs corresponding
the m-th optimal beam pattern, ~JBS,m(rBS, θBS, φBS) is the m-
th current distribution on the antenna surface with volume
VBS and ~fBS(r, θ, φ) ∈ CJBS×1 is a vector of spherical wave

Fig. 9 Examples of current distributions of conventional array and pro-
posed current surface.

functions representing radial standing waves at a location
(r, θ, φ). By using Galerkin method, which is one of the
methods for solving the integral equation, Eq. (29) is rep-
resented as a linear equation as shown in [10], given by

qopt
BS,m = ZBSaBS,m, (30)

where ZBS ∈ C
JBS×L is a transformation matrix from the

space of antenna surface to the far field and aBS,m ∈ C
L×1

is a vector of the m-th current distribution coefficients. By
using a Moore-Penrose inverse matrix Z+

BS ∈C
L×JBS , the cur-

rent distribution coefficients are derived as the least squares
and minimum norm solution.

aBS,m = Z+
BSqopt

BS,m. (31)

The SMCs’ vector of the semi-optimal beam pattern radi-
ated from the antenna surface is expressed as follows.

qsemi
BS,m = ZBSaBS,m = ZBSZ+qopt

BS,m. (32)

ZBSZ+
BS is an orthogonal projection operator [18], thus the

SMCs’ vector of the optimal beam pattern is projected to
that of the conditional beam pattern and the semi-optimal
beam pattern is obtained as corresponding to the current dis-
tribution of the least squares and the minimum norm solu-
tion among the conditional beam patterns that can be radi-
ated from the antenna surface.

Table 2 shows examples of the assumed antenna sur-
face for the BS antenna defined by a radius of the spherical
surface R and a range of angle θc, φc. Three cases of surfaces
are considered such as Plane, 1/32-sphere and Hemisphere.
They are included in the sphere with the radius r0,BS, which
is the same volume as the 2-dimensional square array an-
tennas in the cases of full-array and sub-array. Examples of
configurations and current distributions are shown in Fig. 9
by using the conventional planar patch array and the hemi-
sphere antenna surface that we proposed.

4. Numerical Analysis

In this section, the beam patterns by using OBPB and con-
ventional hybrid beamforming are derived and discussed.

4.1 Analysis Condition

Conditions of analysis are shown in Table 3 and the angular
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Table 2 Examples of antenna surfaces.

Plane 1/32-sphere Hemisphere

R – max{r0/(
√

2 sin θc), r0/(
√

2 sin φc)} r0
(θc, φc) – (π/8, π/8) (π/2, π/2)

Table 3 Analysis condition.

NBS = 64
Number of antennas NUE = 4, 9, 16, 25, 36, 49

NBS,sub = 4, 8, 16
Spacing of BS antenna elements λ0

2
Spacing of UE antenna elements 1√

NUE−1
·
λ0
2

Antenna size λ0
2

Beam interval coefficient a = 4
Radius of antenna volume r0,BS =

( 7λ0
2 +

λ0
2

)
/
√

2
r0,UE =

(
λ0
2 +

λ0
2

)
/
√

2
Number of spherical modes JBS = 646

JUE = 48
Initial beam pattern omni-directional pattern

for iterative optimization
Initial number of streams 1
for iterative optimization

Received SNR with -12 dB
omni directivities in SISO

Basis function Dirac delta function
1% of the difference

Allowable difference between the last value and
the previous value

profile is defined by using a multivariate Gaussian distribu-
tion as shown in Figs. 10, 11 and Table 4 with only θ polar-
ization component. In the analysis, the φ-plane and θ-plane
indicate the xy-plane and xz-plane as shown in Fig. 6 respec-
tively. λ0 is a wavelength, P is a correlation matrix between
each variates, the standard deviations of θ components are
σBS,θ, σUE,θ, and the standard deviations of φ components
are σBS,φ, σUE,φ. The mean and correlation matrix between
variables are defined as 3GPP UMa NLOS model at 30 GHz
[21].

In the conventional hybrid beamforming case, the 2-
dimensional square array antennas are used and each el-
ement has a beam pattern defined in [21]. To compare
the characteristics of the proposed and conventional hybrid
beamforming in the same antenna volume, the antenna area
of the patch array at the UE side is a square having sides
with a fixed length AUE and the elements are allowed to
be overlapped when the number of UE antennas becomes
large. In the case of sub-array configuration, the number of

Fig. 10 Angular profile in φ-plane.

Fig. 11 Angular profile in θ-plane.

antenna elements in the sub-array is chosen from 10 types
of sub-array configurations to maximize the average chan-
nel capacity, such as (NBS,sub,V ×NBS,sub,H) = (1× 4), (2× 2),
(4×1), (1×8), (2×4), (4×2), (8×1), (2×8), (4×4), (8×2).

The current surfaces of the proposed cases are shown
in Table 2. They are defined as the same antenna vol-
ume as the conventional array configurations, which are
defined by the same radii of BS and UE antenna vol-
ume r0,BS, r0,UE. The relationship between the proposed
and the conventional antenna configurations is shown in
Fig. 12, where they face each other with a direction of
(µBS,θ, µBS,φ) = (90 [deg.], 0 [deg.]) at BS and that of
(µUE,θ, µUE,φ) = (90 [deg.], 0 [deg.]) at UE.
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Table 4 Parameters of angular profile.

µBS,θ = 90 [deg.]
Angle of departure µBS,φ = 0 [deg.]

and arrival µUE,θ = 90 [deg.]
µUE,φ = 0 [deg.]
σBS,θ = 4 [deg.]

Angular spread of σBS,φ = 21 [deg.]
departure and arrival σUE,θ = 11 [deg.]

σUE,φ = 48 [deg.]

Covariance matrix P


1 0.3 0 0.2

0.3 1 0.1 0.4
0 0.1 1 0

0.2 0.4 0 1


Polarization Only θ polarization

Fig. 12 Antenna configurations for proposed and conventional methods.

4.2 Beam Patterns

The beam patterns of the full-array configuration (Full-
array) are derived as shown in Figs. 13, 14, 15 and 16 in
the case of NUE = 4. By using the received power of each
stream for the weight selection, the patterns near the peak
of the angular profile are chosen. It causes the degradation
of the average channel capacity due to the high correlation
between the beam patterns. On the other hand, by using the
determinant of the channel correlation matrix, the average
channel capacity does not degrade compared with the pre-
vious case because sufficiently separated and low correlated
patterns are selected by considering the determinant. How-
ever, as the number of streams increases, the peaks of the
selected patterns are away from the peaks of the given an-
gular profile. Thus, it causes the loss of the received power
and the capacity degradation.

Next, the optimal beam patterns of the sub-array con-
figuration (Sub-array) is shown in Figs. 17 and 18 in the case
of NUE = 4. The same beam patterns are selected in all
groups of sub-arrays by using either the received power and
the determinant. The number of antenna elements of the
sub-array group is derived as (NBS,sub,V × NBS,sub,H)= (8× 2)
in the case of NUE = 4, (NBS,sub,V ×NBS,sub,H)= (4× 2) in the
case of NUE = 9, and (NBS,sub,V × NBS,sub,H)= (4 × 1) in the

Fig. 13 Beam patterns of Full-array in φ-plane
derived by Received power (NUE = 4).

Fig. 14 Beam patterns of Full-array in θ-plane
derived by Received power (NUE = 4).

Fig. 15 Beam patterns of Full-array in φ-plane
derived by Determinant (NUE = 4).

Fig. 16 Beam patterns of Full-array in θ-plane
derived by Determinant (NUE = 4).
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Fig. 17 Beam patterns of Sub-array in φ-plane (NUE = 4).

Fig. 18 Beam patterns of Sub-array in θ-plane (NUE = 4).

Fig. 19 Semi-optimal beam patterns of Plane in φ-plane.

other cases. The angular profile in θ-plane is narrower than
that of φ-plane in the analysis. Thus, the beam patterns in
θ-plane should be narrow as well and the sub-array is better
to be a vertical array than a horizontal array. Furthermore,
it is found that the same beam patterns are chosen in this
case. From the results, the beam patterns are sufficiently
decorrelated even though using the same analog beamform-
ing weight vector because the effective radio wave sources
are separated from with each other.

By using OBPB on the spherical surface, the optimal
beam patterns are derived as shown in Fig. 19 to Fig. 24. It
is found that the pattern of the 1st stream has its peak and
the other patterns have null towards the peak of the angu-
lar profile. In the case of Plane, the gains degrade because
the planar antenna surface cannot make some beam patterns

Fig. 20 Semi-optimal beam patterns of Plane in θ-plane.

Fig. 21 Semi-optimal beam patterns of 1/32-sphere
in φ-plane.

Fig. 22 Semi-optimal beam patterns of 1/32-sphere
in θ-plane.

due to constraints of the conditional current distributions
on the surface. When the current surface becomes curved
from Plane to 1/32-sphere and Hemisphere, the power of
the beam pattern is directed to the peak of the angular pro-
file. Thus, the loss of the transmission power becomes small
while having low correlation and the average channel ca-
pacity can be improved. As the current surface is curved as
1/32-sphere and Hemisphere, the complexity of the derived
beam patterns becomes high and they have low gains of side
lobes compared to Plane because the various directions of
currents are achieved.

To compare the proposed semi-optimal patterns to the
conventional beam patterns, three cases of 3-D beam pat-
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Fig. 23 Semi-optimal beam patterns of Hemisphere
in φ-plane.

Fig. 24 Semi-optimal beam patterns of Hemisphere
in θ-plane.

Fig. 25 3-D beam patterns of Full-array derived by Determinant (NUE =

4).

terns are shown in Figs. 25–27. In the case of the con-
ventional beam selection, one main lobe is mainly used as
shown in Fig. 25. On the other hand, in the case of the beams
of Plane (Fig. 26) and Hemisphere (Fig. 27), it is found that
there are multiple narrow beams in the range of the angular
profile for all streams. It means that both the main and side
lobes are useful by using OBPB method and the received
power becomes large in each stream. Thus, the channel ca-
pacity is improved.

Fig. 26 3-D semi-optimal beam patterns of Plane.

Fig. 27 3-D semi-optimal beam patterns of Hemisphere.

4.3 Channel Correlation Matrix with Optimal Beam Pat-
terns

The normalized channel correlation matrix is derived which
components are derived as

|r̃i, j| =
|ri, j|

2√
|ri,i||r j, j|

, (33)

where ri, j is the i-th row and j-th column component of
the channel correlation matrix RBS,h containing the derived
beam patterns. The components and determinant of the
channel correlation matrix in the case of NUE = 4 are shown
in Table 5.

In the case of Hemisphere, the same number of streams
and channel capacity with the optimal beam patterns are
achieved. It is also found that the channel correlation matrix
is completely orthogonalized and the determinant is larger
than that of the other methods. In the cases of 1/32 sphere
and Plane, the channel correlation matrices are almost or-
thogonalized and their determinants are much larger than
that of the conventional hybrid beamforming. From the re-
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Table 5 Normalized channel correlation matrix from 1st to 4th streams (NUE = 4).

Method Normalized channel correlation matrix Determinant [dB]

Hemisphere


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 168

1/32-sphere


1 0.00010 0.00052 0.00033

0.00010 1 0.00028 0.00066
0.00052 0.00028 1 0.00084
0.00033 0.00066 0.00084 1

 168

Plane


1 0 0.014 0
0 1 0 0.021

0.014 0 1 0
0 0.021 0 1

 144

Full-array (Received power)


1 0.92 0.92 0.71

0.92 1 0.71 0.41
0.92 0.71 1 0.92
0.71 0.41 0.92 1

 55.5

Full-array (Determinant)


1 0.10 0.10 0.23

0.10 1 0.13 0.34
0.10 0.13 1 0.21
0.23 0.34 0.21 1

 102

Sub-array


1 0.31 0.0025 0

0.31 1 0.31 0.0025
0.0025 0.31 1 0.31

0 0.0025 0.31 1

 102

Fig. 28 Optimal number of streams.

sults, it is found that using the beam patterns derived by
OBPB improves the SU-MIMO system performance.

In the case of Full-array, the determinant of the channel
correlation matrix by the beam selection using the determi-
nant is larger than that using the received power because
of low correlation. Therefore, the average channel capac-
ity is slightly improved. In the case of Sub-array, the cor-
relation coefficients between streams are lower than those
of Full-array using the received power because the effec-
tive sources of the beam patterns are separated from each
other in Sub-array. It is found that Sub-array is preferable to
Full-array using the beam selection in terms of the received
power when the correlation between selected beam patterns

Fig. 29 Average channel capacity.

are high.

4.4 Optimal Number of Streams and Average Channel Ca-
pacity

The optimal number of streams and the average channel ca-
pacity, corresponding to the number of conventional UE an-
tennas in the given sphere, are depicted in Figs. 28 and 29.
When the number of conventional UE antennas becomes
large in Full-array, the optimal number of streams increases
to 20 and 27 by using Received power and Determinant re-
spectively. In Sub-array, the maximum value of the number
of streams is limited to NBS/NBS,sub which is up to 16 in the
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analysis. It is found that the average channel capacity also
increases and Sub-array is more effective than Full-array us-
ing Power when there is sufficient orthogonality of streams.

In the case of Proposed, the optimal number of streams
and the average channel capacity do not vary since the radii
of antenna volume at both BS and UE sides are constant.
Both the number of streams and the average channel ca-
pacity increase by using the optimal patterns derived using
OBPB because the patterns are more matched to the angular
profile than those of Full-array and Sub-array. The aver-
age channel capacity becomes 3.5 times or larger than us-
ing Full-array and Sub-array in the cases of 1/32-sphere and
Hemisphere. It is because the patterns match the angular
profile and low correlated by their orthogonality.

5. Conclusion

In this paper, we proposed a method that can derive opti-
mal beam patterns of analog beamforming for SU massive
MIMO by iterative optimization. We also derived the semi-
optimal beam patterns on the assumed antenna surface, such
as Plane, 1/32-sphere and Hemisphere, by using OBPB. Nu-
merical analyses showed that the proposal could achieve the
same number of streams and channel capacity as offered by
optimal beam patterns for the case of a hemispherical sur-
face. Also, it is clarified that the average channel capacity
is 3.5 times or larger by using the semi-optimal beam pat-
terns derived by OBPB than that by using the conventional
hybrid beamforming. The semi-optimal beam patterns yield
orthogonal streams because the patterns are matched to the
angular profile and low correlated with each other. There-
fore, the analog beamforming by OBPB is more effective
for SU-massive MIMO than the conventional analog beam-
forming as it offers higher average channel capacity.
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