
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020
347

PAPER Special Section on Network Resource Control and Management Technologies for Sustainable Social Information Infrastructure

Reducing Dense Virtual Networks for Fast Embedding∗

Toru MANO†a), Nonmember, Takeru INOUE†, Kimihiro MIZUTANI††, and Osamu AKASHI†††, Members

SUMMARY Virtual network embedding has been intensively studied
for a decade. The time complexity of most conventional methods has been
reduced to the cube of the number of links. Since customers are likely
to request a dense virtual network that connects every node pair directly
(|E | = O(|V |2)) based on a traffic matrix, the time complexity is actually
O(|E |3 = |V |6). If we were allowed to reduce this dense network to
a sparse one before embedding, the time complexity could be decreased
to O(|V |3); the time saving would be of the order of a million times for
|V | = 100. The network reduction, however, combines several virtual links
into a broader link, which makes the embedding cost (solution quality)
much worse. This paper analytically and empirically investigates the trade-
off between the embedding time and cost for the virtual network reduction.
We define two simple reduction operations and analyze them with several
interesting theorems. The analysis indicates that an exponential drop in
embedding time can be achieved with a linear increase in embedding cost.
A rigorous numerical evaluation justifies the desirability of the trade-off.
key words: network virtualization, virtual network embedding, heuristics

1. Introduction

Network virtualization [1]–[3] allows logically separated
Virtual Networks (VNs) to coexist on a common Physical
Network (PN), and provides network operators with flexibil-
ity, diversity, security, and manageability. In network virtu-
alization, the role of traditional ISPs is divided into those of
Service Providers (SPs) and Infrastructure Providers (InPs);
an SPmakes a request to an InP to build aVN,whereupon the
InP embeds the VN in its PN. Virtual Network Embedding
(VNE) is an optimization problem, in which the InP attempts
to find a minimum cost embedding between the desired VN
and its PN with respect to the constraints of physical re-
sources (nodes and links) [3]. As this problem is known to
be NP-hard [4], many heuristics have been developed to
identify better embedding arrangements [5]–[9].

Linear Programming Relaxation (LP Relax) is one of
the most conventional and successful VNE approaches [9]–

Manuscript received May 13, 2019.
Manuscript revised August 6, 2019.
Manuscript publicized October 25, 2019.
†The authors are with NTT Network Innovation Laboratories,

Yokosuka-shi, 239-0847 Japan.
††The author is with Kindai University, Higashiosaka-shi, 577-

8502 Japan.
†††The author is with National Institute of Informatics, Tokyo,

101-8430 Japan.
∗A preliminary version of this paper was published in the

Proceedings of the 35th Annual IEEE International Conference
on Computer Communications (IEEE INFOCOM), San Francisco,
CA, April 2016 (pp.1–9).

a) E-mail: toru.mano.sp@hco.ntt.co.jp
DOI: 10.1587/transcom.2019NRP0004

[12] as in other NP-hard problems [13]. This approach
formulates VNE as a mixed integer linear programming,
which is then relaxed to obtain a fractional solution, and is
finally rounded to a discrete solution. The time complexity,
roughly proportional to the cube of the number of nodes and
links, is a key factor in VNE along with the embedding cost.
Of particular importance, it is often desired to be completed
in a fewminutes, since modern virtualized computing infras-
tructures, such as Amazon EC2, Google Compute Engine,
and Microsoft Azure, have provisioning process cycles of
less than ten minutes.

However, SP’s demands for dense connections will in-
crease the time complexity in practice, as will be explained
below. Since SPs will focus on their own business, which
is not network operation, they have no skill or motivation
to “optimize” their VNs before submitting them to the InPs.
That is, their VNs will simply reflect the estimated traffic
matrix between virtual nodes [14], and the resultant VNs
connect every node pair directly; i.e., the network topology
is complete (|E | = O(|V |2)). As a result, the VNE time
could grow to O(|V |6); e.g., for |V | = 100, the time gap is a
factor of one million, |V |6/|V |3 = 106.

InPs are, of course, allowed to redesign VNs to quickly
embed them, as long as the original requirements are satis-
fied, but there has been, up to now, no paper that investigated
the impact of VN redesign. Figure 1 shows an example; a
triangle is reduced to a line. Since the required capacity of
the removed link is pushed to the remaining two links, the
new VN can handle any traffic carried on the original one.
Although this operation successfully removes one link from
the VN, the required link capacity is doubled on the remain-
ing links. Through repeated VN reductions, the required
link capacity may increase exponentially in the worst-case.

This paper studies a preprocessing scheme that converts
a dense VN into a sparse one, so as to reduce the embedding
time to O(|V |3) even for a VN of |E | = O(|V |2), without
significantly degrading embedding cost. We assume that
the preprocessing scheme is to be used by InPs, but it may
also be used by SPs if VN density impacts the fee. Our
contributions are summarized as follows:

• A new VNE operation class, restriction, is introduced,
which converts a dense VN into a sparse one while
preserving its embeddability (Sect. 3.1).

• Two metrics are also devised to measure the quality of
restriction operation; capacity ratio is associated with
embedding cost (objective value), while feasibility ratio

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers

348
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020

is related to feasibility (constraints) (Sect. 3.2).
• Two instances of restriction are presented; node inser-
tion emulates hierarchical design by introducing core
virtual nodes, while link reduction simply combines a
virtual link with a neighboring virtual path (Sects. 3.3
and 4).

• Several interesting properties yielded by the restriction
operations, such as tight bounds of the metrics, are
proved. They imply a good trade-off: the exponential
decrease of embedding time with only a linear increase
in embedding cost (Sect. 5).

• Numerical evaluation confirms the trade-off with over
ten thousand VNE instances (Sect. 6).

The public network is an essential part of the social
information infrastructure since it connects a vast number of
devices and enables high-speed and low latency communi-
cation among them. To enable the “Sustainable Social In-
formation Infrastructure,” it is vital to manage effectively as
traffic is rapidly increasing; global IP traffic and the number
of connected devices are expected to increase by three-fold
and 50% in five years, respectively [15]. To meet these in-
creases, network service providers have started to leverage
network virtualization: existing studies propose a manage-
ment framework [16] and report the implementation of a
virtualization platform in a commercial environment [17].
This paper supports these movements by proposing the pre-
processing scheme that aids the effective deployment of vir-
tualized infrastructures on the physical network.

The rest of this paper is organized as follows. Section 2
formally defines VNE. Sections 3 and 4 defines restriction
operations and introduces instances. Their theoretical prop-
erties are proved in Sect. 5. Section 6 conducts numerical
experiments. Section 7 summarizes related work. Section 8
briefly concludes this paper with a summary of key points.

2. Virtual Network Embedding

This section defines the VN Embedding problem. This def-
inition is conventional [5]–[9]. A PN is represented as
an undirected graph GP = (VP, EP) consisting of physi-
cal nodes VP and links EP . Each physical node v ∈ VP is
associated with available capacity a(v) ∈ R≥0 (CPU and/or
memory), type t(v) ∈ N (functionalities and/or locations),
and cost per unit capacity c(v) ∈ R≥0. We assume that
required node resources do not depend on the number of
virtual links connected to the node, because basic packet for-
warding functionality is processed by dedicated forwarding
engines or processors [18]. Each link e ∈ Ep has available
capacity a(e) ∈ R≥0 (bandwidth) and cost per unit capacity
c(e) ∈ R≥0. Thus we write a PN as P = (GP, a, c, t).

A VN is an undirected complete graph, GV = (VV , EV)
where |EV | =

(
|VV |

2

)
. Each virtual node v ∈ VV has capacity

requirement r (v) ∈ R≥0 and type t(v) ∈ N. Each virtual link
e ∈ EV has capacity requirement r (e) ∈ R≥0. Hence, we
write a VN as N = (GV , r, t). We assume a VN is a complete
graph in this paper; note thatwe can readily convertVNswith

non-complete topology into complete ones by adding zero
capacity links.

An embedding is a pair of node mapping MN : VV →
VP and link mapping ML : EV × EP → [0, 1]. Virtual node
v ∈ VV is embedded in physical node MN (v) ∈ VP that has
enough capacity and matching type. A physical node can
contain at most one virtual node per embedding. Virtual
link e ∈ EV is embedded in physical paths and ML (e, f) is
the proportion of embedding in physical link f ∈ EP; the
physical network supports path splitting [6] and ML (e, f)
can be a fractional number in [0, 1]. A physical link can
contain more than one virtual link.

In VNE, an InP takes a requested VN, N , and a PN,
P, as input, and it finds the embedding, (MN, ML), that
minimizes its embedding cost c(MN, ML), which is the sum
of all physical resource costs, as follows,

c(MN, ML) =
∑
v∈VV

r (v)c (MN (v))

+
∑
e∈EV

∑
f ∈EP

r (e)c(f)ML (e, f).
(1)

Several VNE heuristics use LP [19] as a subroutine [3].
The time complexity of LP is O(n3.5) with the interior point
method [20], where n is the number of LP variables and
n = O(|EV | |EP |) in VNE. The simplex method [19], which
is also used to solve LP, is theoretically an exponential algo-
rithm, but it is known to run in O(n3) in practice [21]. We
assume LP can be solved in O(n3) in this paper.

3. Restriction Operations

This section introduces restriction, the new VNE operation
class. Section 3.1 defines the operation. Section 3.2 de-
scribes two metrics for the operation, and Sect. 3.3 presents
two instances of restriction operation.

3.1 Definition of Restriction

Restriction is a VNE operation class that converts a VN, N ,
into a restricted VN, N ′. Restriction operations must satisfy
the following three conditions:

A. The number of virtual links must be decreased, |E(N) | >
|E(N ′) |, to lower the embedding time of

(
M ′N, M ′L

)
,

B. The feasible region can shrink, but never expand (that is,
restricted); i.e., for any PN, if restricted N ′ is feasible,
then the original N is also feasible, but the inverse does
not necessarily hold, and,

C. Any feasible embedding for restricted N ′,
(
M ′N, M ′L

)
,

can be converted into a corresponding feasible embed-
ding of original N , (MN, ML), such that c(MN, ML) =
c
(
M ′N, M ′L

)
, and this conversion takes O(|VV | |VP | +

|EV | |EP |) time.

To recap, the restriction allows us to embed N ′ with less

MANO et al.: REDUCING DENSE VIRTUAL NETWORKS FOR FAST EMBEDDING
349

time and have the same embedding quality as the original
N . Note that, we use the restricted VN N ′ only during
the VNE calculation. Upon completion of the computation,
embedding

(
M ′N, M ′L

)
of the restricted VN is converted back

to original one (MN, ML) by leveraging Condition C and we
embed the original VN N by using it.

3.2 Capacity Ratio and Feasibility Ratio

To measure how reasonably restricted N ′ is, this subsection
introduces two metrics, capacity ratio and feasibility ratio.

3.2.1 Capacity Ratio

We first define the total required capacity of VN, N , as,

r (N) =
∑
v∈VV

r (v) +
∑
e∈EV

r (e), (2)

where we assume that the node and link capacities are ap-
propriately weighted to allow summation. Since restriction
operations increase this total capacity, as shown in Fig. 1,
we have r ′(N ′) ≥ r (N) for a restriction operation. Hence,
we use the capacity ratio, r ′(N ′)/r (N) ≥ 1, to capture the
increase in required capacity. This metric does not directly
represent the embedding cost since it has no connection with
PNs, but it is reasonable to consider that the embedding cost
is roughly correlated with the total required capacity; this
assumption is confirmed by the experiments Sect. 6.2.

3.2.2 Feasibility Ratio

Since the restriction operations can shrink the feasible region
by increasing required link capacities, some good solutions
may be lost. The feasibility ratio represents the extra physical
capacity needed to restore the original feasible region.

Let F (N ; P) be the set of feasible solutions of N on P,
and let h : F (N ′; P) → F (N ; P) be the conversion function
from the restricted embedding to the original one. Then,
Condition B of Sect. 3.1 is formalized as h(F (N ′; P)) ⊆
F (N ; P), that is, the restricted feasible region lies within the
original one. If the inverse inclusion holds, h(F (N ′; P)) ⊇
F (N ; P), then the restricted optimal embedding is equal to
the original optimal one due to Condition C. We relax this
condition by introducing parameter α ≥ 1:

h
(
F (N ′; αP)

)
⊇ F (N ; P), (3)

where αP is a PNwhose available capacity a is multiplied by
α, i.e., αP = (GP, αa, c, t). The smaller α is, the less extra
physical capacity is needed to restore the feasibility region.
Thus, we define the feasibility ratio as the minimum α value
such that for any PN, the condition (3) holds.

3.3 Link Reduction and Node Insertion

This subsection introduces two restriction operations; link
reduction and node insertion. Since they are defined on a

Fig. 1 Link reduction example. The required capacity of link e′ is de-
noted by r (e′).

Algorithm 1 Link reduction
Input: A VN (GV , r, t) and a triangle (e′, x, y)
Output: A restricted VN (G′V , r

′, t′)
1: r (x) ← r (x) + r (e′)
2: r (y) ← r (y) + r (e′)
3: EV ← EV \ {e

′ }

4: return (GV , r, t)

VN, without PNs, they can be performed very quickly. Al-
though there might be better restriction operations involving
PNs, they would be as complex as VNE itself.

3.3.1 Link Reduction

Let e′ ∈ EV be a virtual link to be reduced. Link reduc-
tion collapses a triangle into a line on a VN, as shown in
Fig. 1. The number of links is decreased by one, while the
required capacities of the remaining links are increased by
r (e′). This operation of reducing e′ ∈ EV with respect to
triangle (e′, x, y), is formally described in Algorithm 1.

Here we describe the conversion from restricted em-
bedding (M ′N, M ′L) to original embedding (MN, ML). If we
reduce virtual link e′ to triangle (e′, x, y) and find restricted
embedding (M ′N, M ′L), original embedding (MN, ML) is ob-
tained as follows. Except for reduced virtual link e′, re-
stricted embedding (M ′N, M ′L) assigns all the virtual nodes
and virtual links to physical nodes and physical paths, re-
spectively. Hence we use those assignments as original
embedding (MN, ML). We assign reduced link e′ to the
concatenation of the physical paths assigned to virtual link
x and those assigned to virtual link y because virtual links x
and y connect both endpoints of reduced link e′. The above
conversion is mathematically expressed as follows:

MN (v) = M ′N (v) ∀v ∈ VV , (4)

ML (e, f)=



M ′L (e, f) ∀e∈EV \{e′},∀ f ∈EP,

M ′L (x, f) + M ′L (y, f) e = e′,∀ f ∈ EP .

(5)

The first two lines represent the assignments except for
reduced link e′, and the last line represents the assign-
ments for reduced link e′. This conversion completes
in O(|VV | + |EV | |EP |) time. By these definitions, if re-
stricted embedding (M ′N, M ′L) is feasible then original one
(MN, ML) is also feasible, and they have the same cost;
c(M ′N, M ′L) = c(MN, ML). Thus, link reduction satisfies all
the conditions of restriction given in Sect. 3.1.

Any sequence of link reduction is also considered as
restriction; this is proved in Sect. 4.1. Therefore, we can

350
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020

Fig. 2 Sequence of link reduction in which the maximum required ca-
pacity grows exponentially. The dashed link in red triangle is reduced.

Fig. 3 Sequence of link reduction in which required capacity of a link r is
added to remaining links multiple times; moreover, the multiplier increases
at exponential rate. In each figure, the dashed link in red triangle is reduced.
We omit the original capacities other than r .

reduce a VN as long as it has triangles, in order to decrease
the VNE time as much as possible. However, multiple link
reduction can increase the total required capacity at an ex-
ponential rate in the worst-case; Fig. 2 shows an example
in which required capacity of one link grows exponentially,
while Fig. 3 shows another example in which one link’s re-
quired capacity r is repeatedly added. However, by applying
link reduction in appropriate order, we can bound this ratio
to polynomial form, as will be described in Sect. 5.1.

3.3.2 Node Insertion

Node insertion emulates traditional hierarchical network de-
sign. This operation adds core nodes to theVN, and connects
original virtual nodes to one of the core nodes (Fig. 4). If the
original nodes are partitioned into k groups (k ≤ |VV |) and k
core nodes are inserted, this operation is called k-node inser-
tion. k-node insertion is described in Algorithm 2; E(X,Y)
is a set of links that forms a complete bipartite graph between

Fig. 4 An example of node insertion when the number of nodes |VV |

and partitions k are 9 and 3, respectively. Newly added core nodes are solid
red. The number of links in original |E | is 36 (4i) and that of node inserted
|E′ | is reduced to 12 (4ii).

Algorithm 2 Node insertion
Input: A VN (GV , r, t) and a node partition {V1, . . . ,Vk }

Output: A restricted VN (G′V , r
′, t′)

1: V ′V ← VV ∪ {u1, u2, . . . , uk } . add core nodes
2: E′V ← ∅
3: for all pair of newly inserted nodes ui and u j do
4: E′V ← E′V ∪ {ui, u j } . connect core nodes
5: r′({ui, u j }) ←

∑
e∈E (Vi ,Vj) r (e)

6: for i ← 1, . . . , k do
7: for all virtual node v ∈ Vi do
8: E′V ← E′V ∪ {{ui, v } } . connect to the core node
9: r′({ui, v }) ←

∑
e∈E ({v },V \{v }) r (e)

10: return
((
V ′V , E

′
V

)
, r′, t

)

the two node sets, X andY ; newly added node ui has zero re-
quired capacity. New required link capacity r ′ is calculated
as in line 5 and line 9 of Algorithm 2. The time complexity
is O(|EV |).

k-node insertion is a restriction. We begin with condi-
tion A. The number of links in the node-inserted VN |E(N ′) |
is

|E(N ′) | =
k∑
i=1
|Vi | +

(
k
2

)
= |VV | +

(
k
2

)
. (6)

Since k is usually much smaller than |VV |, |E(N ′) | is smaller
than the number of original links, |E(N) | =

(
|VV |

2

)
.

Next, we consider Conditions B and C. Algorithm 3
transforms any node-inserted embedding,

(
M ′N, M ′L

)
, into

an original embedding, (MN, ML). By their definitions,
(MN, ML) is feasible and the cost, c(MN, ML), is equal to
the restricted one, c

(
M ′N, M ′L

)
.

4. Proposed Link Reduction Schemes

In this section, first, we show that any sequence of link reduc-
tion is a restriction operation (Sect. 4.1). Next, we propose
a sequence of link reduction, insert-emulated link reduc-
tion, that can emulate the node insertion (Sect. 4.2). Then,
we introduce two new sequences of link reduction: mini-
mum caption link reduction and star-based link reduction
(Sect. 4.3). The former greedily applies the link reduction,
while the latter achieves the optimal capacity ratio among the
link reduction schemes. In the next Sect. 5, we analyze these
three link reduction schemes with respect to the capacity

MANO et al.: REDUCING DENSE VIRTUAL NETWORKS FOR FAST EMBEDDING
351

Algorithm 3 Embedding conversion for node insertion
Input: An embedding of node-inserted VN

(
M′N , M

′
L

)
Output: An embedding of original VN (MN , ML)
1: (MN , ML) ←

(
M′N , M

′
L

)
. copy

2: for i ← 1, 2, . . . , k do
3: for all pair of virtual nodes v, w ∈ Vi do
4: for all physical link f ∈ EP do
5: ML ({v, w }, f) ← M′L ({v, ui }, f) +M′L ({ui, w }, f)

6: for all pair of virtual nodes x ∈ Vi, y ∈ Vj, i, j ∈ {1, 2, . . . , k } do
7: for all physical link f ∈ EP do
8: ML ({x, y }, f) ← M′L ({x, ui }, f) + M′L ({ui, u j }, f) +

M′L ({u j, y }, f)

9: return (MN , ML)

Table 1 Notations.

Symbols Meanings

s Number of link reductions
Ni Restricted VN after i-th link reduction
Vi, Ei, ri Set of virtual nodes, links, and required capacity of Ni

(MN , i, ML, i) Embedding of Ni

ei, (ei, xi, yi) Reduced link and triangle at i-th link reduction

Si
Set of links that will be reduced at and after i-th link
reduction, {ei, ei+1, . . . , es }

ratio, feasibility ratio, and time complexity.
We use the notations of Table 1. We omit subscript V

which represents virtual for clarity.

4.1 Sequence of Link Reduction

We argue that any sequence of link reduction operations is
also a restriction. Condition A of restriction is trivial. We
show constructive proof for Conditions B and C by using the
following lemma.

Lemma 1. For any i ∈ {1, . . . s − 1}, the following
(M̃N, M̃L) is a feasible embedding of Ni , and its cost,
c(M̃N, M̃L), equals the cost of the following link reduction,
c(MN,i+1, ML,i+1),

M̃N (v) = MN,i+1(v) (∀v ∈ V) , (7)
M̃L (e, f) = ML,i+1(e, f) (∀e ∈ Ei+1, f ∈ EP) , (8)
M̃L (ei, f)=ML,i+1(xi, f)+ML,i+1(yi, f) (∀ f ∈EP) .

(9)

Proof. First, we prove feasibility. It is sufficient to consider
the constraints with respect to reduced link ei . We begin
with topology constraints (virtual link must be embedded in
physical paths), followed by capacity constraints. Topology
constraints are satisfied because a triple of links, (ei, xi, yi),
forms a triangle. Capacity constraints also hold, since for
any physical link f ∈ EP , we have∑

e∈Ei

ri (e)M̃L (e, f) (10)

Algorithm 4 Embedding conversion for link reduction
Input: An embedding of reduced network Ns : (MN ,s, ML,s)
Output: An embedding of original network N : (MN , ML)
1: (MN , ML) ← (MN ,s, ML,s) . copy
2: for i ← s, s − 1, . . . 1 do
3: for all physical link f ∈ EP do
4: ML (ei, f) ← ML (xi, f) +ML (yi, f)
5: return (MN , ML)

=
∑

e∈Ei\{ei,xi, yi }

ri (e)M̃L (e, f)

+ ri+1(xi)ML,i+1(xi, f) + ri+1(yi)ML,i+1(yi, f)
(11)

=
∑

e∈Ei+1

ri+1(e)ML,i+1(e, f) ≤ a(f). (12)

Equality of embedding cost is trivial by using (12) and the
definition of embedding cost. �

Thus, by repeatedly applying Lemma 1, Algorithm 4
converts an embedding of a reduced network (MN,s, ML,s)
to a feasible and equal-cost embedding of the original
(MN, ML). Finally, this algorithmcompletes inO(|VV | |VP |+

|EV | |EP |) time.

4.2 Node Insertion Included by Link Reduction

We show that it is sufficient to consider link reduction rather
than node insertion; for any node insertion operation, there
exists a link reduction operation that produces a better re-
stricted VN.

Theorem 1. For any VN, N , and any k-node insertion, there
exists a sequence of link reduction that satisfies the following:

1. Reduced network NR is a subgraph of inserted network
NI .

2. Required link capacity of reduced network, rR, is less
than or equal to that of the corresponding inserted net-
work, rI .

The first condition says that there exists an injective
mapping, f , that maps nodes of reduced network V (NR) to
nodes of inserted network V (NI), such that for any pair of
nodes u, v ∈ V (NR) if {u, v } ∈ E(NR) then { f (u), f (v)} ∈
E(NI). The second condition says that for all links in NR, the
corresponding link in NI has greater than or equal required
capacity:

∀{u, v } ∈ E(NR) : rR ({u, v }) ≤ rI ({ f (u), f (v)}) .
(13)

Theorem 1 only claims the existence of such a sequence,
but we can implement an actual sequence as in the proof of
Theorem 1. We called this restriction insert-emulated link
reduction or Insert.

Finally, we give the proof of Theorem 1.

352
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020

Proof of Theorem 1. Let {V1,V2, . . . ,Vk } be a partition with
respect to k-node insertion. We arbitrarily choose node wi

from each node setVi and define a set of links EW as follows:

EW =

k⋃
i=1
{{wi, v } | v ∈ Vi \ {wi }} ∪

{
{wi, w j } | i , j

}
.

(14)

For every pair of nodes x, y ∈ V , dW (x, y) denotes the
number of links on the shortest x-y path in graph (V, EW).
We partition EW by dW :

Ei = {{x, y } | dW (x, y) = i} . (15)

Note that, for i > 3, the above set of links Ei is an empty set
because the diameter of graph (V, EW) is 3.

In the following, we construct a sequence of link re-
duction that satisfies the two conditions of Theorem 1; we
begin with the subgraph condition followed by the capacity
condition. The link reduction consists of two stages. In the
first stage, we reduce e ∈ E3 with respect to triangle (e, x, y)
such that x ∈ E1 and y ∈ E2. There always exists such links,
x, y , due to the definition of Ei . Hence, we can complete link
reduction on all links in E3. In the second stage, we reduce
e ∈ E2 with respect to triangle (e, x, y) such that x, y ∈ E1.
There always exists such links for the same reason as E3.
The topology of the reduced network is a subgraph of the
inserted one, because the set of links in the reduced network
equals E1 = EW .

Next, we discuss the capacity condition. There remains
arbitrariness of the above two staged link reduction: the
reduction order of links within E3 and E2 and the choice of
triangles. In the rest of this subsection, we show that the
following equalities hold regardless of the choices made:

rR ({v, wi }) =
∑

e∈E ({v },V\{v })

r (e) (∀v ∈ Vi), (16)

rR
(
{wi, w j }

)
=

∑
e∈E (Vi,Vj)

r (e) (i , j). (17)

As described above, every link in E3 is reduced with respect
to a triangle that includes links of E1 and E2. Similarly, every
link in E2 is reduced with respect to a triangle with two E1’s
links. Hence, after link reduction, the required capacity of
E3 link is added to three E1 links, and that of E2 link is
added to two E1 links. These E1 links are the shortest paths
between the end points of reduced links and the shortest path
in graph (V, EW) is unique for each pair of nodes, and so
is independent from reduction order and choice of triangles.
Thus, each required capacity is added on the shortest path.
This yields (16) and (17). �

Note that the number of links |E | is now reduced to
|E ′ | = |EW | = |V | − k +

(
k
2

)
.

4.3 Link Reduction Schemes

We propose two link reduction schemes in addition to the

Algorithm 5 Minimum capacity link reduction
Input: A VN (GV , r, t) and a maximum number of reduced links s
Output: A restricted VN (G′V , r

′, t′) that has at least |E | − s links
1: Initialize counter: i ← 0
2: while There exists a triangle and i < s do
3: e ← Find a minimum capacity link that belongs to a triangle
4: (G′V , r

′, t′) ← Reduce the link e to a triangle
5: Increment counter: i ← i + 1
6: return (G′V , r

′, t′)

Fig. 5 An example of star-based reduction when the number of virtual
nodes |V | and reduced links s are 9 and 24, respectively. The center of the
star is solid red. The number of links |E | in original (5i) is 36 and that of
restricted (5ii) |E′ | is reduced to 12 = 36 − 24.

inserted-emulated link reduction introduced in Sect. 4.2. The
first scheme,minimumcapacity link reduction orMin, greed-
ily applies the link reduction and experientially produces
better embedding than Insert, as we will show in Sect. 6.
The second scheme, star-based link reduction or Star, has
analytically better capacity ratio, feasibility ratio, and time
complexity than the other two schemes. It achieves the
theoretical optimal capacity ratio among the link reduction
schemes (Sect. 5.1.3).

4.3.1 Minimum Capacity Link Reduction (Min)

This scheme repeatedly reduces minimum capacity link a
given number of times. Algorithm 5 describes this scheme.
At every step, this algorithm finds a minimum capacity link e
that belongs to a triangle and reduces it. If the network does
not have any triangle, then the algorithm outputs the current
network and halts. Hence, Min does not always applies link
reduction the given number of times s. While, the other
scheme Star always does.

4.3.2 Star-Based Link Reduction (Star)

This restriction converts a VN into a star with extra links
(Fig. 5) as described in Algorithm 6. The algorithm first
selects a center node, v∗, so that node v∗ maximizes the
connected link capacity r (E(v)) =

∑
e∈E (v) r (e) where the

set of links that connects to node v is denoted by E(v). Then,
the algorithm finds the first s smallest capacity links that do
not connect to the center node v∗. We write these links
as {e1, e2, . . . , es }. Next, for each link e ∈ {e1, . . . , es }, the
algorithm reduces the selected link e to the triangle (e, v∗).
This removes s links in total from the original VN.

Note that this algorithm works correctly, i.e., at every
link reduction of link e, the network has the other two links
that form the triangle (e, v∗). This is because, the two links

MANO et al.: REDUCING DENSE VIRTUAL NETWORKS FOR FAST EMBEDDING
353

Table 2 Link reduction schemes and metric upper bounds.

Scheme Capacity ratio Feasibility ratio
Feasibility ratio with
bounded q = max r (e)

min r (e)
Time complexity

Min 1 + s 2Θ(V) 1 + s2q O
(
|V |3

)
Insert 3 ∞ |V |2q/4 O

(
|V |4

)
Star 1 + 2s

|V |(|V |−1) ∞ 1 +min(s, |V | − 1)q O
(
|V |2 log |V |

)

Algorithm 6 Start-based reduction
Input: A VN (GV , r, t) and a number of reduced links s
Output: A restricted VN (G′V , r

′, t′) that has |E | − s links
1: v∗ ← argmax {r (E (v)) | v ∈ VV } . find the center of a star
2: {e1, e2, . . . , es } ← Find first s smallest capacity links that are not

connected to center v∗
3: for all link e ∈ {e1, e2, . . . , es } do
4: Reduce link e to triangle (e, v∗)
5: return (GV , r

′, t)

are connected to center v∗ and the algorithm only reduces
the links that do not connect to center v∗.

5. Analysis of Link Reduction Schemes

In this section, we analyze the three link reduction schemes,
Min, Insert, andStar, using themetrics of the capacity ratio
(Sect. 5.1), feasibility ratio (Sect. 5.2), and time complexity
(Sect. 5.3). We summarize the results in Table 2. In this
table, the maximum ratio between required link capacity r is
denoted by q. That is, q equals maxe∈E r (e)/min f ∈E r (f).
Section 6 empirically analyzes the performance of the three
schemes.

5.1 Capacity Ratio

We evaluate the capacity ratio of the three link reduction
schemes introduced in Sect. 4.2, Sect. 4.3; Min, Insert, and
Star (the second column in Table 2).

5.1.1 Min

Section 3.3.1 shows that repeated link reduction can increase
the required link capacity exponentially (Figs. 3 and 2), but
wewill show that the capacity ratio is bounded by the number
of link reductions s.

Theorem 2. Capacity ratio does not exceed s+ 1 as long as
we reduce the minimum capacity link at every step:

r ′(N ′)
r (N)

≤ s + 1 (18)

Proof. At the i-th step, link reduction increases the required
capacity of only two links by ri (ei), and reduced link ei is
removed. Thus, we can bound the total required capacity of
Si+1 as follows:

ri+1(Si+1) ≤ ri (Si) + ri (ei). (19)

Due to the minimality of required capacity ri (ei), we have

ri (ei) ≤
ri (Si)
|Si |

=
ri (Si)

s − (i − 1)
. (20)

By repeatedly applying these equations, we have

ri (ei) ≤
1

s − (i − 1)
· ri (Si) (21)

≤
1

s − (i − 1)
·

s − (i − 2) + 1
s − (i − 2)

· ri−1(Si−1) (22)

· · ·

≤
1

s − (i − 1)
s − (i − 2) + 1

s − (i − 2)
· · ·

s
s − 1

·
s + 1

s
r1(S1)

(23)

≤
s + 1

(s − (i − 1)) (s − (i − 2))
r1(S1). (24)

A link reduction increases the total required capacity,
ri (Ni), by ri (ei). Hence we can bound the capacity ratio, as
follows:

r ′(N ′)
r (N)

= 1 +
1

r (N)

s∑
i=1

ri (ei) (25)

≤ 1 +
r1(S1)
r (N)




s∑
i=1

s + 1
(s − (i − 1))(s − (i − 2))




(26)
≤ 1 + s (27)

�

Note that if we replace (19) with the following inequa-
tion,

ri+1(Si+1) ≤ ri (Si), (28)

the bound is greatly reduced to 2 + log s from 1 + s. In
fact, (19) is not tight enough, because ri (Si) has the following
three cases:

ri+1(Si+1) − ri (Si) =



−ri (ei) xi, yi < Si
+ri (ei) xi, yi ∈ Si
0 otherwise.

(29)

In later steps of reduction, (19) is likely to be a loose bound;
ri (Si) is more likely to decrease than increase. This is be-
cause the total capacity of Si , rs+1(Ss+1), must be 0 after
all link reductions. Thus, we can conjecture that there will
be a much smaller upper bound; supplemental experiments
(Sect. 6.2) support our conjecture.

354
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020

Here, we analyze the relationship between total capac-
ity growth ∆R = |r ′(N ′) − r (N) |/r (N) and computation
time speed-up ∆T = |T ′ − T |/T ′, under our conjecture
r ′(N ′)/r (N) ≤ 2 + log s, where T ′ and T = Θ(E3) are
computation times with and without minimum capacity link
reduction, respectively. Finally, the speed-up is given, as
follows:

∆T ≥
(

1
1 − exp(∆R − 1)/|E |

)3
− 1. (30)

The exponential speed-up is induced by the linear increase
in required capacity.

5.1.2 Insert

The topology and required capacity of Insert were given
in Sect. 4.2. Hence, it is easy to analyze and offers a much
better upper bound than the Min scheme.

Theorem 3. For any partition of virtual nodes, the capacity
ratio of Insert does not exceed 3.

Proof. From (16) and (17), the total capacity ratio of re-
stricted VN, r ′(N ′), is bounded as follows:

r ′(N ′) =
∑
v∈V

r (v) +
∑
v∈V

∑
e∈E ({v },V\{v })

r (e)

+
∑
i,j

∑
e∈E (Vi,Vj)

r (e)
(31)

≤ 2r (N) +
∑
i,j

∑
e∈E (Vi,Vj)

r (e) (32)

≤ 3r (N) (33)

�

The last term of (32),
∑

i,j
∑

e∈E (Vi,Vj) r (e), is the cut
value of the partition, {V1,V2, . . . ,Vk }, and this is the only
part that depends on the partition. Thus, to reduce total
capacity r ′(N ′), we need to reduce the k-cut value.

5.1.3 Star

We show that Star has the smallest capacity ratio upper
bound among the three schemes.

Theorem 4. The capacity ratio of Star reduction is at most

1 +
2s

|V |(|V | − 1)
. (34)

Proof. Let v∗ be the center of the star, i.e., the node
maximizes the sum of connected link capacity r (E(v)) =∑

e∈E (v) r (e). Let S = {e1, e2, . . . , es } be the set of reduced
links.

From the maximality of center node v∗, we have

2 · r (E) =
∑
v∈V

r (E(v)) ≤ |V | ·
∑

e∈E (v∗)

r (e). (35)

We also have∑
e∈S r (e)
|S |

≤

∑
e∈E\E (v∗) r (e)
|E \ E(v∗) |

, (36)

this is because reduced links S are the first s smallest links in
E \E(v∗). Whenever link e ∈ S is reduced, the total capacity
increases by exactly r (e). Hence, the total capacity ratio is
bounded as follows

r ′(N ′) = r (N) +
∑
e∈S

r (e) (37)

≤ r (N) +
|S |

|E \ E(v∗) |
*.
,
r (E) −

∑
e∈E (V ∗)

r (e)+/
-
(38)

≤ r (N) +
|S |

|E \ E(v∗) |

(
r (E) −

2
|V |

r (E)
)

(39)

≤

(
1 +

2s
|V |(|V | − 1)

)
r (N). (40)

�

This theorem says that the capacity ratio of Star never
exceeds 2. While, we can easily construct aVNwhose capac-
ity ratio of Insert exceeds 2 and supplemental experiments
in Sect. 6.2 shows that there exist a VN whose capacity ratio
of Min exceeds 2.

Next, we prove that this upper bound is optimal, i.e.,
no reduction scheme has smaller capacity ratio upper bound
than Star. That is, there is no link reduction scheme that
makes capacity ratio less than 1 + 2s

|V |(|V |−1) for all VNs.

Theorem 5. There exists a VN N such that, for any sequence
of link reduction that decreases the number of links by s, its
capacity ratio is at least

1 +
2s

|V | (|V | − 1)
. (41)

Proof. Let N be a VN such that all links have the same
capacity, say 1, and all nodes have zero capacity. Then,
whenever a link is reduced, the total capacity ratio increases
by at least 1. Hence, after reducing s links, the total capac-
ity ratio increases at least s. Thus, we have the following
capacity ratio evaluation

r ′(N ′)
r (N)

≥
|E | + s
|E |

= 1 +
2s

|V | (|V | − 1)
. (42)

�

This theorem says that if we are given a constant VN,
that is, hard to minimize the capacity ratio, then Star suc-
cessfully minimizes the capacity ratio.

Finally, we show that Star achieves the minimum ca-
pacity ratio not only for the constant instance but also for
a wider class of instances. We show that Star minimizes
capacity ratio when the star is simultaneously a maximum
spanning tree with respect to capacity r .

MANO et al.: REDUCING DENSE VIRTUAL NETWORKS FOR FAST EMBEDDING
355

Theorem 6. If star E(v∗) is a maximum spanning tree of
the graph (V, E, r), then Star minimizes the capacity ratio
among the reduction schemes that decreases the number of
links by s.

Proof. Proof by contradiction. Suppose that there exists a
sequence of link reductions σ that achieves smaller total ca-
pacity than Star. Let Nσ = ((V, Eσ), rσ, r) be the restricted
VN yielded by the link reduction σ. Let S = {e1, e2, . . . , es }
be the set of reduced links in Star.

Then, in Star, every link is reduced to the center node
and total capacity r ′(N ′) is

r ′(N ′) = r (N) +
∑
e∈S

r (e) = r (N) + r (E) − r (E \ S) .

(43)

Also, in link reduction σ, whenever link e is reduced, the
total capacity increases by at least r (e), so we have

rσ (Nσ) ≥ r (N)+
∑

e∈E\Eσ

r (e) = r (N)+r (E)−r (Eσ).

(44)

Because star E(v∗) is a maximum spanning tree and reduced
links S are the first s smallest links among E \ E(v∗), we
have the following

r (E \ S) ≥ r (Eσ). (45)

Togetherwith these three equations, (43), (44), and (45),
we have r ′(N ′) ≤ rσ (Nσ). However, this contradicts to the
assumption that link reduction σ has smaller total capacity
than Star. �

5.2 Feasibility Ratio

We evaluate the feasibility ratio of the three schemes: Min,
Insert, and Star. However, exact evaluation of feasibility
ratio is difficult because it requires investigation of all PNs
and check of the feasibility by scaling available capacity.
Hence, we, first show two theorems (Theorems 7 and 8) that
give us upper and lower bounds of feasibility ratio without
inspecting any PN. We then, by using the theorems, show
the feasibility ratio of each scheme, third and fourth columns
in Table 2.

5.2.1 Upper and Lower Bounds

We can evaluate the feasibility ratio from above by using the
change in link capacity. Also, we can evaluate the feasibility
ratio from below by using the change in the connected capac-
ity of nodes. In the rest of this subsection, we use these two
theorems to evaluate the feasibility ratios of Min, Insert,
and Star schemes.

Theorem 7. Let γ be the relative increase in link capacity
caused by a restriction, i.e.,

γ = max
e∈E′

r ′(e)
r (e)

. (46)

Then, the feasibility ratio of the restriction is at most γ.

Theorem 8. Let k < |V | be a positive integer, and δ be
the relative increase in the minimum connected capacity of
among node sets with size k, i.e.,

δ =
min |U′ |=k r ′(E ′(U ′))

min |U |=k r (E(U))
(47)

where E(U) is a set of links between the two set of nodes U
and V \U in the original VN. Then, the feasibility ratio is at
least δ.

Proof of Theorem 7. Let P be a PN such that there exists
a feasible embedding, (MN, ML), between VN N and PN
P. Then, the following embedding,

(
M ′N, M ′L

)
, is a feasible

embedding between restricted VN N ′ and scaled PN γP:

M ′N (v) = MN (v)
(
∀v ∈ V ′

)
, (48)

M ′L (e, f) = ML (e, f)
(
∀e ∈ E ′, f ∈ EP

)
. (49)

Hence, the feasibility ratio is at most γ. �

Proof of Theorem 8. Let P be a PN that has the same topol-
ogy and capacity as VN N . Then, the embedding between
VN N and PN P is feasible because the trivial embedding is
feasible. Here, trivial embedding embeds each virtual node
onto the corresponding physical node.

Next, we consider an embedding between restricted VN
N ′ and PN P. Any set of physical nodes, W ⊆ VP with size
k, contains exactly k virtual nodes since VN and PN have the
same number of nodes. We denote these nodes as W ′ ⊆ V ′.
These nodes, W ′, have connected r ′ (E ′(W ′)) link capacity
in total where E ′(W ′) is the set of links between W ′ and
V ′ \W ′ in restricted VN N ′. While the corresponding physi-
cal nodes W have connected r (E(W)) link capacity in total.
Thus, in order to be feasible, the PN must be scaled at least
r ′ (E ′(W ′)) /r (E(W)) ≥ min |U′ |=k r ′(E ′(U ′))/r (E(W)).
This argument holds for any set of nodes W with size k.
Hence, in order to be feasible, the PN must be scaled at least
δ. �

5.2.2 Min

The trivial upper bound of the feasibility ratio of Min is
2 |E | . This is because, at every link reduction, the capacity
increase of a link is bounded by two, r ′(e) ≤ 2r (e), due to
the minimality of reduced link capacity. This upper bound
can be improved, as follows (proof in Appendix A.1):

Corollary 9. The feasibility ratio of Min is 2Θ(|V |) .

However, if the ratio between maximum and mini-
mum required link capacities, maxe∈E r (e)/min f ∈E r (f), is
bounded above by a constant, then the upper bound becomes
very small.

356
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020

Corollary 10. If maxe∈E r (e)/mine∈E r (e) < q, then the
feasibility ratio of Min is bounded above by 1 + s2q.

Proof. Weuse Theorem 7 to obtain the upper bound. Hence,
we consider the link capacity in the restricted VN. For any
link e ∈ E ′ in the restricted VN, its capacity is bounded
above as follows due to the inequality (24):

r ′(e) ≤ r (e) +
s∑

i=1
ri (ei) (50)

≤ r (e) +
s∑

i=1

s + 1
i(i + 1)

r1(S1) = r (e) + s · r1(S1).

(51)

Also, the sum of the link capacity over S1 does not ex-
ceed |S1 |max f ∈E r (f). Thus, the relative increase of
the link capacity r ′(e)/r (e) is bounded above by 1 +
s |S1 |max f ∈E r (f)/r (e) ≤ 1 + s2q. �

Note that, if we replace (19) with (28), then the feasibil-
ity ratio is bounded by 1 + s(1 + log s)q as with Theorem 2.

5.2.3 Insert

Naive Insert may have unbounded feasibility ratio. Fig-
ure 6 shows an example of Insert. Applying Theorem 8
with k = 1 to these VNs, confirms that the lower bound
of the feasibility ratio is at least 1/3ε . This is because, in
the original VN, node v2 has the minimum connected link
capacity 3ε . While, in the restricted VN, node v1 has the
minimum connected link capacity 2+ ε . Since ε can be min-
imized arbitrarily, the feasibility ratio cannot be bounded.

We here discuss two strategies that keep the feasi-
bility ratio small: utilize a partition of minimum k-cut
({{v2},V \ {v2}} in Fig. 6), or select core nodes of maxi-
mum link capacities,

∑
e∈E ({v },V\{v }) r (e) (v1 becomes core

in Fig. 6). These strategies, however, do not work well in
general, and the feasibility ratio still cannot be bounded.
Finally, we have the following (proof in Appendix A.2).

Corollary 11. For any real number ε > 0, there exists a
VN and a PN whose feasibility ratio of Insert is at least 1/ε
even if the node partition is min k-cut and core nodes have
the maximum connected link capacities.

As in theMin scheme case, if the ratios between original
link capacities are bounded above by a constant, then the
upper bound is reduced to polynomial.

Fig. 6 An example of Insert that has large feasibility ratioO(1/ε). Core
nodes are filled in red.

Corollary 12. If maxe∈E r (e)/mine∈E r (e) < q, then the
feasibility ratio of Insert is bounded above by |V |2q/4.

Proof. Weuse Theorem 7 to obtain the upper bound. Hence,
we consider the link capacity in the restricted VN. If link
e ∈ E ′ in the restricted VN connects two core nodes, then
its capacity is bounded above by |V |2 maxe∈E r (e)/4 due
to (17). Otherwise, the link capacity is bounded above by
(|V |−1) maxe∈E r (e) due to (16). Thus, the relative increase
in link capacity is bounded by |V |2q/4. �

5.2.4 Star

This scheme also has, in general, unbounded feasibility ratio
similar to Insert (proof in Appendix A.3).

Corollary 13. For any real number ε > 0, there exists a VN
and a PN for which the feasibility ratio of star is at lest 1/ε .

However, if the ratios between original link capacity are
bounded above by a constant, the feasibility ratio is reduced
to polynomial.

Corollary 14. If maxe∈E r (e)/mine∈E r (e) < q, then the
feasibility ratio of star is bounded above by 1+min(s, |V | −
2)q.

Proof. We use Theorem 7 to obtain the upper bound. Thus,
we consider the relative increase in link capacity. Let v∗ be
the center node of the star. Then, due to the construction
of Algorithm 6, links that do not connect to center v∗ retain
their original capacity during the algorithm. This is because
any link e that will be reduced is not connected to center
node v∗ but will be reduced to the triangle (e, v∗). Also,
for any link e, the number of reduced triangles contained
link e is at most min(s, |V | − 2). At every step, the capacity
increases at most maxe∈E r (e). Hence, for any link e ∈ E ′

in the restricted VN, the relative increase in link capacity is
bounded above by 1 +min(s, |V | − 2)q. �

5.3 Time Complexity

This subsection describes the time complexity of the three
schemes: Min, Insert, and Star as in the last column of
Table 2.

5.3.1 Min

If minimum capacity link reduction is repeatedly performed
as much as possible, the time complexity is O (|E | |V |). We
sort links, E, in ascending order of required capacity r (e) and
store them in a priority queue. This takesO

(
|E | log |E |

)
. At

every step, we pop a minimum required capacity link e and
check whether there is a triangle that contains e. If there is
no such triangle, we pop the next link. If there are triangles,
we reduce link e to one of them and update both required
capacity and priority of remaining links. This single step

MANO et al.: REDUCING DENSE VIRTUAL NETWORKS FOR FAST EMBEDDING
357

takes O (|V |) since priority updates occur only twice.

5.3.2 Insert

Given the node partition and core nodes, the time complexity
is O(|E |) = O

(
|V |2

)
in Insert. This is because each link is

referenced at most three times in (16) and (17). Computing
a minimum k-cut is known to beNP-hard. However, when
k is an input, it can be solved in O

(
|V |k

2) [22]. There is
an approximation algorithm whose approximation ratio is
(2 − 2/k) and computation cost is O

(
|V |4

)
[23].

5.3.3 Star

The time complexity of Star is O
(
|V |2 log |V |

)
. This

is because, finding center node v∗, enumerating first s
smallest links, and reducing these links takes O(|V |),
O

(
|V |2 log |V |

)
, and O

(
|V |2

)
, respectively.

6. Experiments

In the experiments, we evaluate four methods; LP Relax [9]
(Normal), LP Relax after Min link reduction, LP Relax after
Insert link reduction, and LP Relax after Star link reduc-
tion. We compare the four methods in terms of computation
time, evaluate their embedding costs, and show that link re-
duction speeds up the computation exponentially with only
a linear increase in embedding cost. Then, we examine
the trade-off between computation time and embedding cost
and show that Min has the best trade-off among the three
schemes. In Min, if there exist multiple triangles that con-
tain the minimum capacity link, we choose the triangle that
maximizes the sum of required link capacity†. In Insert,
we partition virtual nodes by minimum k-cut approximately,
as described in Sect. 5.3.2, and choose core nodes that have
maximum connected link capacities.

Parameters used in the experiments are chosen follow-
ing [5] (Table 3). Virtual network topologies are complete,
and physical ones are random but connected. We pick phys-
ical network topologies uniformly at random from the set
of connected graphs that have the given number of nodes
and links. Available capacity a, cost c, node type t, and
required node capacity r are random variables with uniform
distributions. We compare four distributions on required link
capacity r: constant 1/2, uniform random distribution be-
tween 0 and 1, exponential distribution with parameter 1/2,
and lognormal distribution converted from standard normal
distribution. Parameter β, reduce ratio, indicates how many
times link reduction is performed; In Min, we apply link
reduction up to β |EV | times as long as the VN has triangles.
In Insert, we choose the number of partitions, k, as the
minimum integer such that |E ′V | ≥ (1− β) |EV |. In Star, we

†Triangle selection slightly impacted both computation time
and embedding cost in a preliminarily experiment that examined
three types of triangle selection scheme: maximum link sum, min-
imum link sum, and random; maximum had the best performance.

Table 3 Parameters in experiments.

Parameter Values

No. of virtual nodes |VV | {5, 10, 15, 20, 25}
No. of virtual links |EV |

(
|VV |

2

)
No. of physical nodes and links; |VP |, |EP | 100, 316
No. of node types 10
Required capacity of node; r (v) [0, 1]
Cost of physical node and link; c(v), c(e) [0, 1]
Available capacity of node and link; a(v) 2, 100
Reduce ratio; β {0.2, 0.4, 0.6, 0.8}

Fig. 7 Average normalized computation time versus number of virtual
nodes when the capacity distribution is uniform. Solid, dashed, and dotted
lines represent Min, Star, and Insert, respectively.

reduce links β |EV | times. We solved 100 VNE instances for
each parameter set, and so solved 26, 000 VNE in total. Em-
bedding success rates of Normal, Min, Insert, and Star
were 99.90%, 99.95%, 96.11%, and 97.62%, respectively.

The experiments were conducted on a Linux machine
with Intel Xeon E5–2640 v3 2.60GHz. Our method was
implemented in C++ and Haskell with GLPK [24] as an LP
solver.

6.1 Computation Time

Link reduction greatly reduces the computation time. Fig-
ure 7 shows the average computation time and the number of
virtual nodes |VV | when the capacity distribution is uniform.
The computation time is normalized by that of Normal.
Link reduction scheme slightly impact computation time,
the major factors are the number of virtual nodes |VV | and
the reduce ratio β. Figure 8 shows computation time of
the other three distribution: constant, exponential, and log-
normal. In these figures, we omit the time of Insert and
Star for the sake of visibility because all the three reduction
schemes took almost the same time as in Fig. 7. Also, in
Fig. 8, computation time mainly depends on the VN size,
i.e., the number of virtual nodes |VV | and reduce ratio β.

Over 99.9% of the time is consumed by solving LP
in the three schemes. In fact, even when the number of
virtual nodes |VV | is 25, the average time consumed by Min,
Insert, and Star are less than 0.3, 0.9, and 0.002 seconds,
respectively. As expected in the last column in Table 2, Star
has the smallest computation time and Insert has the largest
one. This is because the former only sorts links EV with
respect to the required capacity r , while the latter executes

358
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020

Fig. 8 Average normalized computation time of Min versus number of
virtual nodes for constant, exponential, and lognormal capacity distribution.

minimum k-cut approximation algorithm.
Link capacity distribution and reduction method

slightly impact the computation time, while the major fac-
tors are the number virtual of nodes |VV | and the reduce ratio
β. When the reduce ratio β is 0.4, the computation time is
halved in all three schemes and the four link capacity distri-
butions. When β is 0.8, it is reduced by three orders of mag-
nitude. Note that this time reduction is explained as LP hav-
ing roughly cubic time complexity and (1 − 0.8)3 = 0.008
since link reduction reduces the number of LP variables to
O

(
(1 − β) |VV |2 |EP |

)
from O

(
|VV |2 |EP |

)
.

6.2 Embedding Cost

First, we draw scatter plots between embedding cost and
capacity ratio (Fig. 9). The embedding cost is normalized
by that of Normal like the computation time. Each point
corresponds to a combination of three parameter values, the
number of virtual nodes |VV |, the reduce ratio β, and the
capacity distribution. These points represent average nor-
malized cost and capacity ratio over 100 VNE instances. As
described in Sect. 3.2.1, we found a strong positive corre-
lation between them: the correlation coefficients of Min,
Insert, and Star are 0.95, 0.80, and 0.87, respectively. The
results support our contention that the capacity ratio can be
used as a measure of embedding cost.

Figure 10 shows the average embedding cost and the
number of virtual nodes |VV | when the capacity distribution
is uniform. The cost is normalized by Normal. Figure 11
shows embedding cost of the other three distributions. In
these figures, we omit the cost of Insert and Star for the
sake of visibility. The other two schemes, Insert and Star,
has roughly the same tendency, but the Min had smaller
embedding cost the others. We quantitatively compare the
three schemes in Sect. 6.3.

Surprisingly, the average normalized costs of Min were
less than two for all plots. The embedding cost increased
sub-linearly with the number of removed links (i.e., much
less than O

(
|VV |2

)
), as expected, r ′(N ′)/r (N) ≤ 2 + s, in

Fig. 9 Strong positive correlation between embedding cost and capacity
ratio.

Fig. 10 Average normalized embedding cost versus number of virtual
nodes when the capacity distribution is uniform. Solid, dashed, and dotted
lines represent Min, Star, and Insert, respectively.

Fig. 11 Average normalized embedding cost of Min versus number of
virtual nodes for each constant, exponential, and lognormal capacity distri-
bution.

Sect. 5.1-2. Capacity distribution has some impact on the
cost, but it is no significant.

In order towell understand the capacity ratio of Min, we
conducted a supplemental numerical experiment; we mea-
sured the maximum capacity ratio for 1000 instances of each
VN size. Figure 12 shows the maximum ratio. We found

MANO et al.: REDUCING DENSE VIRTUAL NETWORKS FOR FAST EMBEDDING
359

Fig. 12 Number of nodes and maximum capacity ratio of Min as found
in a supplemental experiment.

Fig. 13 Trade-off between computation time and embedding cost. Link
reduction speeds up computation exponentially with a linear increase in
embedding cost.

no capacity ratio above 3.2, even when the number of nodes
|VV | was raised to 200. If Theorem 2 were tight then the
maximum ratio should have exceeded ten thousand when
|VV | is 200. However, the maximum ratio remained small
even when the number of virtual nodes increased, and the
bound seems very small such as log.

6.3 Trade-Off Between Time and Cost

Figure 13 shows scatter plots for the trade-off between com-
putation time and embedding cost. Each point corresponds
to a combination of three parameter values, |VV |, β, and ca-
pacity distribution, as in Fig. 9. Link reduction speeds up the
computation exponentially with only a linear increase in em-
bedding cost. In Min scheme, when computation time was
halved, the embedding cost increased by only 10%. Even
when the time was reduced by factor of a thousand, the cost
was just doubled. The results well agree with our conjec-
ture (30). This good trade-off shows thatwe can reduce dense
VNs for fast embedding without a significant cost increase.

To compare the trade-off between the three schemes,
we analyzed with linear regression. Table 4 shows absolute
values of linear regression coefficients, i.e., the slopes of the
regression lines in Fig. 13. Given the same normalized cost,
the larger the absolute value of regression coefficients is, the

Table 4 Absolute value of regression coefficients.

Scheme All Uniform Constant Exponential Lognormal

Min 5.4 6.6 6.7 4.6 5.3
Insert 2.2 6.6 7.0 2.0 2.2
Star 1.9 5.0 6.5 2.0 2.0

faster the computation time becomes. In this table, Allmeans
linear regression over all results and the remaining represent
over the specific distribution. Although, when the capacity
distribution is uniform or constant, the three schemes have
comparable trade-off, Min scheme has the best overall trade-
off among the three schemes.

7. Related Work

VNE has been well studied for a decade [2], [3]. Ref-
erence [2] broadly summarizes network virtualization in-
cluding VNE. Reference [3] focuses on the VNE problem.
Two types of method has been proposed to solve VNE: ex-
act methods and approximation methods. Exact methods
find the optimal embedding rely on mixed integer program-
ming [14], [25], [26], and so struggle with large problems.
On the other hand, approximation methods find good em-
bedding, instead of the optimal one, in a reasonable time.
Those approximationmethods utilize LP relaxation [9]–[12],
column generation technique [27]–[29] greedy method [6],
modified subgraph isomorphism matching [7], minimum
cost maximum clique [30], or meta heuristics [8], [31]. Ref-
erences [12], [25], [32] partition a VN into several pieces, in
order to embed across multiple InPs. References [33], [34]
split a PN for better embedding efficiency. However, these
existingmethods take a VN as given and never redesign it be-
fore the embedding process. Thus, our method complements
all of them as regards reducing the embedding time.

Linear programming relaxation is one of the con-
ventional techniques used to tackle with NP-hard prob-
lems [13]. Many tools [24], [35], [36] have been developed
to solve LP problems, and the LP algorithms have been
well studied from the viewpoints of practicality and the-
ory. Conventional methods for solving an LP are interior
method [20], [37] and simplex method [19]. The interior
method runs in O(n3.5) where n is the number of variables
in the LP. The simplex method [19] is theoretically an
exponential algorithm, but it is known to run O(n3) in prac-
tice [21]. Any speed up enhancement techniques based on
it complement our method since we use an LP solver as a
subroutine.

Several graph operations, such as concatenation, have
been defined and analyzed [38], but none of them have been
studied in the context of VNE acceleration.

8. Conclusions

In this paper, we investigated a VNE preprocessing scheme
to reduce a dense VN into a tractable sparse one for fast em-
bedding. We analytically and experimentally demonstrated

360
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020

that the embedding time can be decreased exponentially with
a linear increase in embedding cost. Since SPs are likely to
request a dense VN based on a trafficmatrix, our preprocess-
ing approaches will be essential to provide VNs on demand
given the current virtualized computing infrastructures.

Future works include further analysis of the capacity
ratio and feasibility ratio, development of restriction types,
and a theoretical investigation of the relationship among em-
bedding cost, capacity, and feasibility.

Acknowledgments

K.Mizutani andO. Akashi performed their workwhile being
affiliated with NTTNetwork Innovation Laboratories, Japan.

References

[1] N. Chowdhury and R. Boutaba, “Network virtualization: State of
the art and research challenges,” IEEE Commun. Mag., vol.47, no.7,
pp.20–26, 2009.

[2] A. Belbekkouche, M.M. Hasan, and A. Karmouch, “Resource dis-
covery and allocation in network virtualization,” IEEE Commun.
Surveys Tuts., vol.14, no.4, pp.1114–1128, 2012.

[3] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Commun. Surveys
Tuts., vol.15, no.4, pp.1888–1906, 2013.

[4] E. Amaldi, S. Coniglio, A.M. Koster, and M. Tieves, “On the com-
putational complexity of the virtual network embedding problem,”
ElectronicNotes inDiscreteMathematics, vol.52, pp.213–220, 2016.

[5] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” Proc. IEEE INFOCOM,
pp.1–12, 2006.

[6] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual net-
work embedding: Substrate support for path splitting andmigration,”
SIGCOMM Comput. Commun. Rev., vol.38, no.2, pp.17–29, 2008.

[7] J. Lischka and H. Karl, “A virtual network mapping algorithm based
on subgraph isomorphism detection,” Proc. ACM VISA, pp.81–88,
2009.

[8] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Comput. Commun. Rev., vol.41, no.2, pp.38–47, 2011.

[9] M. Chowdhury, M. Rahman, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithms with coordinated node and link map-
ping,” IEEE/ACM Trans. Netw., vol.20, no.1, pp.206–219, 2012.

[10] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris,
C. Cervello-Pastor, and A. Monje, “On the optimal allocation of
virtual resources in cloud computing networks,” IEEE Trans. Com-
put., vol.62, no.6, pp.1060–1071, June 2013.

[11] M. Rahman and R. Boutaba, “SVNE: Survivable virtual network em-
bedding algorithms for network virtualization,” IEEE Trans. Netw.
Service Manage, vol.10, no.2, pp.105–118, June 2013.

[12] A. Leivadeas, C. Papagianni, and S. Papavassiliou, “Efficient re-
source mapping framework over networked clouds via iterated lo-
cal search-based request partitioning,” IEEE Trans. Parallel Distrib.
Syst., vol.24, no.6, pp.1077–1086, June 2013.

[13] J. Hromkovic and W.M. Oliva, Algorithmics for Hard Problems,
2nd ed., Springer, Secaucus, NJ, USA, 2002.

[14] C. Wang and T. Wolf, “Virtual network mapping with traffic matri-
ces,” Proc. ACM/IEEE ANCS, pp.225–226, Oct. 2011.

[15] Cisco, “Visual networking index: Forecast and trends, 2017–
2022,” https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.html

[16] E.T.S.I. (ETSI), “Network functions virtualisation (NFV); manage-
ment and orchestration,” Std. ETSI GS NFV-MAN 001, Dec. 2014.

[17] T. Kamada, Y. Kuno, H. Tamura, and H. Iwamiya, “Practical imple-
mentation of virtualization platform in NTT DOCOMO network,”
NTT DOCOMO Techinical Journal, vol.18, no.1, pp.20–28, July
2016.

[18] L. Foundation, “DPDK: Data plane development kit,” http://
dpdk.org/

[19] G.B. Dantzig, “Maximiztion of a linear function of variables subject
to linear inequalities,” Proc. Activity Analysis of Production and
Allocation, New York, pp.339–347, 1951.

[20] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” Combinatorica, vol.4, no.4, pp.373–396, 1984.

[21] M.J. Todd, “The many facets of linear programming,” Math. Pro-
gram., vol.91, no.3, pp.417–436, 2002.

[22] O. Goldschmidt and D.S. Hochbaum, “A polynomial algorithm for
the k-cut problem for fixed k,” Math. Oper. Res., vol.19, no.1, pp.24–
37, Feb. 1994.

[23] H. Saran and V.V. Vazirani, “Finding k-cuts within twice the opti-
mal,” SIAM J. Comput., vol.24, no.1, pp.101–108, Feb. 1995.

[24] GNU, “GNU Linear Programming Kit,” http://www.gnu.org/
software/glpk/

[25] I. Houidi, W. Louati, W.B. Ameur, and D. Zeghlache, “Virtual net-
work provisioning across multiple substrate networks,” Computer
Networks, vol.55, no.4, pp.1011–1023, 2011.

[26] S.R. Chowdhury, R. Ahmed, M.M.A. Khan, N. Shahriar, R. Boutaba,
J. Mitra, and F. Zeng, “Dedicated protection for survivable virtual
network embedding,” IEEE Trans. Netw. Serv. Manag., vol.13, no.4,
pp.913–926, 2016.

[27] Q. Hu, Y. Wang, and X. Cao, “Resolve the virtual network embed-
ding problem: A column generation approach,” 2013 Proc. IEEE
INFOCOM, p.nil, April 2013.

[28] A. Jarray and A. Karmouch, “Decomposition approaches for vir-
tual network embedding with one-shot node and link mapping,”
IEEE/ACM Trans. Netw., vol.23, no.3, pp.1012–1025, 2015.

[29] R. Mijumbi, J. Serrat, J.L. Gorricho, and R. Boutaba, “A path gen-
eration approach to embedding of virtual networks,” IEEE Trans.
Netw. Serv. Manag., vol.12, no.3, pp.334–348, Sept. 2015.

[30] L. Gong, H. Jiang, Y.Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding lc-vne algorithms towards integrated
node and link mapping,” IEEE/ACM Trans. Netw., vol.24, no.6,
pp.3648–3661, 2016.

[31] S. Su, Z. Zhang, A.X. Liu, X.Cheng, Y.Wang, andX. Zhao, “Energy-
aware virtual network embedding,” IEEE/ACMTrans. Netw., vol.22,
no.5, pp.1607–1620, 2014.

[32] T.H. Lee, S. Tursunova, and T.S. Choi, “Graph clustering based
provisioning algorithm for virtual network embedding,” Proc. IEEE
NOMS, pp.1175–1178, April 2012.

[33] T. Ghazar and N. Samaan, “Hierarchical approach for efficient virtual
network embedding based on exact subgraph matching,” Proc. IEEE
GLOBECOM, pp.1–6, Dec. 2011.

[34] F. Yang, Z. kai Wang, J. ya Chen, and Y. jie Liu, “VLB-VNE:
A regionalized valiant load-balancing algorithm in virtual network
mapping,” Proc. IEEE WCNIS, pp.432–436, June 2010.

[35] IBM, “CPLEX Optimizer,” https://www.ibm.com/analytics/cplex-
optimizer

[36] GUROBI, “Gurobi Optimizer,” http://www.gurobi.com/
[37] Y. Ye, Interior Point Algorithms: Theory and Analysis, John Wiley

& Sons, New York, NY, USA, 1997.
[38] D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Sad-

dle River, 2000.

Appendix: Proofs

A.1 Proof of Corollary 9

First, we prove the upper bound 2O(|V |) by using Theo-

http://dx.doi.org/10.1109/mcom.2009.5183468
http://dx.doi.org/10.1109/mcom.2009.5183468
http://dx.doi.org/10.1109/mcom.2009.5183468
http://dx.doi.org/10.1109/surv.2011.122811.00060
http://dx.doi.org/10.1109/surv.2011.122811.00060
http://dx.doi.org/10.1109/surv.2011.122811.00060
http://dx.doi.org/10.1109/surv.2013.013013.00155
http://dx.doi.org/10.1109/surv.2013.013013.00155
http://dx.doi.org/10.1109/surv.2013.013013.00155
http://dx.doi.org/10.1016/j.endm.2016.03.028
http://dx.doi.org/10.1016/j.endm.2016.03.028
http://dx.doi.org/10.1016/j.endm.2016.03.028
http://dx.doi.org/10.1109/infocom.2006.322
http://dx.doi.org/10.1109/infocom.2006.322
http://dx.doi.org/10.1109/infocom.2006.322
http://dx.doi.org/10.1145/1355734.1355737
http://dx.doi.org/10.1145/1355734.1355737
http://dx.doi.org/10.1145/1355734.1355737
http://dx.doi.org/10.1145/1592648.1592662
http://dx.doi.org/10.1145/1592648.1592662
http://dx.doi.org/10.1145/1592648.1592662
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1109/tnet.2011.2159308
http://dx.doi.org/10.1109/tnet.2011.2159308
http://dx.doi.org/10.1109/tnet.2011.2159308
http://dx.doi.org/10.1109/tc.2013.31
http://dx.doi.org/10.1109/tc.2013.31
http://dx.doi.org/10.1109/tc.2013.31
http://dx.doi.org/10.1109/tc.2013.31
http://dx.doi.org/10.1109/tnsm.2013.013013.110202
http://dx.doi.org/10.1109/tnsm.2013.013013.110202
http://dx.doi.org/10.1109/tnsm.2013.013013.110202
http://dx.doi.org/10.1109/tpds.2012.204
http://dx.doi.org/10.1109/tpds.2012.204
http://dx.doi.org/10.1109/tpds.2012.204
http://dx.doi.org/10.1109/tpds.2012.204
http://dx.doi.org/10.1109/ancs.2011.44
http://dx.doi.org/10.1109/ancs.2011.44
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
http://dx.doi.org/10.20965/jdr.2016.p0334
http://dx.doi.org/10.20965/jdr.2016.p0334
http://dx.doi.org/10.20965/jdr.2016.p0334
http://dx.doi.org/10.20965/jdr.2016.p0334
http://dpdk.org/
http://dpdk.org/
http://dx.doi.org/10.1007/bf02579150
http://dx.doi.org/10.1007/bf02579150
http://dx.doi.org/10.1007/s101070100261
http://dx.doi.org/10.1007/s101070100261
http://dx.doi.org/10.1287/moor.19.1.24
http://dx.doi.org/10.1287/moor.19.1.24
http://dx.doi.org/10.1287/moor.19.1.24
http://dx.doi.org/10.1137/s0097539792251730
http://dx.doi.org/10.1137/s0097539792251730
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://dx.doi.org/10.1016/j.comnet.2010.12.011
http://dx.doi.org/10.1016/j.comnet.2010.12.011
http://dx.doi.org/10.1016/j.comnet.2010.12.011
http://dx.doi.org/10.1109/tnsm.2016.2574239
http://dx.doi.org/10.1109/tnsm.2016.2574239
http://dx.doi.org/10.1109/tnsm.2016.2574239
http://dx.doi.org/10.1109/tnsm.2016.2574239
http://dx.doi.org/10.1109/infcom.2013.6566805
http://dx.doi.org/10.1109/infcom.2013.6566805
http://dx.doi.org/10.1109/infcom.2013.6566805
http://dx.doi.org/10.1109/tnet.2014.2312928
http://dx.doi.org/10.1109/tnet.2014.2312928
http://dx.doi.org/10.1109/tnet.2014.2312928
http://dx.doi.org/10.1109/tnsm.2015.2459073
http://dx.doi.org/10.1109/tnsm.2015.2459073
http://dx.doi.org/10.1109/tnsm.2015.2459073
http://dx.doi.org/10.1109/tnet.2016.2533625
http://dx.doi.org/10.1109/tnet.2016.2533625
http://dx.doi.org/10.1109/tnet.2016.2533625
http://dx.doi.org/10.1109/tnet.2016.2533625
http://dx.doi.org/10.1109/tnet.2013.2286156
http://dx.doi.org/10.1109/tnet.2013.2286156
http://dx.doi.org/10.1109/tnet.2013.2286156
http://dx.doi.org/10.1109/noms.2012.6212045
http://dx.doi.org/10.1109/noms.2012.6212045
http://dx.doi.org/10.1109/noms.2012.6212045
http://dx.doi.org/10.1109/glocom.2011.6133500
http://dx.doi.org/10.1109/glocom.2011.6133500
http://dx.doi.org/10.1109/glocom.2011.6133500
http://dx.doi.org/10.1109/wcins.2010.5541814
http://dx.doi.org/10.1109/wcins.2010.5541814
http://dx.doi.org/10.1109/wcins.2010.5541814
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com/
http://dx.doi.org/10.1002/9781118032701
http://dx.doi.org/10.1002/9781118032701

MANO et al.: REDUCING DENSE VIRTUAL NETWORKS FOR FAST EMBEDDING
361

Fig. A· 1 An example of VN whose feasibility ratio is at least 2.

Fig. A· 2 An example of VN whose feasibility ratio is at least 16.

rem 7. Then, leveraging Theorem 8, we prove the lower
bound 2Ω(|V |) by constructing a VN that has the desired
feasibility ratio; We begin with a small example that has a
relatively large feasibility ratio. Then, we construct a VN
by using the small example as building blocks and show that
has the desired feasibility ratio.

We begin with the upper bound. For any link e ∈ E,
the number of link reductions in which the reduced triangle
contains link e is at most |V | −2. This is because the number
of triangles that contain link e is |V |−2. Thus, for any link e ∈
E ′ in restricted VN N ′, the required capacity after multiple
minimum capacity link reductions, r ′(e), is bounded above
by 2 |V |−2r (e). Thus, the feasibility ratio is 2O(|V |) from
Theorem 7.

We move on to the lower bound. Let N (1) be a VN
that has five nodesV = {u, v0, v1, w0, w1}, the link capacity of
{v0, w1} and {v1, w0} be 4, that of {v0, w0} and {v1, w1} be 2,
and the remaining link capacity be 1 (Fig. A· 1(i)). Reducing
minimum capacity links in the following order, we obtain the
restricted network that has star topology with center u and
all link capacities are 8 (Fig. A· 1(ii)): First, we reduce links
{v0, v1} and {w0, w1} to triangles (u, v0, v1) and (u, w1, w2).
Then, we reduce links {v0, w0} and {v1, w1} to triangles that
contain node u as previous links. Next, we reduce links
{v0, w1}, {v1, w0} in the same manner. Hence, Theorem 8
with k = 1 yields that the feasibility ratio is at least 2 = 8/4.

Let N (2) be a VN that is made up of two copies of N (1)

and the links between them (Fig. A· 2(i)). One of the copies
is {u, v0, v1, v2, v3} and the other is {u, w0, w1, w2, w3}. Links
between vi and w(i+j) mod 4 have 23+j required capacity for
i = 0, 1, 2, 3 and j = 0, 1, 2, 3. Note that, Fig. A· 2(i) shows
only links that has 1 capacity or that connect to node v0.
We omitted the other links for the sake of visibility. As in
Fig. A· 1, reducing minimum capacity links to triangles that
contain center node u yields the restricted network that has
star topology with center u and all link capacities are 128

Fig. A· 3 An example of VN example whose feasibility ratio is 2Ω(|V |)

where k = 2i .

Fig. A· 4 An example of VN whose feasibility ratio is at least 1/2ε . We
omitted links that has zero required capacity and filled core nodes in gray.

(Fig. A· 2(ii)). The feasibility ratio is at least 16 = 128/8 in
the same manner as N (1) .

By recursively repeating the above construction i − 1
times, we gain the VNs of Fig. A· 3(i) where k = 2i . Note
that, Fig. A· 3(i) shows links that connect to either node u
or v0 and omits the other links as well as the labels of links
whose required capacity is 1. After reducing minimum ca-
pacity links to triangles that contain center node u, we obtain
the restricted one of Fig. A· 3(ii). Again, Theorem 8 with
k = 1 yields that the feasibility ratio is at least

22k−1

2k
= 22i+1−i−2 = 2 |V |−log(|V |−1)−2. (A· 1)

Thus, the feasibility ratio is 2Ω(|V |) .

A.2 Proof of Corollary 11

Let N be a VN that has eight nodes V = {v1, v2, . . . , v8}
and each link e = {vi, vj } has capacity r as in Fig. A· 4(i).
Let {V1,V2} be a node partition such that V1 = {v1, . . . , v4}
and V2 = {v5, . . . , v8}. Let N ′ be the restricted network by
Insert with respect to the node partition {V1,V2} and core
nodes {v2, v8} (Fig. A· 4(ii)). Note that, the node partition
{V1,V2} is a minimum cut and core nodes, v2 and v8, have
maximum connected link capacity; connected link capacity
of v2 is 1 + 3ε and that of v8 is 3 + ε .

We apply Theorem 8 with k = 2 to these VNs. The
two nodes {v1, v4} minimize the connected link capacity in
the original VN and that of the restricted VN. Hence, the
feasibility ratio is at least (2 + 4ε)/4ε = 1 + 1/2ε .

A.3 Proof of Corollary 13

Let N be the left side of VN in the proof of Corol-
lary 11 (Fig. A· 4(i)), that is, N has four virtual nodes

362
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020

V = {v1, v2, v3, v4} and each link e has the following link
capacity: if link e is either {v1, v4} or {v2, v3} then the ca-
pacity r (e) is 1, otherwise ε . Let N ′ be the restricted VN
yielded by Star with s = 3. Let’s say node v1 be chosen as
the center node. Then, VN N ′ has three virtual links {v1, v2},
{v2, v3}, and {v1, v4} and these links have the same capacity
1 + 2ε .

We apply Theorem 8 with k = 2 to these VNs. In the
same manner as used to prove Corollary 11, the minimum
connected link capacity in the original VN N is 4ε and that
of the restricted VN N ′ is 2+ 4ε . Hence, the feasibility ratio
is at least 1 + 1/2ε = (2 + 4ε)/4ε .

Toru Mano is a researcher in NTT Network
Innovation Labs. He received the B.E. and M.E.
degrees from the University of Tokyo in 2009
and 2011, respectively. His research interests are
network architectures and network optimization.
He is a member of ORSJ.

Takeru Inoue received the B.E. and M.E.
degrees in engineering science and the Ph.D.
degree in information science from Kyoto Uni-
versity, Kyoto, Japan, in 1998, 2000, and 2006,
respectively. He is a Senior Researcher with
Nippon Telegraph and Telephone Corporation
Laboratories, Tokyo, Japan. He was an ERATO
Researcher with the Japan Science and Technol-
ogy Agency, Kawaguchi, Japan, from 2011 to
2013. His research interests widely cover algo-
rithmic approaches in computer networks. He

was a recipient of the Best Paper Award of the Asia-Pacific Conference on
Communications in 2005. He is a member of IEEE.

Kimihiro Mizutani received the M.S. and
Ph.D. degrees from the Nara Institute of Science
and Technology, in 2010 and 2015, respectively.
He was a researcher at NTT Group (Network In-
novation Labs andWest R&DCenter) from 2010
to 2019. Currently, he is a lecture (Principal In-
vestigator) in the department of informatics at
Kindai university. His research interests include
future network architectures and various systems
powered by deep learning. He was a recipient of
the Best Student Paper Award from ICCSA and

the Research Awards from IEICE in 2010 and 2013, respectively. He is a
member of IEEJ.

Osamu Akashi received the B.Sc. andM.Sc.
degrees in information science and the Ph.D. de-
gree in mathematical and computing sciences
from the Tokyo Institute of Technology, in 1987,
1989, and 2001, respectively. He was a Se-
nior Research Scientist in Network Innovation
Laboratories with Nippon Telegraph and Tele-
phone Corporation to 2018. Currently, he is
a Research Professor at National Institute In-
formatics, Japan. His research interests are in
distributed systems, network management, and

network architecture. He is a member of ACM, IPSJ, and JSSST.

