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PAPER
Fundamental Trial on DOA Estimation with Deep Learning∗
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Yasutaka OGAWA†, Fellows, Daisuke KITAYAMA††, Member,

and Yoshihisa KISHIYAMA††, Senior Member

SUMMARY Direction of arrival (DOA) estimation of wireless signals
has a long history but is still being investigated to improve the estimation
accuracy. Non-linear algorithms such as compressed sensing are now ap-
plied to DOA estimation and achieve very high performance. If the large
computational loads of compressed sensing algorithms are acceptable, it
may be possible to apply a deep neural network (DNN) to DOA estimation.
In this paper, we verify on-grid DOA estimation capability of the DNN
under a simple estimation situation and discuss the effect of training data
on DNN design. Simulations show that SNR of the training data strongly
affects the performance and that the random SNR data is suitable for con-
figuring the general-purpose DNN. The obtained DNN provides reasonably
high performance, and it is shown that the DNN trained using the training
data restricted to close DOA situations provides very high performance for
the close DOA cases.
key words: DOA estimation, deep learning, machine learning

1. Introduction

Direction of arrival (DOA) estimation of radio signal sources
and/or scatters is frequently required not only for radar ap-
plications but also for user localization which is used in
services for augmented reality, pushing sales information,
etc. DOA estimation has a long history starting from a
beamformer (matched filter), and now many algorithms in-
cluding sensor-network-based one are available [2]. Among
them, traditional high-resolution algorithms such as a Capon
technique [3], a multiple signal classification (MUSIC) al-
gorithm, and estimation of signal parameters via rotation
invariance (ESPRIT) are widely known [4].

In recent years, methods based on compressed sensing
have also been proposed [5]. Compressed sensing is a tech-
nique mainly used in the fields of signal processing and data
compression. The technique reconstructs an original signal,
which is given by a sparse vector, from fewer observations
than the dimension of the signal vector [6]. In an exam-
ple of DOA estimation using a compressed sensing solver

Manuscript received December 24, 2019.
Manuscript publicized April 21, 2020.
†The authors are with the Graduate School of Information Sci-

ence and Technology, Hokkaido University, Sapporo-shi, 060-0814
Japan.
††The authors are with NTT DOCOMO, INC., Yokosuka-shi,

239-8536 Japan.
∗A part of this paper was presented at IEEE Workshop on

Positioning, Navigation and Communications (WPNC) 2018 [1].
a) E-mail: kase@m-icl.ist.hokudai.ac.jp
b) E-mail: ohgane@ist.hokudai.ac.jp
DOI: 10.1587/transcom.2019EBP3260

called half-quadratic regularization (HQR), higher accuracy
has been reported compared with MUSIC [7].

Nonlinear algorithms such as compressed sensing re-
quire a heavy computational load in general. Actually, HQR
needs an iterative calculation of an inverse matrix of which
dimension is the same as that of the original signal vector.
Along with the development of computer technology, how-
ever, very heavy computation becomes feasible now and thus
deep learning is attracting attention rapidly.

Deep learning is a machine learning technique using
multiple layers of neural network, i.e., a deep neural net-
work (DNN). The technique has been extensively studied in
the fields of images, sounds, languages, etc., starting with
the research by Hinton et al. [8], [9]. During the learning
process, the DNN requires a large amount of calculations.
However, estimation using the learned network can be per-
formed with simple calculations which mainly consists of
multiplication of a matrix and a vector. This computational
load in estimation phase is lighter than the ones of MUSIC
(eigenvalue decomposition) and HQR (iterative calculation
of an inverse matrix). In addition, the fact that we can design
the DNN for specific scenarios where estimation is difficult
with conventional algorithms is unique to machine-learning-
based estimation. Thus, it can be said that using the DNN
for DOA estimation is an attractive option when the heavy
computational load of the learning process is acceptable.

Although DOA estimation using deep learning was first
applied in the speech source localization field as in [10],
several papers on the radio resource localization can be seen
recently [1], [11], [12]. In [11], the DOA estimation results
are used for massive MIMO channel estimation, and estima-
tion performance related to the number of hidden layers was
precisely measured. The DNN proposed in [12] is unique.
It consists of two parts, a spatial filtering part for subregion
decomposition and a spatial spectrum estimation part, and
succeeds in obtaining accurate spectra. These papers discuss
application-oriented performance, and the DNN configura-
tions are not general in terms of the array size [11] or the use
of subregion decomposition.

In this paper, we apply a simple DNN to DOA estima-
tion and discuss the estimation performance under a scenario
where two equal-power and uncorrelated signals are incident
on a uniform linear array in order to check the fundamen-
tal applicability of deep learning to the DOA estimation. In
other fields, it is known that the performance ofDNNchanges

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers



1128
IEICE TRANS. COMMUN., VOL.E103–B, NO.10 OCTOBER 2020

depending on the type of training data, so the same can be
expected with DNN in DOA estimation. Therefore, we de-
cided to investigate the relationship between SNR and DOA
performance. In addition to discussion on types of training
data, we consider designing a DNN for a specific scenario
because DNNs are able to be specialized for various pur-
poses. In general, it is a difficult problem to estimate DOAs
of closely incident signals accurately. Therefore, we design
a DNN using training data sets assuming two waves with
close DOAs, evaluate the estimation accuracy, and propose
an a parallel use of multiple DNNs designed for different
scenarios. In the rest of paper, the array structure and sig-
nal arrival model, the configuration and training process of
DNN, and performance evaluation by computer simulation
are described.

2. Preparation for DOA Estimation

DOA is estimated using received signal information. In
general, the information is categorized into two types: raw
waveforms and statistical data when multiple observations
are allowed. MUSIC and ESPRIT use a correlation ma-
trix of the received signal since those DOA estimation tech-
niques are based on the eigen structure of the correlation
matrix. Therefore, DOA can be estimated without waveform
information such as pilot signals. In this paper, we use the
correlation matrix for the DNN input as in [12].

Although estimation of two equal-power waves is dis-
cussed later, we formulate the following equations under a
general case where K plane waves with a wavelength λ and
a complex amplitude sk (t) are incident at an angle θk and a
time t on an L-element uniform linear array with an element
spacing d antenna as shown in Fig. 1. The received signal at
the lth antenna is expressed as

xl (t) =
K∑
k=1

sk (t)e−j
2π
λ (l−1)d sin θk + nl (t), (1)

where nl (t) is an additive white noise at the lth antenna.
The received signals at all antennas can be expressed in

a vector form as

x(t) = [x1(t), x2(t), . . . , xL (t)]T

= As(t) + n(t), (2)

Fig. 1 An L-element uniform linear array antenna and incident waves.

where [·]T denotes the transpose and

s(t) = [s1(t), s2(t), . . . , sK (t)]T (3)
n(t) = [n1(t), n2(t), . . . , nL (t)]T (4)

A =



1 · · · 1
e−j

2π
λ d sin θ1 · · · e−j

2π
λ d sin θK

...
. . .

...

e−j
2π
λ (L−1)d sin θ1 · · · e−j

2π
λ (L−1)d sin θK



. (5)

The L × K matrix A is called a mode matrix.
The L × L correlation matrix of received signal vector

x(t) is expressed as

Rxx = E
[
x(t) xH(t)

]
= ASAH + RN, (6)

where E[·] and [·]H denote the ensemble average and the
conjugate transpose, respectively. S and RN are the K × K
signal correlation matrix and the L×L noise correlation one,
respectively, and are given by

S = E
[
s(t) sH(t)

]
(7)

RN = E
[
n(t) nH(t)

]
. (8)

We assume that all the noise components are mutually un-
correlated and have the same power σ2. Thus, we have

RN = σ
2I, (9)

where I is the L-dimensional identity matrix. Then, we can
rewrite (6) as

Rxx = ASAH + σ2I . (10)

Note that this receive correlation matrix is a Hermitian ma-
trix.

3. DOA Estimation with Deep Learning

3.1 Formulation of DNN

In general, a single layer dense neural network of J units
with I inputs and J outputs can be illustrated as Fig. 2. The
output of the jth unit z j can be expressed as

z j = f (u j ) (11)

u j =

I∑
i=1

w j,i yi + bj, (12)

where f , yi , w j,i , and bj are all real-valued and represent an
activation function, the ith input, the weight for the jth unit
multiplied by yi , and a constant bias, respectively. Assuming
the 0th input y0 = 1 and the corresponding weight w j,0 = bj ,
we can modify (12) as

u j =

I∑
i=0

w j,i yi . (13)
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Fig. 2 A factor graph for a single layer neural network.

Fig. 3 Factor graph expression of a deep neural network (DNN).

These relationships can be expressed in a vector-matrix form
as



z1
z2
...

zJ



=



f (u1)
f (u2)
...

f (uJ )



(14)



u1
u2
...

uJ



=



w1,0 w1,1 · · · w1,I
w2,0 w2,1 · · · w j,I

...
...

...
wJ,0 wJ,1 · · · wJ,I





1
y1
...
yI



, (15)

and simplified as

z = f (u) (16)

u = W

[
1
y

]
. (17)

DNN has a multilayer structure with hidden layers as
shown in Fig. 3 where M single layer dense neural networks
are stacked. The output of the mth layer can be expressed as

z (m) = f (m)
(
u(m)

)
, (18)

where [·](m) denotes the mth layer index and

u(m) = W (m)
[

1
z (m−1)

]
. (19)

Note that z (M ) = f (M )
(
u(M )

)
and z (0) = y correspond to

the DNN output and input, respectively.

3.2 DNN Input

In the paper, we use the L × L correlation matrix Rxx for
an input to the DNN as described in Sect. 2. Since Rxx is
a Hermitian matrix where the off-diagonal elements are the
complex conjugates of the diagonally-opposite entries, only
the lower triangular part is used for the input of the DNN.
Equations (18) and (19) are defined in real space. Therefore,
we need to decompose the complex value of each entry of
the lower triangular part of Rxx into two real values except
for the diagonal elements. Then, the input vector to the DNN
is written as

y =
[
r1,1, r2,2, . . . , rL,L, <(r2,1), =(r2,1),

<(r3,1), =(r3,1), <(r3,2), . . . , =(rL,L−1)
]T ,

(20)

where <(·) and =(·) denote the real and imaginary parts,
respectively. The dimension of the column vector z (0) = y,
i.e., the number of input units becomes L2.

3.3 DNN Output

Definition of the DNN output directly determines the DOA
estimation accuracy. Clearly, the DNN provides a discrete
output. In that sense, the DOA estimation using deep learn-
ing is generally classified as the “on-grid” type similar to the
conventional compressed sensing algorithms. In this paper,
we apply the on-grid method straightforwardly and thus as-
sign each entry of z (M ) to a certain discrete angle from a
predefined grid set†.

The number of output units depends on the size of
the predefined grid set, i.e., a required angle resolution and
search range. When the angle resolution is ∆θ and the search
range is between θmin and θmax, the number of output units
becomes (θmax − θmin)/∆θ + 1. For each output value, we
define the probability [%] that a plane wave is incident at
the corresponding angle. Thus, in the training phase, each
output value is set as

z(M )
j =




100 when a plane wave is incident
0 otherwise

.

(21)

4. Evaluation of Estimation Accuracy

4.1 Simulation Conditions

We evaluated the DOA estimation performance of the DNN
by computer simulations. The followings are parameters
used here. To simplify performance analysis, we considered
a basic estimation problem where the number of targets was
two. In addition, it was assumed that both signals from the
†Even in the on-grid case, the off-grid angle can be estimated

in some ways. For example, interpolation is used in [12].
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Fig. 4 A ramp function.

targets were narrowband for (1) to hold, had equal power,
and were uncorrelated.

The DOA of each plane wave ranged from −60◦ to 60◦
with a 1◦ step. This integer DOA assumption is not general
but makes the performance analysis very clear. Although
each integer DOA was set randomly per estimation, we co-
ordinated two DOAs not to be coincident. The number of
array elements was five, and the element spacing was half-
wavelength of the center frequency of the narrowband sig-
nals. We used 100 snapshots of received signals to calculate
the correlation matrix in each estimation.

According to the number of antennas, the dimension of
input vector z (0) = y connected to the DNN are 25. We
assumed that required angle resolution was 1◦ and that the
search range of DOA was between −60◦ and 60◦. Thus, 121
output units compose the DOA grid corresponding to integer
angles from −60◦ to 60◦ which covers the possible DOA
range appropriately. In the estimation phase, two signals’
DOAs were determined by the angles of two output units
having the largest and the second largest probabilitieswithout
peak detection.

The number of hidden layers is four where each layer
has 150 units. Note that these parameters are not optimized
but empirically determined with a limited number of tests.
The activation function of all units except for the output layer
was set to a ramp function shown in Fig. 4, and we have

f (u) = max(u, 0) =



u for u ≥ 0
0 elsewhere

. (22)

For the activation function of the output layer, the identity
function is used.

Online learning based on back propagation was applied
to theDNNusing 3,000,000 training datawhere each training
data sample was generated by setting two different random
integer DOAs within the search range and white Gaussian

noise†. In online learning, the weights of the DNN are
updated at every training sample which is input one by one.
Even though batch learning is more common, we applied on-
line learning because we thought that it is simple and gives
straightforward observation on the training progress. Adap-
tive moment estimation (Adam) [13] was used to determine
the learning rate. Adam determines the learning rate adap-
tively and automatically from the past gradient. Thus, there
is no need to adjust the learning rate manually. In addition,
it is known that the DNN learned with Adam provides better
performance than DNNs learned with other techniques such
as AdaGrad [14] and AdaDelta [15].

During the learning process, the DNN performance is
validated every 100 learning cycles based on the estimation
success rate using 100,000 validation data where not only
incident angles but also SNR are randomly set. The range of
SNR in this validation phase was from 0 to 30 dB. The esti-
mation success is defined as the case where both estimated
DOAs are equal to the true value. Finally, the DNN provid-
ing the highest success rate is selected from the validation as
the best one.

In the evaluation phase, the estimation performance
is evaluated using three measures: estimation success rate,
RMSE, and the absolute value of error. RMSE is expressed
as

RMSE =

√√√
1

K N

K∑
k=1

N∑
n=1

(
θ̂ (n)
k
− θ (n)

k

)2
, (23)

where [·](n) and N denotes the nth test index and the number
of tests, respectively. The evaluation is performed using
100,000 test data (N = 100, 000) at each SNR from 0 dB to
30 dB in 5 dB stepwhere the incident angles are randomly set
per test. Thus, the number of total evaluation data becomes
700,000.

4.2 Training Data and Behavior

For the training data, six different sets where the SNR was
changed in predetermined patterns were prepared as follows.

(i) 0 dB constant (“0 dB”)
(ii) 30 dB constant (“30 dB”)
(iii) increased linearly from 0 dB to 30 dB (“increase”)
(iv) increased in 5 dB step from 0 dB to 30 dB (“stepwise”)
(v) decreased linearly from 30 dB to 0 dB (“decrease”)
(vi) random in the range between 0–30 dB (“random”)

SNR transition in each set is illustrated in Fig. 5.
†For implementation of such a DOA estimator based on the

deep learning, preparing a large amount of training data samples is
one of themost difficult problems. It might be a reasonable idea that
batch training with computer-generated samples is done before the
operation and that online training using observation data samples
for known targets is done to update the network. It is too difficult
for us to discuss system-level-training at this moment. Thus, only
the computer-simulation-based training and evaluation are shown
in this paper.
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Fig. 5 SNR transition in each training pattern. (The random case is not
shown.)

Estimation success rates observed at every 100 learn-
ing cycles are shown in Fig. 6. The number of learning
cycles where the success rate of the test was the maximum
is 1,052,900 for “0 dB”, 2,186,700 for “30 dB”, 1,895,200
for “increase”, 2,748,600 for “stepwise”, 1,424,000 for “de-
crease”, and 2,995,500 for “random.”† Note that the highest
success rates are obtained not at the end of learning except
for the “stepwise” and “random” data sets. It implies the pos-
sibility of overfitting as discussed later. The training data set
“0 dB” could not provide good success rate at any learning
cycles. It is supposed that featureless correlation matrices
generated by the low SNR data confuse the learning process.
Except for the “0 dB” and “decrease” cases, the success rates
seem to be improved with the number of leaning cycles al-
though the performance improvement after about 1,500,000
learning cycles is very small. Therefore, it may be difficult
to find the best timing to terminate learning.

Figure 7 shows RMSEs observed at every 100 learning
cycles. The RMSE using the training data set “30 dB” be-
comes visibly worse beyond the best learning cycles. This
suggests that over fitting occurred. Since such an over fitting
phenomenon is not observed in the success rate performance
in Fig. 6, it is expected that over fitting makes DOA estima-
tion errors larger when the estimation fails. However, we
selected the DNN providing the highest success rate for the
later performance evaluation because this paper focuses on
success rate performance.

4.3 Estimation Performance vs. Training Data Set

Estimation success rates and RMSEs of DNNs trained ac-
cording to the SNR patterns (i) to (vi) are shown in Figs. 8

†In the estimation phase, we use the DNNs obtained at these
learning cycles.

Fig. 6 Learning progress in terms of success rate. In the graph, success
rate is plotted at every 100 training data samples.

Fig. 7 Learning progress in terms of RMSE. In the graph, RMSE value
is plotted at every 100 training data samples.

and 9. Note that the abscissa represents SNR for the esti-
mation phase, not the learning. As a reference, the success
rate and RMSE of Root MUSIC [16] are also shown. Since
Root MUSIC outputs real angles of the peaks, each angle
value is rounded to the nearest integer and then regarded as
an estimated DOA. Note that the success rate and RMSE in
these figures are different form ones in Figs. 6 and 7 because
the SNR of validation data in these figures was randomly set
from about 0 dB to 30 dB.

In Fig. 8, both the “30 dB” and “stepwise” cases show
the highest success rate. Although the “stepwise” case pro-
vides slightly better success rate, the RMSE is visibly worse
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Fig. 8 Success rate performance for each training data set.

Fig. 9 RMSE for each training data set.

in comparison to the “30 dB” case. Thus, it can be said that
the DNN trained using high SNR data (“30 dB”) provides
higher performance in terms of not only the success rate
but also the RMSE in the SNR range from 10 dB to 30 dB.
Note that neither success rates nor RMSEs of DNNs reach
ones of Root MUSIC. This performance difference clearly
indicates that our DNNs are not trained well or the network
configuration is not optimized yet. Thus, modifications on
training data sets and network configuration are urgent issues
for us. However, even in the current DNN configuration, an
advantage can be obtained as will be shown later in 4.5.

Although the DNN trained using random SNR data
achieves a lower success rate compared to the “30 dB”, “step-

Fig. 10 Cumulative probability of absolute value of errors.

wise”, “increase”, and “decrease” cases in the SNR range
from about 10 dB to 30 dB, its success rate in the SNR range
from 0 dB to about 10 dB is higher than that of the others. It
can be said that training using random SNR data produces a
DNN suitable for a wide SNR range. In the following dis-
cussions, we use the DNN trained using random SNR data
(iv).

4.4 Absolute Value of Errors

Figure 10 shows the cumulative probability of the absolute
value of errors at the SNR of 30 dB for the case using the
DNN trained with random SNR data. The one for the Root
MUSIC case is also shown as a reference. Let us recall that
the estimation status is flagged as “success” only when both
DOAs are correctly estimated. Specifically, Fig. 8 shows that
“random” DNN failed about 22% of estimations (100,000 in
total). However, Fig. 10 indicates that zero error occurs in
about 86%ofwaves (200,000 in total) and that the probability
that the error falls within 1◦ exceeds 97%. Although the
probability of success of the DNN is less than that of Root
MUSIC (near 100%), it is very attractive that the obtained
DNN achieves high accuracy as in Fig. 10 with a reasonably
low complexity in the estimation phase as long aswe consider
an on-grid problem.

4.5 DNN for Close DOA Scenario

In the previous discussion, we found that the estimation per-
formance depended on the training data. For example, the
DNN trained using randomSNRdataworkswell for thewide
range of SNR. This implies that it may be possible for us to
design the special purpose DNN. Here, we try to construct
a DNN suitable to the close DOA case. For this purpose,
we trained the DNN using 300,000 training data which were
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Fig. 11 Success rate performance when |θ1 − θ2 | = 1◦.

produced as to be |θ1 − θ2 | = 1◦. SNR of the training data
was randomly set. The other conditions were the same as in
Sect. 4.1.

The estimation success rate using this DNN is shown
in Fig. 11. Note that the estimation data is restricted to
|θ1 − θ2 | = 1◦ as well as the training phase. As a reference,
the success rates of Root MUSIC and the DNN trained using
random SNR and DOA data without restriction on DOAs,
i.e., the same DNN as in Fig. 10, are also shown. In general,
it is difficult to estimate DOAs of which difference is 1◦.
Actually, the success rate of the DNN trained using random
DOAdata is lower than about 30%. Furthermore, the success
rate of MUSIC is still lower than about 50%. In contrast, the
DNN trained using special training data with the restriction
of |θ1−θ2 | = 1◦ achieves the success rate of 100% at the SNR
of 20 dB or higher. The fact that we can design the DNN
for specific scenarios is unique to machine-learning-based
estimation and shows potential capability of complementary
use of such DNNs with other techniques.

4.6 Parallel Use of General-Purpose and Specially-
Designed DNNs

As described above, the specially-designed DNN for the
close DOA scenario (1◦ DOA difference) can be used jointly
with other DOA estimators. Here, we use two DNNs trained
using random DOA data and 1◦-restricted data in parallel.
We simply assumed that the estimation status was flagged
as “success” when at least one of the two DNNs estimated
correct DOAs, i.e. the “OR” result of two DNNs’ success
flags although the method selecting the correct DNN has not
been developed yet.

Figure 12 shows the success rates for the parallel use
case and for the single use case of the “general-purpose”
DNN trained with random DOA data. Since the probability

Fig. 12 Success rate performance for parallel use of DNNs.

that 1◦ DOA difference occurs is about 1.6%, preparation
for such a case may not be so important. However, the
parallel use certainly improves the success rate by about
1.6% compared with the single use of the general-purpose
DNN. This property implies the possibility of performance
improvement by combination of specially-trained DNNs.

5. Conclusions

In this paper, we have evaluated an on-grid DOA estimation
method using deep learning with simple DNN configuration
for a simple estimation problem where only two narrowband
signals of equal power are incident from integer angles in
degrees. Six training data sets are created by setting differ-
ent SNR transitions. Among them, the data set having the
constant SNR of 30 dB was found to provide the best overall
estimation performance when the SNR of estimation tests
was 10 dB or higher. It has also been shown that the random
SNR training data can generate a DNN that works well over
a wide SNR range.

Although the success rates of the trained DNNs at the
SNR of 30 dB are still lower than 90%, the absolute value
of errors equal to or less than 1◦ is achieved for about 95%
signals. It can be said that the DNN has potential as a high-
resolution DOA estimator.

In addition, it has been indicated that the DNN designed
for a specific scenario involving two incident signals where
these DOAs differ only by 1◦ achieves the very high success
rate in the estimation of the same scenario. This implies the
integrated use of such specialized DNNs improves the DOA
estimation performance.

Unfortunately, except the case of 1◦ DOA difference,
the performance of Root MUSIC outperforms that of DNN.
Thus, the DNN parameters such as the number of layers and
units, the activation function for each unit, and training data
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sets should be definitely refined. In addition, evaluations
on off-grid estimation performance and the development of
multiple DNN integration are urgent and interesting topics
for us.
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