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PAPER
Long-Time Coherent Integration for Non-Radial Moving Target
Based on Radon Fourier Transform with Modified Variant Angle

Denghui YAO†,††a), Xiaoyong ZHANG††, Zhengbo SUN††, Nonmembers, and Dexiu HU†, Member

SUMMARY Long-term coherent integration can significantly improve
the ability to detect maneuvering targets by radar. Especially for weak tar-
gets, longer integration times are needed to improve. But for non-radially
moving targets, the time-varying angle between target moving direction and
radar line of sight will cause non-linear range migration (NLRM) and non-
linear Doppler frequency migration (NLDFM) within long-time coherent
processing, which precludes existing methods that ignore angle changes,
and seriously degrades the performance of coherent integration. To solve
this problem, an efficient method based on Radon Fourier transform (RFT)
with modified variant angle model (ARFT) is proposed. In this method, a
new parameter angle is introduced to optimize the target motion model, and
the NLRM and NLDFM are eliminated by range-velocity-angle joint three-
dimensional searching of ARFT. Compared with conventional algorithms,
the proposed method can more accurately compensate for the NLRM and
NLDFM, thus achieving better integration performance and detection prob-
ability for non-radial moving weak targets. Numerical simulations verify
the effectiveness and advantages of the proposed method.
key words: long-time coherent integration, moving target detection, Radon
Fourier transform, variant angle model

1. Introduction

Radar is an important tool for detecting targets regardless
of time or weather. But with the rapid development of
stealth technology, maneuvering targets are becoming dif-
ficult to detect, making radar detection very problematic
[1]–[6]. Fortunately, long-term coherent integration is an
effective method to enhance the capability of moving tar-
get detection since it can provide the highest signal-to-noise
ratio (SNR) gain [7]–[10]. However, with the increasing
of integration time, the complex motions of maneuvering
targets, e.g., high velocity and acceleration, will generate
range migration (RM) [11]–[13] and Doppler frequency mi-
gration (DFM) [14], [15] both of which seriously degrade
the performance. Therefore, effectively compensating RM
and DFM has become a hot topic in the field of radar signal
processing.

Moving target detection (MTD) is a simple coher-
ent integration algorithm without the elimination of RM
and DFM, but the poor performance limits the application.
To correct RM, axis rotation-moving target detection (AR-
MTD) [16] is proposed, which is implemented by range-

Manuscript received August 23, 2021.
Manuscript revised October 15, 2021.
Manuscript publicized November 9, 2021.
†The authors are with Information Engineering University,

Zhengzhou, China.
††The authors are with National Key Laboratory on Blind Signal

Processing, Chengdu, China.
a) E-mail: yao dh@126.com

DOI: 10.1587/transcom.2021EBP3136

velocity two-dimensional (2D) searching process. Meth-
ods adopting keystone transform (KT) [17], [18] can solve
the linear RM without any prior knowledge via scaling the
echo signal in the slow time domain. On this basis, the
second-order KT (SKT) [19], [20] is proposed to eliminate
the quadratic RM, namely, range curvature. Moreover, to re-
solve Doppler ambiguity, KT needs to combine transforms,
i.e., Chirp-Z [21], Dechirping [22]. Radon Fourier trans-
form (RFT) [23]–[25] utilizes Radon transform to extract
the echo signal from the range-velocity plane and construct
a Doppler matched filter to compensate for the RM, effec-
tively integrating the constant velocity targets even in the
case of Doppler ambiguity. In addition, generalized RFT
(GRFT) [26] is the expansion of RFT for dealing with com-
plex motion targets.

On the other hand, the algorithms on the DFM compen-
sation, which is induced by target high-order motion, have
also been sufficient in recent years. Due to the echo signal of
maneuvering targets with constant acceleration can be mod-
eled as a linear frequency modulated (LFM) signal, a wide
variety of time-frequency analysis tools are employed to an-
alyze the signal and eliminate DFM, e.g., Fractional Fourier
transform (FRFT) [27], Lv’s distribution (LVD) [28]. FRFT
is an upgraded version of Fourier transform with the func-
tion of converting LFM signals to impulse signals, thus it
has a good energy concentration property for accelerated
targets. KT-FRFT [29], Radon-FrFT (RFRFT) [30], and im-
proved AR-FRFT (IAR-FRFT) [31] are applicable for the
removal of DFM. LVD is a new method for signal analy-
sis that has been reported to provide the improved detec-
tion ability of LFM signals. KT-LVD [32] and Radon-LVD
(RLVD) [33] are proposed to deal with RM and DFM.

The aforementioned methods have good performance
in their respective scenes, but most of them need to sup-
pose that the angle between the target motion direction and
the radar line of sight (RLOS) remains unchanged within
long-term integration when establishing the target motion
model. This hypothesis obviously holds for radial moving
targets. Unfortunately, the trajectory of targets strictly sat-
isfying the radial is rare, and most targets detected by radar
are moving in a non-radial direction in practice. For non-
radial moving targets, the angle between its trajectory and
RLOS is time-varying. More seriously, the changing an-
gle causes the target trajectory becomes more complicated
and creates non-linear RM (NLRM) and non-linear DFM
(NLDFM). If the conventional methods based on the as-
sumption of invariant angle are stubbornly utilized to deal
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with non-radial moving targets, it will mismatch the model
between target and algorithm, inevitably failing to eliminate
NLRM and NLDFM and degrading the performance of in-
tegration. In order to keep the algorithm working properly,
the current methods have no choice but to perform under
a limited time in which the angle approximately maintains
constant. But this way of sacrificing integration time leads
to an irreconcilable contradiction between integration time
and integration gain. On the one hand, the time must be in-
creased to improve gain for detecting the weak targets. On
the other hand, the increase in time will produce more seri-
ous NLRM and NLDFM, which cause gain to decrease.

To solve the above problems, this paper proposes a
method based on RFT with a modified variant angle (ARFT)
to compensate for the NLRM and NLDFM. As we know,
RFT-based algorithms have been studied extensively, and
some modified RFT methods have been recently proposed in
the existing literature. Unfortunately, they did not consider
the impact of angle change on long-term coherent integra-
tion and the incorrect motion model was used for dealing
with NLRM and NLDFM. Thus, the proposal and applica-
tion of the ARFT are significant for the long-time coher-
ent integration of non-radial moving targets, which is very
common in practice. In this method, the angle between
the target motion direction and RLOS is set as a new pa-
rameter to modify the target motion model. Then the two-
dimensional (2D) search with range-velocity of RFT is ex-
panded to three-dimensional (3D) search with the range-
velocity-angle. Simulation results validate the effectiveness
of the proposed method for non-radial moving target inte-
gration and detection.

This paper is organized as follows. Section 2 estab-
lishes the signal model. Section 3 introduces the principle
of the proposed method. Then, Sect. 4 gives a series of nu-
merical simulations. Finally, Sect. 5 concludes this paper.

2. Signal Model and Problem Formulation

Suppose that the radar transmits a LFM signal, which can
be written as:

st(tk, tm) = rect
(

tk
tp

)
exp( jπKt2

k ) exp
[
j2π fc(tk + tm)

]
,

(1)

where,

rect
(

t
tp

)
=

{
1, |t| ≤ tp/2
0, |t| ≥ tp/2

, (2)

is the rectangular window function, tk represents fast time,
tp denotes the pulse duration, tm = mPRT (m = 1, 2, . . . ,M)
denotes slow time, PRT denotes the pulse repetition time
and M is integration pulses number. K denotes the fre-
quency modulated rate, fc denotes the carrier frequency.
Thus, the mth pulse echo signal scattered from the target
received by the radar after down-conversion can be stated
as:

sr (tk, tm) = A0rect

 tk −
2R(tm)

c

tp

 exp

 jπK
[
tk −

2R(tm)
c

]2


× exp
[
− j2π fc

2R(tm)
c

]
, (3)

where A0 is the target reflectivity, c is the speed of light,
R (tm) is the instantaneous slant range between the radar and

target. Use match filter h(tk) = rect
(

tk
tp

)
exp

(
jπKt2

k

)
and ac-

cording to stationary phase principle, the signal after pulse
compression (PC) in the range-Doppler domain can be ex-
pressed as:

spc (tk, tm) = A1sinc
[
B

(
tk −

2R(tm)
c

)]
exp

[
−

j4π fcR(tm)
c

]
,

(4)

where A1 is the amplitude after PC, B is the signal band-
width.

It can be seen from Eq. (4) that R (tm) will produce mi-
gration on envelope and phase of the signal. Therefore,
in order to effectively compensate RM and DFM, the first
step of coherent integration algorithm is accurately estimat-
ing R (tm) and it is directly determined by the target motion
model. This paper primarily discusses the effect of varying
flight angles on the target motion model but does not make
specific requirements for the target motion state. Therefore,
the most unadorned uniform linear motion model is selected
to calculate R (tm).

Consider the scenario of target integration and detec-
tion shown in Fig. 1, a target moves with uniform speed
v0 along the non-radial direction and the initial radial slant
range between target and radar is R0, the initial angle be-
tween target motion direction and RLOS is θ0, and the in-
tegration time is tm. Hence, according to the conventional
algorithm, the R (tm) can be calculated as:

R(tm) = R0 − v0 cos θ0tm, (5)

then we can employ Eq. (5) to compute:

RM = −v0 cos θ0tm,DFM = 0. (6)

From Eq. (5), we can see clearly that the angle is set
to constant during coherent integration. Nevertheless, the

Fig. 1 Non-radial moving targets scenario.
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angle is changing, and it satisfies:

θ = arccos
2R0v0tm cos θ0 − 2v2

0t2
m

2v0tm
√

R2
0 + (v0tm)2 − 2R0v0tm cos θ0

. (7)

It is apparent that the angle is time varying and is re-
lated to R0, v0, and θ0. What is more, R (tm) varies non-
linearly with tm and produces NLRM and NLDFM, which
are inconsistent with the calculation of Eq. (5) and Eq. (6).
Thus, when dealing with non-radial moving targets, the
current methods have errors in calculating R (tm) due to
the wrong assumption, and the uncompensated NLRM and
NLDFM will bring significant problems to coherent integra-
tion.

3. Coherent Integration Based on ARFT

In this section, a method called ARFT is proposed to realize
the coherent integration for non-radial moving targets.

3.1 Variant Angle Model

As the analysis in Sect. 2, we know that the non-radial mov-
ing targets generate NLRM and NLDFM and inevitably im-
pact the performance of conventional methods. To address
this problem, we introduce a modified motion model with a
variant angle and the geometric diagram as shown in Fig. 2.

In this model, the angle namely θ (tm) is set as a new
parameter which is varying with tm during integration. Thus,
we can use the cosine theorem to rewrite the equations of
R (tm) as:

R(tm) =

√
R2

0 + (v0tm)2 − 2R0v0tm cos θ0, (8)

then RM and DFM are derived as follows:

RM =

√
R2

0 + (v0tm)2 − 2R0v0tm cos θ0 − R0,

DFM =
2v0 [cos θ(tm) − cos θ0]

λ
, (9)

λ is signal wavelength. Compared with the traditional
model, Eq. (8) and Eq. (9) match the real motion of the tar-
get. Hence, R (tm) can be estimated more accurately thanks
to the introduction of θ (tm) and it makes preparation for cor-
rection of NLRM and NLDFM.

Fig. 2 Modified variant angle model for non-radial moving targets.

3.2 Correction and Integration

After optimizing the target motion model using variant an-
gle, we apply Eq. (8) into Eq. (4) produce:

spc (tk, tm) =

A1sinc

B tk − 2
√

(R0)2 + (v0tm)2 − 2R0v0tm cos θ0

c


exp

− j
4π

√
(R0)2 + (v0tm)2 − 2R0v0tm cos θ0

λ

 . (10)

The NLRM and NLDFM showed in Eq. (10) must be
corrected to realize coherent integration. Inspired by RFT
which utilizes 2D searching of range-velocity to compensate
RM and DFM, we consider the method of multidimensional
unknown motion parameters searching, extracting target en-
velope and constructing filter array to deal with NLRM and
NLDFM. Precisely for this problem, it is obvious that R (tm)
relates to R0, v0, and θ0. Thus, except R0, v0 which have
been taken into account in original RFT, it must also add the
search of θ0 on this basis to describe R (tm) in Eq. (8) more
precisely. Note that the range-velocity 2D searching of RFT
should be promoted to range-velocity-angle 3D searching,
and we called the modified RFT with the search of angle
ARFT. The process of ARFT can be formulated as follow:

G(r, v, θ) =∫ T

0

∫ tp

0
spc (tk, tm) δ

tk − 2
√

r2 + (vtm)2 − 2rvtm cos θ
c


Hrvθ (tm) dtkdtm, (11)

where G denotes the coherent integration result of ARFT,
T is total integration time, r, v, and θ are the search value
of the initial range, velocity and angle respectively, δ(t) is
the impulse function and Hrvθ(tm) represents Doppler filter
function which is defined as:

Hrvθ(tm) = exp


j4π

√
R2

0 + (v0tm)2 − 2R0v0tm cos θ0

λ

 .
(12)

As shown in Eq. (11), δ (tk) serves to extract the target
from the fast time-slow time domain and concentrate signal
energy into one range cell, which can estimate NLRM. On
the other hand, Hrvθ(tm) plays a role in compensating the
phase fluctuation, which can correct NLDFM. Therefore,
ARFT is implemented by search within a specific scope and
only when r = R0, v = v0, θ = θ0, NLRM and NLDFM are
completely compensated, and the maximum value of coher-
ent integration Gmax = A1T is obtained.

In addition, the search scope and interval of target un-
known motion parameters are crucial for the effective im-
plementation of ARFT. Generally, the search scope is de-
termined by the radar detection task. Assuming that the
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Fig. 3 Sketch map of parameter search scope.

task of the radar is to detect the target within the red sector
area in Fig. 3, the search scope of ARFT is r ∈ [rmin, rmax],
v ∈ [vmin, vmax], θ ∈ [θmin, θmax].

While the search interval is related to the signal and
system parameters, specifically, the range search interval
∆r = c

2 fs
, fs is the signal sampling frequency; the veloc-

ity search interval ∆v = λ
2T ; the angle search interval sets

as 3 dB beam width of antenna, ∆θ = 0.89 λ
D , where D is

the antenna aperture. Then, the range, velocity, and angle
search amount Nr, Nv, Nθ can be calculated as follows:

Nr = round
( rmax − rmin

∆r

)
,Nv = round

(
vmax − vmin

∆v

)
,

Nθ = round
(
θmax − θmin

∆θ

)
, (13)

where round
( )

denotes the integer operator.
Thus, ARFT can be further expressed as:

GARFT = max
r,v,θ

∫ T

0
spc

2
√

r2 + (vtm)2 − 2rvtm cos θ
c

, tm


Hrvθ (tm) dtm,
r = rmin + nr∆r, nr = 1, 2, . . . ,Nr.

v = vmin + nv∆v, nv = 1, 2, . . . ,Nv.

θ = θmin + nθ∆θ, nθ = 1, 2, . . . ,Nθ. (14)

The flowchart of the ARFT can be summarized as
shown in Fig. 4:

According to the analysis, ARFT is one of the op-
timized coherent integration methods of RFT. Like RFT-
based methods, ARFT also extracts echo signals from the
fast time-slow time domain via parameters searching, but
the target motion model is different. Hence, it is necessary
to make a comparison between ARFT and RFT-based meth-
ods.

We can reconsider Eq. (8) and take Taylor series expan-
sion of it:

R (tm)=R0−v0 cos θ0tm+
v2

0

(
1−cos2 θ

)
2R0

t2
m+

∑
n=3

R′(n)(0)
n!

tn
m,

(15)

on the contrary, RFT calculate the R (tm) as Eq. (5). And

Fig. 4 Flowchart of the proposed method.

Fig. 5 Extraction results of RFT, GRFT, ARFT and real target trajectory.

second-order algorithm i.e., GRFT calculate the R (tm) as:

R (tm) = R0 − v0 cos θ0tm +
1
2

a0 cos θ0t2
m, (16)

where a0 = v2
0/R0 is target acceleration. Different mod-

els make different results of signal extraction. For com-
parative analysis, we set a non-radial moving target with,
R0 = 100 km, v0 = 1000 m/s, θ0 = 120◦, and the extraction
results of RFT, GRFT, ARFT and the real target trajectory
are shown in Fig. 5:

We can see that RFT and GRFT respectively use a line
and parabola to extract signals inconsistent with the target
real motion state, while ARFT applies a curve with the an-
gle to extract signal correctly. Similarly, the phase compen-
sation functions of RFT and GRFT also have errors, while
ARFT can accurately match the target phase. This theo-
retically explains why the proposed algorithm is more uni-
versal for non-radial moving targets than other RFT-based
algorithms.

3.3 Coherent Integration Time Comparison

We can obviously find that Eq. (5) and Eq. (16) are first-
order and second-order expressions of Eq. (15) after ignor-
ing the higher-order term. This simplification must have
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Fig. 6 Limitation of integration time.

Fig. 7 Comparison of coherent integration time.

approximation errors, which inevitably provoke the loss in
coherent integration, we call it model loss, namely L. As-
suming that the initial SNR is S 0 and the gain of coherent
integration is g. Thus, the output SNR is S 0 + g − L. To
successfully detect the target, S 0 + g − L ≥ D0 must be met,
where D0 is minimum detectable SNR. In other words, there
must be:

L ≤ S 0 + g − D0. (17)

Unfortunately, L increases with integration time, and when
it cannot satisfy the Eq. (17), target detection will fail.
Therefore, the integration time constraint relationship can
be summarized as Fig. 6:

Note that D0 determines the maximum allowed value
of L, and L limits the maximum integration time. What is
more, we discuss the scene in Fig. 7:

As shown in Fig. 7, a target is moving at a uniform
speed v, R (t0) and R (tm) respectively denote the initial
and instantaneous slant range between the radar and target,
∆R = R (tm) − (R0 + v0t cos θ0) is the approximate errors of
conventional methods, i.e., RFT and GRFT. ∆Rmax is the
maximum tolerable, which must obey ∆R ≤ ∆Rmax at any
time. Thus, when ∆Rmax is determined, then the maximum
integration time, namely tL is determined. Accordingly, as
shown in Fig. 7, the maximum coherent integration time of
conventional methods is limited to tL. On the contrary, the
proposed algorithm can coherently integrate tP. Although
like tL, both of them are limited by the target motion state,
and the integration time will be shortened when the target
no longer maintains a uniform linear motion. But tP is not
limited by the variation of flight angle, thus it is significantly
longer than tL.

Table 1 Comparison of computational complexities.

Table 2 Simulation parameters.

3.4 Computational Complexity Analysis

Assume that Nr, Nv, Na, Nθ, M respectively represent the
number of searching range, searching velocity, searching
acceleration cells, searching angle, and integration pulses
number. The computational complexities of RFT, GRFT,
and the proposed method are analyzed in Table 1.

Table 1 illustrates that the proposed ARFT has compa-
rable computational complexity to GRFT since they are both
3-D parameters search. Compared with ARFT and GRFT,
the computational complexity of RFT is lower since it only
performs 2-D searching. Thus, the proposed method has no
superiority in terms of computation.

4. Numerical Experiments

In this section, several numerical simulations are conducted
to analyze the coherent integration performance and detec-
tion probability of the proposed method for a maneuvering
target with uniform velocity in a non-radial direction under
the Gaussian noise environment. The results of MTD, RFT,
and GFRT are also given for comparison.

4.1 Coherent Integration for Weak Target

To begin with, we evaluate the coherent integration for a
weak target, where the simulation parameters are given in
Table 2.

Figure 8(a) shows the signal after pulse compression,
illustrating that the target is completely buried in the noise.
To clearly show the target’s trajectory, the signal after pulse
compression without noise is given in Fig. 8(b), and it can be
seen that serious NLRM is due to the high speed and vari-
ant angle. Without eliminating NLRM and NLDFM, MTD
fails to detect the target, which is shown in Fig. 8(c). More-
over, the coherent integration results of RFT and GRFT,



670
IEICE TRANS. COMMUN., VOL.E105–B, NO.5 MAY 2022

Fig. 8 Coherent integration for a weak target via MTD, RFT, GRFT, and ARFT. (a) Result after pulse
compression. (b) Result after pulse compression without noise. (c) MTD (d) RFT (e) GRFT (f) ARFT
in range-velocity domain (g) ARFT in angle domain.

respectively shown in Fig. 8(d) and Fig. 8(e), are ineffec-
tive due to integration loss caused by the mismatch be-
tween model and target. Instead, Fig. 8(f) and Fig. 8(g) show
the result of the proposed method in range-velocity dimen-
sions (θ0 = 95.71◦) and angle dimension (r0 = 100.5 km,
v0 = 1000 m/s), respectively. We can obviously find that
the target energy is coherently integrated as one remarkable
peak, which implies better coherent integration ability for
weak targets.

4.2 Coherent Integration for Multiple Targets

When detecting multiple targets, ARFT adopts an iterative
solution based on Eq. (14), and the specific operations are as
follows:

(1) The first target result is obtained by searching the
maximum value according to the ARFT algorithm, and
the detection is completed combined with Constant False-
Alarm Rate (CFAR) detector for detection. (2) The first tar-
get is removed from the search grid, and then ARFT is used
to search the next target. CFAR is also used for detection.
(3) Repeat the above process until there is no target in the
CFAR detector result, and it is considered that multiple tar-
gets detection has been completed.

To prove the validity of the proposed method for mul-
tiple targets’ coherent integration, two non-radial moving
targets are analyzed in the experiment, and the motion pa-
rameters of the targets are listed in Table 3. To prove the
validity of the proposed method for multiple targets’ coher-
ent integration, two non-radial moving targets are analyzed
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Fig. 9 Coherent integration for a weak target via MTD, RFT, GRFT, and ARFT. (a) Result after pulse
compression. (b) Result after pulse compression without noise. (c) MTD (d) RFT (e) GRFT (f) ARFT
in range-velocity domain (g) ARFT in angle domain.

Table 3 Motion parameters of targets.

in the experiment and the motion parameters of the targets
are listed in Table 3.

Figure 9(a) shows the result after pulse compression.
Besides, Fig. 9(b) and Fig. 9(c) respectively show the range-
velocity search results of target A and target B via ARFT.
We can clearly see targets emerge from the noise and form
two sharp peaks, which are helpful for target detection. As
shown in Fig. 9(d) and Fig. 9(e), two obvious peaks ap-
pear in the corresponding angle domain and demonstrate
the availability of the proposed method for multiple targets.
What is more, the peak values indicate the estimated mo-
tion parameters of target A and target B equal to simulation
settings.

4.3 Targets Detection Ability

Furthermore, the target detection ability of MTD, RFT,
GRFT, and proposed ARFT have been investigated by
Monte Carlo trials. Complex white Gaussian noise with
zero mean is added to the signal after pulse compression
to yield SNRs varying from −25 dB to 15 dB. And for each
SNR value, 1000 simulations are performed. We combine

the CFAR detectors and the four methods as corresponding
detectors. Besides, the false alarm ratio is set as P f a = 10−2.
Other parameters are the same as Table 2 and the integra-
tion time is 1 s. The curves of detection probability (Pd) are
shown in Fig. 10.

According to the results, for Pd > 90%, the needed
minimum SNR of MTD, RFT, GRFT, and ARFT is respec-
tively 10 dB, 6 dB, −15 dB, −20 dB. Thus, other methods
suffer from obvious detection performance loss compared
to the proposed method. Moreover, when SNR=−19 dB,
the of MTD, RFT, GRFT, and ARFT are respectively 1%,
1%, 14%, and 97%. Hence, it is apparent that the pro-
posed ARFT is superior to MTD, RFT, and GRFT when
dealing with non-radial moving targets due to its variant an-
gle model to solve the NLRM and NLDFM.

4.4 Performance Analysis in Different Scenarios

As discussed above, the NLRM and NLDFM are related to
the integration time, target velocity, and initial angle. Thus,
in the following subsection, we separately change time, ve-
locity, angle and analyze the detection probability of the
RFT, GRFT, and ARFT to compare the stability and robust-
ness under different conditions. Monte Carlo experiments
are conducted and for each value, 1000 independent simula-
tions are performed. Parameters of radar are given in Table 2
and the SNR after pulse compression is −20 dB.

First, curves in Fig. 11 show the result of the three
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Fig. 10 Detection probability varying with SNRs.

Fig. 11 Detection probability varying with integration times.

methods under different integration times, which vary from
0.5 to 5 s. Note that the initial range, initial velocity, and
initial angle of the non-radial moving target are 100.5 km,
1000 m/s, and 95.71◦. It can be seen that the performance
of RFT and GRFT is close to ARFT since the beginning.
Nevertheless, when the time rises to a certain degree, they
do not increase but fall rapidly. This is because their models
have integration loss which is more severe with the increase
of time, reflecting the time limitation of the conventional
methods for long-time integration of non-radial moving tar-
gets. In contrast, the Pd of ARFT steadily improves with
integration time thanks to the modification of the model.

Next, we evaluate the detection ability varies with ini-
tial target velocities, and the result is shown in Fig. 12. In
addition, the initial range and initial angle of the non-radial
moving target are 100.5 km, 95.71◦ and the integration time
is 1 s. From Fig. 12, we can see that when v0 = 0, the four
methods have identical performance because a stationary
target does not cause NLRM and NLDFM. While, with the
increase of velocity, MTD, RFT, and GRFT decrease suc-
cessively due to the unprocessed NLRM and NLDFM. On
the other hand, the Pd of ARFT is consistently above 95%,
maintaining good performance.

Finally, Fig. 13 shows that the fluctuation of Pd varies
with angles. Besides, the initial range and initial angle of
the non-radial moving target are 100.5 km, 95.71◦ and the

Fig. 12 Detection probability varying with target velocities.

Fig. 13 Detection probability varying with initial angles.

integration time is 1 s. It is obvious that Pd of MTD is al-
most zero, while RFT, GRFT are close to ARFT at first,
whereas they suddenly drop with the increase of angle. On
the contrary, Pd of ARFT stables at a high level. This is be-
cause when the angle is slight, the target motion model can
be regarded as a radial model. Furthermore, the NLRM and
NLDFM are approximately RM and DFM, thus RFT and
GRFT can be effectively performed. Unfortunately, as the
angle increases, these methods are gradually invalid.

Consequently, through the above three groups of ex-
periments, it is proved that the ARFT has good stability and
practicability for detecting non-radial moving targets.

5. Conclusions

To address the NLRM and NLDFM induced by non-radial
moving targets, this paper proposed a method called ARFT.
Specifically, ARFT modified the target motion model via
changing the angle between target motion direction and
RLOS from original constant to variable and adopted mo-
tion parameters searching of range-velocity-angle based on
RFT to compensate for the NLRM and NLDFM. Compared
with conventional methods, i.e., MTD, RFT, and GRFT, the
proposed method can: (a) achieve more satisfactory integra-
tion performance for weak targets because the limitation of
integration time has been eliminated by the introduction of
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variant angle; (b) obtain better target detection ability for
non-radial moving targets due to the precise and meticulous
motion model. Meanwhile, the simulation results demon-
strated the availability of the proposed method. Moreover,
we will focus on the long-time coherent integration of ma-
neuvering non-radial moving targets with acceleration or
curve trajectory in the subsequent work.
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