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SUMMARY The Internet of Things (IoT) with its support for cyber-
physical systems (CPS) will provide many latency-sensitive services that
require very fast responses from network services. Mobile edge computing
(MEC), one of the distributed computing models, is a promising compo-
nent of the low-latency network architecture. In network architectures with
MEC, mobile devices will offload heavy computing tasks to edge servers.
There exist numbers of researches about low-latency network architecture
with MEC. However, none of the existing researches simultaneously satisfy
the followings: (1) guarantee the latency of computing tasks and (2) imple-
ment a real system. In this paper, we designed and implemented an MEC
based network architecture that guarantees the latency of offloading tasks.
More specifically, we first estimate the total latency including computing
and communication ones at the centralized node called orchestrator. If the
estimated value exceeds the latency requirement, the task will be rejected.
We then evaluated its performance in terms of the blocking probability of
the tasks. To analyze the results, we compared the performance between
obtained from experiments and simulations. Based on the comparisons,
we clarified that the computing latency estimation accuracy is a significant
factor for this system.
key words: mobile edge computing, low-latency network, prototype, and
experiment

1. Introduction

Cyber-physical systems (CPSs) are composed of Internet of
Things (IoT) devices in the physical world and computation
units in cyberspace in 5G and Beyond-5G. One specific type
of services is about latency-sensitive applications, such as
virtual/augmented reality (VR/AR), on-line gaming, and re-
motely controlled robots [2]–[4]. They require a guarantee
of latency and resources from the networks to satisfy their
quality requirements. However, they usually take up signif-
icant cloud computing computational resources. Commu-
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Fig. 1 Mobile edge computing.

nications with the cloud may have a long latency because
cloud servers are sometimes far from the CPS system. Ac-
cording to [5], 4G cellular networks cannot support low-
latency CPS services, so new technology should be devel-
oped for them.

Many studies have proposed low-latency network ar-
chitectures in which cloud capabilities are distributed to ar-
eas close to users. For instance, fog computing and cloudlets
[6] can be used to create a virtual server at the edge of a net-
work for supporting latency.

The European Telecommunications Standards Institute
(ETSI) has standardized a technology called mobile edge
computing (MEC) [6], [7], a.k.a. multi-access edge comput-
ing, which provides local services by placing servers at the
base stations of cellular networks (Fig. 1). The servers allo-
cate resources to mobile devices over the radio access net-
work (RAN), and their domain encompasses the cloud com-
puting. When mobile applications require more resources or
global services, they can normally access the cloud comput-
ing through the core networks. A report [8] showed that
the concept of MEC can satisfy the requirements of IoT
and CPS, especially those of network latency and mobility.
However, MEC [9], [10] has been questioned from various
aspects such as energy efficiency, network traffic, and low-
latency network services.

To enable low-latency network services in MEC, there
exist some research and development efforts. For exam-
ple, mathematical models of MEC systems have been con-
structed, and they are evaluated by simulation [11]–[13]. In
particular, we have proposed an MEC system and its model
that guarantees the latency of the offloading task and eval-
uated the system by simulations [14]–[16]. Our simula-
tion results showed that how our system can guarantee the
latency of the computing tasks, namely, they revealed the
characteristics of performance metrics and provided basic
guides to select the parameters such as the controller inter-
val.

However, simulations are not enough for actual devel-
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opments, because they are based on ideal assumptions. Un
expected issues arise in real networks. For example, the op-
erating system of the edge server may create unexpected la-
tencies. Due to the complexity of real environments, a simu-
lation cannot accurately represent a whole system. Thus, we
can say that an MEC implementation requires an evaluation
on a real system to confirm that it operates as intended.

Here, we tackle the next step of MEC research, i.e.,
testing it in a real network environment. First, we designed
a testbed based on our previous study. Then, we developed it
in a real network environment. The communication of each
entity in MEC was established through the core network.
The computations of each process were executed by a real
server. In terms of the latency guarantees, we evaluated our
proposal by comparing it with simulations alone and ana-
lyzed the results of the simulation and the implementation.

This paper is organized as follows. Section 2 explains
the low-latency network architecture and related work. Sec-
tion 3 summarizes our previous study. Section 4 describes
the logic and design of the system. Section 5 analyzes nu-
merical results. Section 6 concludes the paper.

1.1 Contribution

Even though this work is extended from the previous work
that is a simulation study, this study reveals aspects that sim-
ulation studies could not reveal. It describes the design and
implementation of MEC architecture guaranteeing the la-
tency performance. And we compare the performance be-
tween the simulation results and the numerical results ob-
tained from the real testbed of MEC.

• As a proof-of-concept system, a design of an MEC im-
plementation, which is based on the system in [15],
[16], is proposed. Specifically, based on the standard-
ized ETSI MEC architecture, we extracted necessity
components required by guaranteeing the latency. We
also implemented a method of communication latency
measurements and designed and implemented an ex-
tended version of the equation about computing latency
estimation.

• We evaluated the performance of MEC for specific
server capacity and network conditions. They could
be a guide for future development of MEC when the
system requires higher performance.

• The presented analysis reveals an issue of MEC that
could not be seen in the simulation. Namely, we
showed a part of the answer for a question about the
different tendency between the experimental and sim-
ulation results. Through the analysis of the computa-
tional latency distribution of the experiments and sim-
ulations, we clarified that the computing latency esti-
mation accuracy is a significant factor causing this dif-
ference.

Fig. 2 MEC architecture [7].

2. Low-Latency Network Architecture

According to [3], [4], CPS requires a low-latency network
architecture to achieve its objective. MEC is a technol-
ogy that can provide low-latency network services and dis-
tributed computing resources. It will be implemented in 5G
and in Beyond-5G.

MEC is being developed into the real world, and ETSI
has standardized its architecture [7]. The framework pro-
posed by ETSI has three levels: system, host, and network.
The system level is for managing the MEC host level and
contact with users and third-party operations. The host level
contains an MEC host over the virtual infrastructure to pro-
vide services. The network level maintains connections with
external entities.

The reference architecture of ETSI takes into account
the system and host levels of the framework. Figure 2 il-
lustrates the entities of each level. Generally speaking, the
mobile edge system level uses a mobile edge (ME) orches-
trator to manage the host level. It monitors resources in mo-
bile edge hosts and commands a host manager to start or
end services. User equipment (UE) applications connect to
the orchestrator through a proxy in order to request a server,
a.k.a. an edge host.

The mobile edge host level consists of an ME plat-
form manager (MEPM), virtualization infrastructure man-
ager (VIM), and ME host. The MEPM mainly manages
the ME host according to service rules from the orchestra-
tor. The ME host operates an ME platform (MEP) providing
computational resources to the ME applications running on
the virtualization infrastructure (VI). The MEP is controlled
by MEPM, while the VI is separately controlled by a VI
manager.

Many studies have aimed at making MEC more prac-
tical on the basis of the ETSI architecture. For instance,
the Open Edge computing project [17] is developing many
MEC functions as open source software, but it has not com-
pleted all of them yet.

The paper [18] discussed how to decide on the loca-
tions of edge servers by considering statistics on the user
population. It showed how important the location of the
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edge servers is in 5G development.
The paper [19] described a testbed for MEC with an or-

chestrator to test mobility and handover between two edges.
The authors of [8] also examined migration between edges,
focusing on IP mobility.

The authors in [20] proposed a design for an MEC im-
plementation integrated with the Network Function Virtual-
ization (NFV) architecture, because they share certain com-
mon entities and functions. In particular, the orchestrator is
an important entity in both NFV and MEC. The paper [21]
proposed developing orchestrators by using containers, but
the system was controlled by cloud computing like a master-
slave system. The authors of [13] also emphasized informa-
tion prediction in MEC, though they supported only a low
level concept.

Two surveys [22], [23] describe many possible projects
from different aspects. MEC design has focused the im-
plementation of each individual entity. Many studies fo-
cused on only the communication latency to provide ser-
vices. Some others, e.g., [12], considered computation la-
tency as resource allocation.

A number of studies have considered latency in both
communication and computation. For example, the paper
[24] evaluated the response time of content caching in MEC.
The paper [25] calculated the latency of both communica-
tion and computation for developing scheduling strategies
that use MEC in manufacturing. ENORM in [26] observed
latencies of gaming in fog computing. The authors of [27]
proposed a mathematical model of task offloading in mobile
cloud computing, they besides proposed an online algorithm
to guarantee the latency of the workloads stochastically. In
[28], the authors formulated the Dynamic Task Offloading
and Scheduling problem in MEC, and they also proposed a
solving method of the problem, which can guarantees the
latency.

To illustrate the existing researches in the literature, we
depict an illustration of the existing research categories in
Fig. 3. The left-hand side category is about implementation
researches such as [24]–[26], and the right-hand side one is
a group of researches about guaranteeing the latency such as
[27], [28].

In the left-hand side category, each of the researches
has implemented a system including edge computing and
their key performance metric is the latency. In the right-
hand side category, the authors have proposed theoretical
models about guaranteeing the latency.

Fig. 3 Illustration of the existing research categories.

According to our literature survey, we cannot find the
researches included in the intersection. In this study, we
implemented a system, which aims to guarantee the latency
performance including computing and communication ones,
based on the edge computing. In other words, the present
study is classified into the intersection of two categories.
Below, we describe our previous simulation study [16] and
an experimental study using an actual implementation and
present a complete analysis of MEC.

3. Simulation Study

In our previous study, we created an MEC model and tested
it in a simulation [14]. In the current study, we made the
model more practical by adding a controller to the system in
[15], [16].

Here, we briefly describe the model’s design from the
previous paper, as we will use it as a basis for the implemen-
tation design in the next section. The system model is illus-
trated in Fig. 4. A source node S i, 1 ≤ i ≤ N, that represents
a group of nearby mobile users generates a workload, wk, at
a rate λ in accordance with a Poisson process and sends it
to any edge node E j, 1 ≤ j ≤ M; the mobile edge host pro-
cesses an accepted workload by processor sharing (PS) [29].
Note that a server that uses PS equally shares its resources
(CPUs, memories, etc.) with all current workloads without
a buffer. The PS concept utilizes the server to maximal ef-
fectiveness by using the least amount of resources.

The communication latency was calculated by hop
count and hop delay, and the computing latency was esti-
mated by PS using the current number of processes. Note
that the actual computational latency would become known
after the edge node finished the workload because of PS.

We modeled the MEC architecture by examining
whether the total computing and communication latency ex-
ceeded the allowable latency. The system determined poli-
cies to select the target edge host for each workload. We
considered three polices: random, lowest latency, and mini-
mum unfinished workload.

We determined the objective function of the model by
finding the minimum blocking probability (defined as the
fraction of rejected workloads). A workload that exceeds
the allowable latency is rejected by the system. Accepted
workloads are executed at an edge host selected by the de-
fined policy.

We considered two system procedures regarding the
system constraints. One was a strict system that protected

Fig. 4 System model with a controller.
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Table 1 Comparison between strict and permissive systems.

Name of system Workload types Checking Error
to be checked load

Strict system Existing and High None
new workloads

Permissive system New workloads Low Exists
only

services from unexpected longer latencies; this procedure
takes into account that a new workload might affect the com-
puting latency of existing workloads when PS is used. The
system checked a latency of a new workload or an existing
workload. The strict system placed a burden on the server,
so we defined a permissive system that relaxed the constraint
of checking the latency of every workload at the chance of
causing decision errors instead. These two systems are sum-
marized in Table 1. In the table, “Checking load” means the
computing load to decide workload acceptance when a new
workload request is arrived. “Error” means the possibility of
decision error, i.e., accepted workloads of which the latency
requirements were not satisfied.

The previous studies [14]–[16] used three evaluation
metrics. The first was the blocking probability (Pb), which
is the ratio of rejected workloads to total workloads. The
second was the decision error (ε) of the permissive sys-
tem, defined as the ratio of incorrect decisions to all ac-
cepted workloads. Accepted workloads that actually ex-
ceeded the given latency allowance were counted as incor-
rect decisions. The third was the modified blocking proba-
bility (P′b), which combines the blocking and error into one
metric for representing the true performance of the system:
P′b = Pb + ε − Pb · ε.

The model described above is based on the ideal as-
sumption that the system can monitor every component in
real time and make a correct decision. In practice, the sys-
tem requires a monitor component that handles the whole
system. In [15], [16], we extended the system in [14] by in-
troducing a controller, as shown in Fig. 4. The controller in-
cludes a monitor resource function and edge-selecting poli-
cies. The source node communicates with the controller and
asks for a destination server for its workload. The controller
checks the resources of each server and verifies the condi-
tion under which to accept the workload or not; then it sends
its decision to the source node.

The simulation results in the previous works pointed
that the permissive system outperformed the strict one in
terms of lower the modified blocking probability (P′b). Se-
lecting edge node with the lowest latency achieved the best
performance among three policies.

4. Design and Implementation of Prototype System

Our ultimate objective is to guarantee the latency perfor-
mance. To do so, we have proposed a system using edge
computing and we have evaluated the system through sim-
ulations as described in Sects. 1, 2, and 3. In this paper,
we designed and implemented a testbed system of MEC in-

Fig. 5 MEC architecture applied system model.

cluding every necessary entity guaranteeing latency perfor-
mance as a proof of concept and compared its performance
with simulation results.

To do so, we implemented three major components of
the architecture, i.e., the ME orchestrator, ME host, and UE
(as a source of requests). To identify operation functions of
each component, we mapped the ETSI MEC in Fig. 2 to our
model, as shown in Fig. 5.

• UE: A source node that represents a group of mobile
users. It sends a workload to edge hosts, but first it
must contact the controller and ask it for the edge des-
tination. This is the same operation as in the UE of
the ETSI MEC. It connects to the MEC through an ME
orchestrator.

• Orchestrator: A controller that monitors the status of
the whole system and selects a designated edge node
for each workload in accordance with a defined po-
licy. It satisfies the constraints of mobile applications.
The orchestrator receives messages from the UEs and
makes decisions, while each ME host is monitored by
an individual manager.

• ME Host: An edge node that acts as a computational
entity. It can be an ME host that provides services to
each ME application.

The system model has to check application constraints,
e.g., the allowable latency. This should actually be a func-
tion of the MEPM. However, we made it a function of the
orchestrator in the testbed, as we have not implemented the
MEPM as yet.

We defined three policies in the simulation — random,
lowest latency, and minimum unfinished work — and two
systems — strict and permissive. The minimum unfinished
work and strict system examines every processing workload
and estimates the time needed to finish each one. This task
is complicated and the implementation cost would be too
high in a real system. As a result, we decided to deploy
only random and lowest latency policies and the permissive
system in the testbed system.

The rest of the MEC components could be provided by
developed from existing open source software, such as VI
and VIM.

As mentioned in Sect. 2, the framwork of ETSI was a
standardized architecture for MEC development. We there-
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fore focus on ETSI MEC architecture illustrated in Fig. 2.

4.1 Communication Latency

Communication latency is an important consideration when
selecting the locations of servers [30]. The simulation deter-
mined it in terms of the hop count and the average hop delay
of each link. However, the authors of [31] argued that the
hop count measures different aspects besides latency. They
argued that although these measures are correlated, they are
unsuitable for experiments on real networks.

The system should be able to accurately estimate both
the source-to-edge and edge-to-source communication la-
tency to make the decisions of the orchestrator more precise.
A survey [32] classified latency measurements in mobile
networks into active and passive methods. The active meth-
ods always monitor the latency from the server or source
side, while the passive methods rely on statistical values.
We designed our experiment to measure communication la-
tency in the active method for getting near-current values.

The testbed system requires a tool that accurately esti-
mates latency. For instance, there is one-way latency [33]
and round-trip latency [34]. Moreover, ICMP, UDP, or TCP
can be used as measurement protocols. Here, we measured
the round-trip latency using TCP for simplicity. The orches-
trator commands that each host update the round-trip time
measured by TCP communication.

4.2 Computing Latency

Computing latency is always difficult to predict, because it
depends on many factors, such as the CPU architecture and
the characteristics of the running program and other back-
ground processes. In the simulations, we used a PS model,
which was explained in Sect. 3, and an equation for calculat-
ing the latency. We still relied on PS in the implementation.
When an edge host received a workload, it created a new
process separately in response to the request.

However, the simulation assumed a single processor
for PS, whereas an actual CPU may have multiple cores
that can handle two or more processes simultaneously. We
therefore took into account the number of CPU cores in the
equation for computing latency (P):

Pk, j(t) =

(
bk

µ j

) (
n j(t) + 1

c j

)
, (1)

where c j is the number of CPU cores of the edge host E j; it
becomes 1 when n j(t) < c j. bk is the size of workload wk.
µ j and n j are respectively the processing rate and the current
number of workloads of E j. The orchestrator uses Eq. (1) to
estimate computing latency of each workload.

4.3 Edge Service

Measuring computing latency requires an actual application
to be run. That means for a realistic system, we need to

define the services the edge host can provide. Different ap-
plications have different features and workloads. A simple
feature such as text analysis may depend on mostly the CPU
and not as much on memory or I/O, while a more complex
function like image processing may need more resources.

To identify an application or service that is typical of
latency-sensitive services, we have to consider the trend
of mobile applications, which is toward real-time services
which are more and more latency-sensitive. An attractive
application for our purpose is public or road safety mon-
itoring, which processes images or video rapidly in order
to detect objects. Such applications sometimes require face
recognition, which basically provides face detection, modi-
fication, and identification functions. In fact, various com-
puter languages offer libraries for such functions, making
their implementation easy.

4.4 Implementation

As described in the previous subsections, we designed the
core entities and functions of MEC in the testbed system.
The other entities could be built from open sources, such as
OPENVIM for VI and VIM. In this subsection, the imple-
mentation details of each core entity are addressed.

The system mainly includes a source node or UE, an
orchestrator, and an edge host. The implementation of the
MEC testbed follows Fig. 5 and the design described in the
previous subsections.

We developed a source node program in Python. It gen-
erated workloads with a rate of λ in accordance with a Pois-
son process. The source program was always connected to
the orchestrator over a TCP connection. When there was a
new workload, the source program sent a request to the or-
chestrator; then it waited for the decision. If the orchestrator
accepted the workload, the source would forward it to the
selected edge host over a TCP connection. The results were
eventually returned to the source, after which the connection
was closed.

The edge host program was also developed in Python.
A server application was always running that listened for
messages from sources and the orchestrator. When the edge
program established a TCP connection for the source node
to transmit a workload, it immediately created an individ-
ual thread for executing the arriving workload. To apply PS
as described in Sect. 3, all current threads shared the server
resources for each process. After finishing a workload, the
edge host sent back the result to the source node.

The edge host also communicated with the orchestra-
tor. When it received a request for a status update from
the orchestrator, it sent a message including the latest av-
erage computing latency and the estimated communication
latency of each source.

The orchestrator maintained a separate thread for up-
dating the status of each edge host. The thread connected to
the edge host via an SSH connection. It periodically updated
the average computing latency. Through the SSH connec-
tion, the orchestrator commanded the edge host sent a probe
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Fig. 6 System architecture.

message to the source for measuring the communication la-
tency.

As a service at the edge host, we installed the face
recognition program in the Python library [35]. This pro-
gram is of the sort used by mobile applications to support
features such as real-time video and mobile gaming with the
front camera. The service detected human faces in photos
and showed the result of how many people faces appeared
in the photo frames. In the experiment, we put the applica-
tion in the source node, and it would send requests to the
edge server asking it to send a photo as quickly as possible
to the face detection service at the edge host.

The implementation topology is depicted in Fig. 6.
Two computers (Intel(R) i5-7500 CPU and 8GB RAM) op-
erated as computational nodes of the edge-host servers. One
(named host 1) was located in Tokyo, Japan, the other (host
2) was in Hokkaido, Japan. They ran processes over an
Ubuntu 14.0 server operating system. The source program
was run on Windows 10 on an Intel(R) i3-3120M and 4 GB
RAM. The orchestrator was installed on a computer with
Ubuntu 16.04.4, Intel(R) i3-3220, 4 GB RAM. The source
and orchestrator were at the same location as host 1.

5. Evaluation

We empirically evaluated our testbed. The important pa-
rameters are described in Table 2. We fixed the number of
sources and edge hosts and varied the maximum allowable
latency to assess its impact on our model. The orchestra-
tor updated the host status at intervals of 0.05 s. In other
words, it sent an update request message to each host every
0.05 s, and the host subsequently sent back its current status.
Unlike the simulation, we fixed the total number of work-
loads in one experiment to 30,000 instead of measuring run
time. We measured the processing time (1/µ) by running
each host for one day without control from the orchestrator.
A single processor on average spent 0.222 s on one work-
load. Since there were two hosts with 4 CPU cores each, we
set the workload rate to 20 workloads per second in order to
determine the system capacity, e.g., λ/(cµM) < 1. Note that
all workloads were of the same size (bk = 1). The orchestra-
tor measured the communication latency by sending a ping
message during the update interval. In fact, sending pack-
ets from a source to the server in Hokkaido took on average
0.03 s while sending packets from a source to the server in
Tokyo took about 0.003 s.

Table 2 Experimental parameters.

Parameter Value
Number of sources(N) 1
Number of edges(M) 2

Workload rate (λ) 20 workloads/s
Max. allowance latency (θ) 0.3–1.3 s

Processing rate (µ) 0.222−1 workloads/s
CPU cores (c) 4

Orchestrator interval (σ) 0.05 s
Total number of workloads 30,000

We measured three matrices in the same way as de-
scribed in Sect. 3. The pure and modified blocking proba-
bilities had the same definitions, but the errors of the real
system included not only decision errors but also other er-
rors such as socket timeouts and connection losses.

In this section, we examine the performance of the dif-
ferent policies; then we compare the results of the experi-
ment and the simulation. Finally, we investigate the accu-
racy of the method of estimating the computing latency.

5.1 Policy Results

Figure 7 depicts the experimental results, showing the im-
pact of the maximum allowable latency on the blocking pro-
bability in Fig. 7(a), on errors in Fig. 7(b) and on the mod-
ified blocking probability in Fig. 7(c). These figures show
that a longer allowable latency gave better performance in
regard to blocking and errors since the system could use all
of its resources more efficiently.

Comparing the lowest latency and random policies, it
is clear that both performed very nearly the same for all ma-
trices, although the lowest latency yielded less blocking and
less errors compared with the random policy.

To verify the behavior of each policy in the experiment,
Table 3 describes the ratio of selected hosts (Host1 or Host2)
by the controller when we set the maximum allowable la-
tency to 1.5 s that means the controller can accept all the
workloads. It shows that the controller with the random po-
licy dispatched workloads to both hosts with roughly 50%
of the probability while the one with lowest latency policy
likely preferred Host1 rather than Host2. That corresponds
to design of each policy and suggests that the logic of policy
correctly works in the real environment.

5.2 Comparison of Experimental and Simulated Results

As we described in Sects. 1.1 and 4, our objective is to
guarantee the latency performance including computing and
communication ones. To prove that our testbed system can
meet our goal, we have to evaluate its performance. Along
with this, to analyze the detailed behavior of the system, we
also conducted simulation with the same parameters as the
implementation. The communication latency was fixed be-
tween two nodes by using the average round trip time from
the experiment. We calculated the average computing time
of a single workload and used its inverse to denote the pro-
cessing rate in the simulation. Additionally, the previous
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Fig. 7 Experimental results.

Table 3 The ratio of selected hosts by controller (max. latency = 1.5 s).

Policy Host 1 Host 2 Total
Random 15,310 (51%) 14,690 (49%) 30,000

Lowest latency 16,719 (56%) 13,281 (44%) 30,000

simulation executed workloads by using a PS with a CPU
having a single core, while the real CPU architecture was
able to process using four cores simultaneously. We thus
incorporated a multi-core processor into the simulation.

The results in Fig. 8 are from the simulation described
above. The X-axes and Y-axes of the subfigures correspond
to those of Fig. 7. A comparison of Figs. 7 and 8 indicates
that their modified blocking probabilities had the same ten-
dency and the results of the two policies were not distinct.
However, Fig. 8(b) shows that the simulation suffered the
most errors, while Fig. 8(a) shows that it reduced the block-
ing probability to zero or near zero as the maximum latency
equaled 0.5 s. The experimental results (Figs. 7(a) and 7(b)),
on the other hand, showed high blocking probabilities with

Fig. 8 Simulation results with experimental parameters.

some errors.
The experimental blocking probability and errors were

rather different from the results of the simulation, though
the modified blockings were similar. To investigate why the
real system performed the way it did, we monitored the esti-
mates and the actual latencies of both policies. Because the
communication latency was estimated using the TCP round-
trip time, which is very accurate, the computational latency
should be carefully determined.

5.3 Estimation Accuracy

Finally, we examined the estimation accuracy. By prob-
ing messages, the estimation of communication latency was
very precise. The main difference resulted from the comput-
ing latency. We, then, combined computing latency from all
hosts and showed the distribution in Fig. 9 when we set the
maximum latency to 1.5 s within which we did not see any
rejections in either simulation or experiment. We monitored
the estimated computing latency when the orchestrator cal-
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Fig. 9 Computational latency distribution.

culated each workload, and we checked the actual latency
when each workload finished. We created histograms of the
estimated and actual latency as in Fig. 9. The orchestrator
(controller) in the simulation (Figs. 9(c) and 9(d)) underesti-
mated the latency because of the PS formulation. The actual
latency may lengthen the processing time quite a bit. That
is why there were large errors in the simulation. In con-
trast, the distribution from the experiment (Figs. 9(a) and

Table 4 Statistics of actual update latency in [s] (max. latency = 1.5 s).

Host 1 Host 2
Random Lowest Random Lowest

latency latency
Mean 0.262 0.363 0.320 0.413
Standard 0.075 0.102 0.099 0.118
deviation
Min 0.109 0.206 0.100 0.195
Max 0.647 0.869 0.869 0.922

9(b)) shows that the orchestrator most often overestimated
the computing latency. That led the orchestrator to reject
workloads with less error. This is because the real server
did not perform perfectly like a PS. It was affected by many
factors, such as its CPU architecture, service algorithm, and
memory accesses.

Our question in the previous section Sect. 5.2 is the rea-
son of the different tendency of experimental and simulation
results. The analysis about Fig. 9 reveals a part of the ques-
tion. Namely, the estimation tendency of experiments and
simulations are different, i.e., overestimation occurred in ex-
periments whereas underestimation occurred in simulations.

In this way, the accuracy of the estimated computing
latency seems to be a significant factor affecting the orches-
trator’s decisions and the system performance. Even in the
simulation, using PS with multiple CPU cores could not
ensure that the estimation was accurate (see Figs. 9(c) and
9(d)). A real implementation must consider this in a more
serious way. To improve the estimation method, we should
investigate the factors that can lead to underestimations of
computing latency and find a way to shift the distribution in
Figs. 9(s) and 9(b) closer to the actual latency distribution.

To reveal a reason of the overestimation in the experi-
ment, one of possible factors is a process inside the orches-
trator, so log files of the orchestrator were further investi-
gated. In the experiment, the actual update interval (σ) was
set to 0.05s, which means the orchestrator would frequently
update the host information within the average computing
latency per a workload. We measured the actual update la-
tency, which is all the latency about updates, i.e., it con-
sists of the update interval, the communication latency to the
host, and the processing delay at the orchestrator. Table 4
describes the statistic of the actual update latency when we
set the maximum allowable latency to 1.5 s. It shows that the
orchestrator spent longer time to update the information of
each host than the update interval (0.05 s). That suggested
there are other factors here.

As we described, the actual update latency includes the
update interval, the communication latency to each host,
and the processing delay in the orchestrator. As an ex-
ample, we look at the mean value of Host2 with Random
policy, 0.32 s. In this case, if we assume the communica-
tion latency between the controller and Host2 is the same
with the latency between the controller and source (0.03 s),
we see the processing time of the orchestrator equal to
0.320 − 0.05 − 0.03 = 0.24 s, which becomes a major part
of the update latency. The orchestrator might be lacking
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of resources. It must handle many tasks such as connec-
tions to the hosts, requests about workloads. The CPU of
the orchestrator machine in this experiment was Intel(R) i3-
3120M, which may not enough to execute all processes si-
multaneously, so we can see longer update latency than the
interval. Our previous work [16] has discussed how long la-
tency from the orchestrator affects the edge computing per-
formance. It proved by simulations that longer processing
time of the orchestrator leads more overestimations of the
computing latency about workloads. Consequently, the or-
chestrator becomes a bottleneck that affects the accuracy of
the estimations.

6. Conclusion

CPS will enable many applications in 5G and Beyond-5G
networks. It requires MEC in order to provide low-latency
services to many users, so the MEC concept and architec-
ture should be thoroughly investigated before such systems
are deployed in the real world. Although many studies have
used simulations for such analyses, few studies have tar-
geted actual implementations and evaluations in real envi-
ronments.

We designed a prototype MEC architecture guarantee-
ing the latency performance based on the framework stan-
dardized by ETSI and our previous simulation studies. The
necessary functions were identified, and they guided the de-
sign of each MEC entity. We mapped functions and entities
that were evaluated in our previous simulation to the MEC
system design. We implemented a testbed based on this de-
sign and evaluated its performance in a real environment.

The evaluation in the testbed showed that the lowest-
latency policy would outperform a random policy. The or-
chestrator has to estimate the computing latency to check the
latency conditions of applications. Simulations conducted
with the same parameters showed a lower blocking proba-
bility but more errors in comparison with the experimental
results. This implies that there are hidden but important fac-
tors in real network environments.

To investigate these factors, we drew computational la-
tency distributions, which showed that the simulations prob-
ably underestimated the latency, while the experiment over-
estimated it. We found phenomena wherein the simulation
could not perfectly simulate the real system. The real system
had a higher blocking probability and fewer errors than what
could be expected from the simulation. Therefore, when
we design an MEC system for CPS, we should be aware of
whether or not a higher blocking rate is acceptable for appli-
cations. One reason is that an equation of PS is too simple;
it cannot accurately estimate the actual computing latency
of the server’s complicated processing architecture. In the
future, the accuracy of the latency estimation should be im-
proved by conducting a deeper analysis of the processing
architecture.
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