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SUMMARY Autonomous mobility machines, such as self-driving cars,
transportation robots, and automated construction machines, are promising
to support or enrich human lives. To further improve such machines, they
will be connected to the network via wireless links to be managed, moni-
tored, or remotely operated. The autonomous mobility machines must have
self-status based on their positioning system to safely conduct their op-
erations without colliding with other objects. The self-status is not only
essential for machine operation but also it is valuable for wireless link
quality management. This paper presents self-status-based wireless link
quality prediction and evaluates its performance by using a prototype mo-
bility robot combined with a wireless LAN system. The developed robot
has functions to measure the throughput and receive signal strength indica-
tion and obtain self-status details such as location, direction, and odometry
data. Prediction performance is evaluated in offline processing by using the
dataset gathered in an indoor experiment. The experiments clarified that,
in the 5.6 GHz band, link quality prediction using self-status of the robot
forecasted the throughput several seconds into the future, and the predic-
tion accuracies were investigated as dependent on time window size of the
target throughput, bandwidth, and frequency gap.
key words: mobility robot, link quality prediction, machine learning, wire-
less LAN, random forest regression

1. Introduction

Advances in machine learning are accelerating the devel-
opment of autonomous mobility robots [1]. To ensure that
their activities are safe, effective, and reliable, the wireless
link plays a key role as it permits the exchange of informa-
tion and control signals with the other mobility robots or
network [2]. Since these robots need to obtain the accu-
rate self-status to conduct various intelligent works without
trouble such as collisions [3]–[5], it is important to study the
relationship between the self-status and wireless link quality
(LQ) to ensure highly reliable wireless access.

Wireless access is also spreading more widely and mo-
bility robots have several wireless access options depending
on their applications and use cases. The long term evolu-
tion (LTE) infrastructure and wireless LAN (WLAN) sys-
tems are becoming ubiquitous and the available throughput
is increasing [6], [7]. Furthermore, 5G is expected to satisfy
the demands for high speed, large capacity, massive number
of device connections, and/or high reliability/low latency re-
quirements [8], [9]. However, wireless access LQ is affected
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by various environmental factors even if advanced signal
processing is used.

To satisfy the advanced requirements posed by wire-
less access services, the LQ must be managed and unex-
pected LQ degradation must be avoided. Thus, LQ predic-
tion is one basic technology of wireless access management.
Machine-learning-based network performance prediction is
surveyed in [10]. The prediction of channel state infor-
mation (CSI) was proposed in [11], [12], and paper [13]
showed that future network performance can be predicted by
using wireless system metrics of major cellular networks. In
[14], the throughput was predicted by using the transporta-
tion mode of the holder of the smart phone as indicated by
movement history. [11], [12] yields very short term future
predictions, of the order of milliseconds, while [13], [14]
assumed that the connected devices were carried by people.
Since the mobility robot has precise self-status information,
accurate LQ predictions with lead-times of the order of sec-
onds are expected.

The use of robot position information for enhancing
wireless communications was proposed in [15], [16]. In
[15], robot state is used to establish routing among indi-
vidual robots to maintain their connectivity. The work in
[16] focused on mission critical applications and proposed
a relay model that controls multiple robots. Although these
approaches improve wireless network performance, the re-
lationship between the robot status and link quality was not
addressed. The challenges for LQ prediction are surveyed in
[17]; it described that stable and long-term prediction would
be possible by considering the robot’s mapping and naviga-
tion planning functions. The authors also presented LQ pre-
diction using the distance information and wireless system
metrics [18].

The development of robot operating technologies has
enabled mobility robots to obtain accurate position, direc-
tion, and velocity information [19]. We focus on the static
communication area where no interference signal is ob-
served. This scenario corresponds to the wireless access for
the mobililty robot operation at the limited space in the iso-
lated facilities like factories. This paper evaluates the LQ
prediction performance possible with using accurate self-
status in multiple broadband channel conditions. A mobility
robot prototype performed random walks in an experiment
room and the throughput in 20, 40, and 80 MHz channels of
a WLAN system was measured. Position and direction in-
formation are calculated by using the point clouds output by
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a LIDAR system. LQ prediction performance is evaluated
for multiple bandwidth cases and a different channel case
wherein the LQ prediction model created for one channel is
applied to another frequency channel. The contributions of
this paper are described as follows.
- LQ prediction performance using accurate self-status con-
sisting of location, direction, and odometry, is evaluated for
20, 40, and 80 MHz channels by using throughput as the tar-
get LQ indicator. The effectiveness of self-status based LQ
prediction improves with increases in the time window of
target throughput and frequency bandwidth.
- The frequency correlation of the prediction model is eval-
uated by using the frequency gap between the channels for
training and prediction. The performance degradation due
to the frequency gap was similar for 20, 40 and 80 MHz
channels.

The rest of this paper is organized as follows. Sec-
tion 2 describes the system model and LQ prediction based
on random forest regression. Section 3 details the indoor
experiments. Section 4 shows how LQ prediction perfor-
mance depends on the various channel scenarios. Section 5
concludes this paper.

2. System Model

Figure 1 shows the system model; the mobility robot pre-
dicts the future LQ in the wireless LAN (WLAN) system
by using its self-status. The mobility robot obtains accurate
self-status data consisting of location, direction, and odom-
etry, to conduct its intelligent operation autonomously. The
LQ prediction block predicts the future LQ by using the in-
put feature set and prediction model. In this paper, we pro-
vide the input feature sets from the self-status and past LQ
information and evaluate their prediction performances. The
prediction model is pre-trained by using the measured LQ
and the input feature set. Fig. 2 shows 20, 40 and 80 MHz re-
sources available in W53 and W56 WLAN channels. There
are 14 channels in W53 and 20 channels in W56. Thus,
the mobility robot must prepare 34 prediction models if all
models are independent of each other.

2.1 Measurement System

Figure 3(a) shows the wireless system metrics that are
measured by the mobility robot in the time domain. The
throughput at timing ti is measured as the bit rate in the time
interval from ti − TLQ to ti;

C [ti] =
1

TLQ

∑
ti−TLQ<t≤ti

B[t]. (1)

where B[t] is the bit amount that successfully received at
timing t, and TLQ is the time window considered for the
throughput, C[ti]. The throughput is measured for ev-
ery time interval ∆t. In this paper, the future throughput,
C[ti +TF], is used as target LQ, where TF denotes a lead time
between the parameter acquisition timing and the target LQ

Fig. 1 System model overview.

Fig. 2 WLAN channel configuration of 20, 40 and 80 MHz resources in
W56 channels.

Fig. 3 System parameter acquisition timing. (a) wireless system related
parameters; throughput and RSSI, (b) self-status.

timing. The accuracy of predicting the future throughput is
evaluated by using the prediction error which is defined as

E [ti] =
∣∣∣C[ti + TF] − Ĉ[ti + TF]

∣∣∣ (2)

where Ĉ[ti + TF] is the throughput predicted by using the
input feature sets at timing ti.

The received signal strength indication (RSSI) is also
measured asynchronously to throughput acquisition. Thus,
timing t′j is defined as the j-th RSSI acquisition timing
which is the newest timing prior to throughput acquisition
timing ti. The RSSI measured at t′j is given as γ[t′j].

2.2 Self-Status

As the self-status, we use location, direction, and odometry
for LQ prediction. The mobility robot has a map of the oper-
ation field and point cloud data generated from LIDAR mea-
surements of positions of laser signal reflection points. The
map contains x-axis and y-axis information, and the location
and direction of the mobility robot are obtained by compar-
ing the map with the point cloud based on Adaptive Monte
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Fig. 4 Self-status of mobility robot.

Carlo Localization (AMCL) [19]. Figure 3(b) shows the lo-
cation, direction and odometry acquisition timing. Such ac-
quisition timing is also asynchronous to throughput acqui-
sition timing, timings τα and τ′β denote the newest acquisi-
tion timings of location/direction and odometry information,
respectively, just prior to throughput acquisition timing ti.
{x[τα], y[τα]} are the x-axis and y-axis location on the map,
{kz[τα], w[τα]} are the direction information, and {Ox[τ′β],
Oy[τ′β], Oang[τ′β]]} are the velocity measurement.

Figure 4 shows the self-status of the mobility robot.
The location {x[τα], y[τα]} denotes the location of the cen-
ter of the mobility robot on the map. The direction {kz[τα],
w[τα]} are expressed as

kz [τα] = sin
θ[τα]

2

w [τα] = cos
θ[τα]

2

(3)

where θ[τα] is the angle from the x-axis at timing τα. Al-
though these two parameters denote same angle informa-
tion, it is advantage that kz and w does not have the discon-
tinuity between 0◦ and 360◦.

The odometry information {Ox[τ′β], Oy[τ′β], Oang[τ′β]}
are calculated by using the rotary encoders on the wheels.
The odometry calculation schemes are described in [19]. In
this paper, Ox[τ′β] and Oy[τ′β] are calculated as the velocities
at the x-axis and y-axis, Oang[τ′β] is the variations of θ.

2.3 LQ Prediction Block

The LQ prediction block in Fig. 1 forecasts LQ by using
the self-status of the mobility robot. In this paper, the re-
lationship between self-status and future LQ is learned by
random forest regression. Since the self-status information
contains error, the input features for the random forest re-
gression were filtered by using the median values as follows{

x̃[ti], ỹ[ti]
}

=

{
Median
ti−∆t<τ≤ti

(x[τ]), Median
ti−∆t<τ≤ti

(y[τ])
}
, (4){

k̃z[ti], w̃[ti]
}

=

{
Median
ti−∆t<τ≤ti

(kz[τ]) , Median
ti−∆t<τ≤ti

(w[τ])
}
, (5){

Õx[ti], Õy[ti], Õang[ti],
}

=

{
Median
ti−∆t<τ≤ti

(Ox[τ]) , Median
ti−∆t<τ≤ti

(
Oy[τ]

)
, Median

ti−∆t<τ≤ti

(
Oang[τ]

)}
(6)

γ̃[ti] = Median
ti−∆t<τ≤ti

(γ[τ]), (7)

where Median() denotes the function that calculates the me-
dian value. When the mobility robot predicts the LQ at ti,
the input features at ti correspond to the available informa-
tion before timing ti.

The LQ prediction block learns the prediction model
based on the relationship between the input features and fu-
ture LQ. The input features are chosen to be the median val-
ues from Eqs. (4) to (7). Furthermore, past throughput in-
formation C[ti] is also used as one of the input feature can-
didates. By using the prediction model, future throughput,
C[ti + TF] is predicted by using the input feature sets;

ΦL/D[ti] =
{
x̃[ti], ỹ[ti], k̃z[ti], w̃[ti]

}
(8)

ΦSS[ti] =
{
x̃[ti], ỹ[ti], k̃z[ti], w̃[ti],

Õx[ti], Õy[ti], Õang[ti]
} (9)

ΦRS,p[ti] =
{
γ̃[ti], . . . , γ̃[ti−p]

}
(10)

ΦTHR,q[ti] =
{
C[ti], . . . , C[ti−q]

}
(11)

ΦSSTHR,q[ti] =
{
ΦSS[ti], ΦTHR,q[ti]

}
(12)

where ΦL/D[ti], ΦSS[ti], ΦRS,p[ti], ΦTHR,q[ti], and
ΦSSTHR,q[ti] are the input feature sets using position/

direction information, position/direction/odometry informa-
tion, RSSI information, throughput information, and po-
sition/direction/odometry/ throughput information, respec-
tively, at timing ti.

The predicted LQ, Ĉ[ti+TF], is obtained by the random
forest regression which employs 500 decision trees, and the
depth of the decision tree is expanded until all leaves are
pure or until all leaves contain fewer than two samples. All
the decision trees are pre-trained by using the future LQ
[ti + TF] and the input feature sets at ti as the prediction
model. Ĉ[ti + TF] is calculated as an averaged value of all
the decision tree outputs.

3. Experimental Setup

Experiments were conducted to evaluate the performances
of the self-status based LQ prediction in an indoor environ-
ment. The distance between the AP and the mobility robot
was set to from 1 m to 11 m and it was a line-of sight condi-
tion.

3.1 Mobility Robot

Figure 5 shows a photo of the mobility robot used; it held
LIDAR system and a laptop PC. Table 1 shows the exper-
iment parameters. IEEE802.11ac [20] was used for wire-
less access, and the throughput was measured in 13 primary
channels with bandwidths of 20, 40, and 80 MHz. Here-
inafter, we define the primary channel index as F, and the
bandwidth used in the channel as W. The mobility robot was
operated by the robot OS (ROS) of version kinetic KAME
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Fig. 5 Mobility robot equipped with LIDAR system and laptop PC.

Table 1 Indoor experiment parameters.

and the 2D navigation stack in ROS [19] was used to con-
duct autonomous operation in the experiment. The antenna
heights of the AP and mobility robot were 0.35 m and 0.6 m,
respectively, and the laptop PC used the implemented an-
tennas to measure the RSSI and throughput. The maximum
speed of the robot was set to 0.83 m/s.

3.2 Navigation

Figure 6 shows the indoor map and the mobility robot’s
routes. The navigation stack takes in information from
odometry, point cloud, and the goal, and outputs velocity
commands that are sent to the mobility robot. We ensured
that the mobility robot conducted random walk by renewing
the goal to one of 11 positions everytime the robot reached
the intended goal. Therefore, the robot routes converged on
11 positions as shown in Fig. 6.

3.3 Dataset

The throughputs were measured for all the channel con-
ditions simultaneously together with RSSI and self-status
measurements. The robot performed random walk among
11 goals and 11,746 sec dataset were obtained on average
for each channel configuration (The minimum data length
was 8,697 sec). Since the target throughputs were measured
every 0.2 sec, the number of effective samples was 58,730
on average.

Fig. 6 Indoor experimental field.

Fig. 7 Cumulative distribution function (CDF) of the throughput in 20,
40, and 80 MHz channels for TLQ of 0.2 and 1.0 [sec].

3.4 Measured LQ

The measured throughput performance is shown in Fig. 7.
The dashed and solid lines denote the throughputs with
TLQ of 0.2 and 1.0 [sec], respectively. The cumulative dis-
tribution function (CDFs) of the throughputs measured in
120 ch with bandwidths of 20, 40, and 80 MHz show that
the throughput increases with the bandwidth. The median
values of 20, 40, and 80 MHz for TLQ of 0.2 [sec] are 112,
208, and 402 Mb/s. Figure 8 plots the throughput versus
distance from the access point to the robot for 20, 40, and
80 MHz channels. The throughputs cannot be determined
from just the distance because the multi-path condition is
strong in the indoor environments.

4. LQ Prediction Evaluation and Results

LQ prediction performance was basically evaluated by the
metric of k-cross validation. The dataset was divided into 5
parts, 4 of which were used for training to generate the pre-
diction model. LQ prediction was conducted using the re-
maining part. The future throughputs were predicted by us-
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Fig. 8 Relationship between distance and throughput for 20, 40, and
80 MHz channels.

ing the input feature sets. The throughput prediction model
for F-th channel with W MHz is defined as MF,W . Thus,
the throughput prediction model for 120 ch with 20 MHz is
given by M120,20.

We evaluated the prediction performance when the pre-
diction model, MF,W of one channel was applied to the
dataset of another channel F′. In this case, the dataset mea-
sured in channel F is used for training. The future LQ is
predicted by using the input feature set in channel F′ and
the prediction model, MF,W .

4.1 Throughput Prediction Evaluation in Same Channel

The prediction errors were evaluated by using 20 MHz,
40 MHz, and 80 MHz bandwidth datasets for the primary
IEEE channel of 120 ch. CDFs of the prediction errors
with TLQ of 0.2 sec are plotted in Fig. 9. ΦTHR,10, ΦRS,10,
ΦL/D, ΦSS, and ΦSSTHR,10 were used as input features by the
LQ prediction block. The numbers of elements in the input
feature set of ΦTHR,10, ΦRS,10, ΦL/D, ΦSS, and ΦSSTHR,10
were 11, 11, 2, 7, and 18, respectively. Figure 9 shows
that the prediction error was smallest with the input fea-
ture set, ΦSSTHR and ΦSS; the median values of ΦSSTHR and
ΦSS were 7.10 and 7.42, 14.5 and 15.5, and 19.9 and 22.3,
respectively, in 20 MHz, 40 MHz, and 80 MHz channels.
When comparing the median values with ΦTHR,10, those
of ΦSSTHR,10 and ΦSS were 18.1% and 17.5%, 18.6% and
18.2% and 29.1% and 27.2% lower than those of ΦTHR,10.
The advantages of self-status information use become large
in broadband channels. Since those prediction errors are less
than that of ΦL/D, it was also found that the robot’s odom-
etry data enhanced LQ prediction accuracy. Although the
RSSI used corresponds to the worst performance, the differ-
ence between ΦRS,10 and ΦTHR,10 become small as the band-
width increases. This shows that the relationship between
RSSI and throughput becomes tighter as the bandwidth in-
creases.

Figure 10 shows the CDFs of the prediction error with
TLQ of 1.0 [sec]. The prediction errors were much less
than those with TLQ of 0.2 sec case. The median values

Fig. 9 CDFs of prediction errors for 2.0 sec future LQ (TF of 2.0 [sec])
with TLQ of 0.2 [sec] using input feature sets for (a) 20 MHz, (b) 40 MHz,
and (c) 80 MHz channels.

of ΦSSTHR,10 and ΦSS were 22.1% and 21.5%, 23.6% and
22.2% and 42.1% and 39.2% lower than those of ΦTHR,10 for
20, 40, and 80 MHz, respectively. The advantage of the sta-
tus information use increases compared to the shorter time
interval (TLQ of 0.2 [sec]).

4.2 Past Input Feature Set Use

The effectiveness of the past input feature use was evalu-
ated for TF of 2.0 sec. CDFs of the prediction errors of
120 ch with 20 MHz bandwidth for TLQ of 0.2 and 1.0 [sec]
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Fig. 10 CDFs of prediction errors for 2.0 sec future LQ (TF of 2.0 [sec])
with TLQ of 1.0 [sec] using input feature sets for TLQ of 1.0 [sec] in (a)
20 MHz, (b) 40 MHz, and (c) 80 MHz channels.

are plotted in Fig. 11. The median value of the predic-
tion errors by using the input feature from timing ti to ti−N
were evaluated for ΦSS, ΦL/D, ΦRS,p, and ΦTHR,q. For
ΦRS,p and ΦTHR,q, the median values of the prediction er-
rors were evaluated for p = N, and q = N, respectively. For
ΦSS and ΦL/D, the input features were set to {ΦSS[ti], . . . ,
ΦSS[t(i−N)]} and {ΦL/D[ti], . . . , ΦL/D[t(i−N)]}, respectively. In
Fig. 11(a), the median values of prediction errors of ΦSS,
ΦL/D, ΦRS,p, and ΦTHR,q with N of 10 were 0.2%, 4.3%,
4.6% and 3.6% less than those with N of 0, respectively.
In Fig. 11(b), the median prediction errors of ΦSS, ΦL/D,

Fig. 11 Median values of the prediction error for TF of 2.0 sec when N
past input feature sets were used 20 MHz channel for TLQ of 0.2 and 1.0 sec.

ΦRS,p, and ΦTHR,q with N of 10 were 1.6%, 7.5%, 7.3% and
9.3% less than those with N of 0, respectively. It was found
that the advantage of using past information for ΦSS was
much less than the other input feature sets. The self-status
input feature set, ΦSS, enables the effective LQ prediction
with the small number of the elements of the input feature
set.

4.3 Future Prediction Performance

Figure 12 shows the median value of the prediction errors
with TLQ of 0.2 sec for 20 MHz, 40 MHz, and 80 MHz chan-
nels. The input feature sets of ΦSS, ΦSSTHR,10, and ΦTHR,10
were used for the evaluation. We can see that the self-status
information offers great advantage for long term predictions
with TF of several seconds. This implies that the robustness
of self-status-based LQ prediction against the robot mobil-
ity was significant. The median values of the prediction er-
rors of ΦSS were 21%, 23% and 30% lower than those of
ΦTHR,10 for 20, 40 and 80 MHz channels for TF of 2.0 sec,
and 28%, 30% and 35% lower than those of ΦTHR,10 for 20,
40 and 80 MHz channels for TF of 10.0 sec, respectively. It
was found that the effectiveness of self-status use increased
with the bandwidth. Furthermore, the difference of the me-
dian prediction errors with ΦSS and ΦSSTHR,10 decreases as
TF increases. When TF is 5.0 sec, the difference of those
with ΦSS and ΦSSTHR,10 are negligible and the median val-



KUDO et al.: EXPERIMENTAL VALIDATION OF LINK QUALITY PREDICTION USING EXACT SELF-STATUS OF MOBILITY ROBOTS
1391

Fig. 12 Median values of the prediction error versus lead times TF for
(a) 20 MHz, (b) 40 MHz, and (b) 80 MHz channel.

ues of prediction errors with ΦSS are 100.2%, 100.8%, and
99.5% those with ΦSSTHR,10 for 20, 40, and 80 MHz, respec-
tively. Even in the environment corresponding to the greater
mobility speed, it is expected that the exact self-status use is
a key to accurately predict the long term LQ.

4.4 Prediction Model Use for Different Channels

The prediction model for channel F was applied to the data
of a different channel, F′, by using datasets of the measured
throughputs with TLQ of 0.2 sec for 2.0 sec future LQ pre-
diction (TF of 2.0 [sec]). The median values of the predic-
tion errors with ΦSS and ΦTHR,10 are plotted versus the fre-
quency gap between channel F and channel F′ in Fig. 13.
Figure 13(a) shows the median values of the prediction error
in 20 MHz channels by using the prediction models, M100,20
and M140,20. We can see that the prediction model using
past throughput information, ΦTHR,10, was not affected by
the frequency gap and the prediction performance with ΦSS
gradually degraded as the frequency gap increased. How-
ever, the performance degradation is very slight and the
median value of the prediction with the frequency gap of
80 MHz were only 6.6% compared to the case of the pre-
diction model generated for the same channel. It was found
that the prediction performance were much better than those
of ΦTHR,10 for frequency gaps of less than 200 MHz. This
showed that the prediction model with ΦSS at one channel
can be applied to the neighboring channels. Figure 13(b)
and (c) show the median values of the prediction errors for
40 and 80 MHz channels. The prediction models M100,40
and M132,40 were used for 40 MHz channel evaluation, and
M100,80 and M120,80 were used for 80 MHz channel evalua-
tion. Even when the frequency gap was 80 MHz, the degra-
dation in prediction error was 12.1% and 11.2% for 40 MHz
and 80 MHz channels, respectively; both were better than
ΦTHR,10.

Fig. 13 Median values of prediction errors of 2.0 sec future LQ predic-
tion (TF of 2.0 [sec]) with ΦTHR,10 and ΦSS versus the frequency gap be-
tween channels for training and prediction for (a) 20 MHz, (b) 40 MHz, and
(c) 80 MHz channels.

5. Conclusion

This paper presented a wireless link quality (LQ) predic-
tion scheme that uses robot self-status; its prediction perfor-
mance was evaluated for several frequency channel condi-
tions and time window sizes of target throughput. We de-
veloped a simple autonomous mobility robot and measured
the throughput and self-status data consisting of location, di-
rection, and odometry. The mobility robot experiments were
conducted in the indoor environment where the distance be-
tween the access point and mobility robot was from 1 m
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to 11 m by using IEEE802.11ac with 20, 40, and 80 MHz
bandwidth channels. The prediction model was generated
by using random forest regression and future throughput
with lead time of 0.4 to 10.0 sec was predicted by using
the self-status. Performance evaluations for the bandwidths
of 20, 40, and 80 MHz clarified that the prediction perfor-
mance increased with the bandwidth and the throughput av-
eraging time increase. The median values of the prediction
errors using the robot self-status were 12%, 21%, and 26%
better than those of past throughput information use in 20,
40, and 80 MHz, respectively, for the lead time of 2.0 sec
in 0.2 sec time interval throughput. Furthermore, the pre-
diction performance was also evaluated in the case where
the prediction model developed for certain channel was ap-
plied to a different channel. When the frequency gap be-
tween the channels for training and prediction was 80 MHz
for the lead time of 2.0 sec in 0.2 sec time interval through-
put, the prediction performance degradation in terms of the
median value of the prediction error was 9.2%, 9.1% and
8.8% for 20, 40, and 80 MHz bandwidth channels, respec-
tively. In future work, the information of the surrounding
mobility objects, wireless traffic, and interference signals
will be taken into consideration to expand the applicable
condition. We believe that LQ prediction based on the exact
self-status of connected devices will establish a new stage in
advanced wireless management and satisfy various require-
ments placed on wireless access systems.
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