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SUMMARY In this paper, we report the recent progress in visible
light positioning and communication systems using light-emitting diodes
(LEDs). Due to the wide deployment of LEDs for indoor illumination, vis-
ible light positioning (VLP) and visible light communication (VLC) using
existing LEDs fixtures have attracted great attention in recent years. Here,
we review our recent works on visible light positioning and communication,
including image sensor-based VLP, photodetector-based VLP, integrated
VLC and VLP (VLCP) systems, and heterogeneous radio frequency (RF)
and VLC (RF/VLC) systems.
key words: visible light positioning, visible light communication

1. Introduction

In recent years, the wide-spread LED lamps for illumination
purposes provide functional devices for signal modulations
and imaginations of new communication and positioning
approaches. Unlike the radio frequency (RF) communica-
tion approaches, visible light has little influence on sensitive
electronic equipment. Hence, visible light based systems are
compatible with scenarios like aircraft, hospital, airport, un-
derwater and underground which requires communication
and positioning facilities with stability concerns. Visible
light based positioning (VLP) and visible light communica-
tion (VLC) systems have been researched widely in the past
two decades from the basic principle level towards hybrid
system and mixed fields with deep learning, reinforcement
learning, and robotics [1], [2].

On the one hand, VLC has been envisioned as one of
the key enabling technologies for the six-generation (6G)
communication systems, due to its inherent advantages such
as huge and unregulated spectrum, low-cost front-ends, and
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no electromagnetic interference (EMI) radiation [3]. The re-
search on VLC has been mainly focused on the hardware de-
velopments such as high-bandwidth LEDs [4]–[6], spectral-
efficientmodulation schemes like orthogonal frequency divi-
sion multiplexing (OFDM) [7]–[9], multiple-input multiple-
output (MIMO) transmission [10]–[12], multiple access ap-
proaches [13]–[15], multi-cell networking [16], [17], etc.
On the other hand, the development on VLP systems has
less concerns on bandwidth but more focuses on the posi-
tioning algorithms and hardware setups. There are many
positioning algorithms adopted in VLP systems, including
received signal strength (RSS) [18]–[20], time difference of
arrival (TDOA) [21], [22], and phased difference of arrival
(PDOA) [23]–[25]. Moreover, there are generally two types
of receivers that have been widely used in VLP systems, i.e.,
image sensor such as mobile phone camera [26], [27] and
photodetector (PD). Recently, machine learning based ap-
proaches (e.g., gradient boost tree, kernel ridge regression,
etc.) have also been introduced in VLP systems to boost
the position solving speed and reduce intensity model based
errors [20], [28]–[30].

Besides individual VLC and VLP, the integration of
VLC and VLP for simultaneous communication and posi-
tioning has also been proposed and investigated in the liter-
ature [31]–[37]. In addition, hybrid RF and VLC (RF/VLC)
systems have been further designed to achieve full-coverage
bidirectional communications [38]–[44].

In this paper, we present a comprehensive review of our
recent works on visible light positioning and communica-
tion. The rest of the paper is organized as follows. Section 2
describes the fundamental principle of visible light position-
ing and communication. Our recent works are reviewed in
Sect. 3, including image sensor-based VLP, PD-based VLP,
integrated VLCP and heterogeneous RF/VLC systems.

2. Principle

Visible light communication and positioning systems have
both shared and individual components. In one way, they
are compatible with each other in sharing transmitters (LED
lamps) and receivers (photo-detectors, PDs), however dif-
ferent in algorithms and compete in resources in the other
way. VLC and VLP systems usually have limited coverage
in a single unit and such small coverage requires multiple
VLC/VLP units to ensure full coverage. Here we only dis-
cuss on the setup of a individual VLP unit.

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers
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2.1 Modulations on LED Lamps

LED lamps consist of LED chips, and hence the fundamental
limitations in modulation are born here. Most off-the-shelf
white LED chips are based on phosphor stimulated by blue
LED chips. Phosphor white LED chips are cheaper in price
but havemuch smaller bandwidth comparingwith RGBLED
chips. It is also worth noticing that the LED chip with a
smaller size usually has a higher bandwidth. Besides the
chip itself, the connection of LED chips and driving circuits
is also vital for determining the modulation bandwidth.

As the signal latency of LED chips is influenced by
its inherent inductance, serial connection of the LED chips
shall usually induce higher latency than parallel connection
as the inductance is reduced. Moreover, the serial connec-
tion of LED chips can increase the voltage operation range of
the LED lamp, while parallel connection of LED chips will
increases the operating current range of the LED lamp. In
actual experiments, voltage is usually monitored and hence
a larger range of operating voltage towards individual LED
lamp is preferred. One way of increasing voltage and re-
ducing the latency is to connect LED chips with a mixed
connection by parallel several serial connected LED chips
to control both voltage range and frequency response. The
modulation of LED lamps is intensity based modulation on
the envelope of a light-wave carrier, which is visible light in
this case. The modulation of LED lamps is directly from its
driving circuit, which is one kind of internal modulation.

As shown in Fig. 1, the modulation of an LED lamp
requires the following components: DC source, AC source,
Amplifier, Bias-Tee, and the LED lamp. In some designs,
several LED lamps can share the same DC or AC sources.
DC source is used to maintain the operation of modulation
at the linear region of the LED lamps. The linear range of
LED lamps (V-I and I-P curves) are different and have to be
tested to have the exact working range. The nonlinearity of
modulation will induce high harmonic components, which
create interference and reduce the bandwidth of modulation.
The linear range of the input voltage is usually the limit
of the modulation depth, and the larger modulation depth
results in higher signal quality. Signal generator provides the

Fig. 1 Hardware of modulation on the LED lamp.

AC source which is usually low in power. Hence, a power
amplifier is usually applied to amplify the driving power.
In consideration of modulation frequency, the pass band of
bias-tee and amplifier should be aligned. The frequency
response of LED lamps should be considered in the design,
as a lower frequency usually has a higher response to the
input signal.

2.2 Visible Light Receivers

There are typically two types of sensors for visible light
based systems as the receiver: one is the image sensor and
the other is the PD.

Image sensors are well known and used these days,
which provide a low-frequency response towards the light
signal usually below 20 kHz. The frame rate of the image
sensor is usually less than 120 fps, and the data collected are
digital and array-like pixels. From image sensors, the shape
and rough intensity of the lamps can usually be extracted.
Moreover, the rolling shutter effect is conventionally utilized
to enable a low-speed communication. Meanwhile, PDs can
respond to a relatively higher range of frequencies from a
few kHz to hundreds of MHz levels. The output of a single
PD is normally an analogue serial signal. Digitization is
usually required before performing digital signal processing
(DSP) algorithms.

2.3 Summary of Positioning Algorithms

Image sensor is usually a cost-efficient solution for VLP
systems, and imaging theory is the basic principle of image
sensor-based VLP system. Conventionally, at least three
LED lamps with known locations are required to uniquely
define the location of the image sensor:


u1 u2 u3
v1 v2 v3
w1 w2 w3

 = [R θ]


x1 x2 x3
y1 y2 y3
z1 z2 z3
1 1 1

 , (1)

whereR is the rotationmatrix, (xi, yi, zi) is the location of the
i-th LED lamp in the actual world, (ui, vi, wi) is the location
of the i-th LED lamp in the image space, and θ is the spacial
transform (i.e., the position estimation) between the LED
lamps in the actual world and the image space [27].

Fig. 2 Overview of VLP systems.
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Table 1 Comparison of VLP positioning algorithms.
Algorithm Complexity Stability Accuracy Notes State-of-the-Art works

AOA Medium High− Medium+ FOV limited by image sensor 1 cm error in 1m × 1m 2D space [45]
RSS Low Low Low+ Sensitive to rotations 3 cm error in 0.5m × 0.5m × 0.4m 3D space [28]
TDOA Medium+ Medium Medium Differentials increase computations 9 cm error in 1.2m × 1.2m 2D space (a quarter) [22]
PDOA Medium− High High− Sampling rate lower then TDOA 2 cm error in 1.0m × 1.2m 2D space (a quarter) [24]

To solve the 3D position in the actual world, the
Levenberg-Marquardt (LM) solver is conventionally used
to minimize the error of the following equation:

E =
3∑
i=1
‖(ui, vi, wi)

T − R(xi, yi, zi)T − θ)‖2F . (2)

Compared with image sensor, PD can provide a much
larger modulation bandwidth and intensity sensitive range,
and hence it can enable time and intensity based positioning
solutions. Received signal strength (RSS) is the conventional
solution of intensity based VLP. The intensity is related to
the distance and angle between the LED lamp and the PD:

RSSi =
(mi + 1)A

2πd2
i

cosmi (ϕi) cos(Ψi)Pi, (3)

where Pi is the optical power of the i-th LED lamp and
RSSi is the corresponding signal strength received by the
PD. mi is the Lambertian order of the illumination model of
the i-th LED lamp. di , ϕi and Ψi are the relative distance,
transmitting and receiving angles between the i-th LED lamp
and the the PD, respectively. A is the effective area of the
PD receiver. A set of at least three LED lamps can uniquely
identify the location of the receiver (i.e., PD) relative the the
LED lamps.

Besides using the intensity information, time of arrival
(TOA) can also be utilized which exploits the time informa-
tion contained in the transmitted optical signals. The ToA
approach requires synchronization between the LED lamps
and the PD. The transmission distance can be calculated by

di = c(TOAi + ti), (4)

where di and TOAi are respectively the distance and time of
flight (TOF) between the i-th LED lamp and the PD, while
ti is the calibration term as the time synchronization should
be performed and calibrated with a constant for individual
lamp. Moreover, c is the speed of light.

Both RSS and TOA approaches are aimed to obtain the
absolute distance (di) between the LED lamps and the PD.
Given the distance measurements between the LED lamps
and the PD, the position of the PD can be solved as follows:

di =
√
(xi − x)2 + (yi − y)2 + (zi − z)2, (5)

where (xi, yi, zi) is the pre-measured location of the i-th LED
lamp and (x, y, z) is the location of the PD. With the assump-
tion that LED lamps are mounted in the ceiling, solving
the position (x, y, z) requires just three equations from three
different LED lamps.

The TOA approach requires synchronization between
the LED lamps and the PD, which introduces the extra con-
nections between the LED lamps and the PD. Hence, time
difference of arrival (TDOA) is proposed to release the situ-
ation by taking the signal transmitted as reference with each
other, and one more LED lamp is usually required to solve
the location of the PD:

di − di+1 = c(TOAi − TOAi+1) = cT DOAi, (6)

where T DOAi is the TDoA measurement between the i-th
LED lamp and the i+1-th LED lamp. It can be observed that,
compared with TOA and RSS, the solution of (x, y, z) relies
on solving a fourth-order equation. Geometrically speaking,
it is the intersection between three hyperboloids. Hence,
four LED lamps are required in a single PD receiver setup to
solve a unique solution of the PD.

Among these four major types of positioning algo-
rithms, the least complexity is achieved by RSS. Using only
intensity measurements makes it sensitive to rotations and
disturbances, but also fast in calculations. The accuracy
of angle-of-arrival (AOA) approach relies on the resolution
of image sensor and image quality. Image processing and
decoding increase the computational complexity naturally.
The coverage of AOA system depends on the field-of-view
(FOV) on both LED lamps and image sensor. TOA is the
least recommended approach, who requires synchronization
between transmitters and receiver. Synchronizations pose
high hardware complexity and introduce noises to the posi-
tion calculations. TDOA requires only the synchronization
among the transmitters, which is much easier to achieve in
practical implementations. A brief comparison of various
positioning algorithms is summarized in Table 1, where sta-
bility describes the positioning robustness against various
disturbances such as power variations, jolts/tilts of the re-
ceiver, partial blockages of the view, and so on.

3. Review of Our Recent Works

In this Section, we perform a detailed review of our recent
works on visible light-based positioning and communication
systems. Figure 3 illustrates the relationship of our recent
works which will be discussed in the following. First of
all, two categories of VLP systems are introduced, including
both image-sensor-based and PD-based VLP systems. After
that, an integrated VLCP system is described, which can
realize simultaneous communication and positioning based
on the same visible light LEDs. Last but not least, an in-
door heterogeneous RF/VLC system is discussed, which can
provide bidirectional full-coverage indoor connectivity by
integrating RF communication and VLC together.
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3.1 Image Sensor-Based VLP

3.1.1 Image Sensor-Based VLPwithMultiple LED Lamps

In conventional image sensor-based VLP systems, iteration-
based solvers such as Levenberg-Marquardt (LM) and New-
ton solvers are generally adopted to solve the non-linear
least-square (NLLS) positioning problems. Nevertheless,
the iteration-based solvers are very sensitive to the initial
guesses and a bad guess might result in a long response
time and a large positioning error. In order to speed up
the positioning process and enhance the robustness, we have
proposed and experimentally demonstrated an image sensor-
based VLP system with three LED lamps using a singular
value decomposition (SVD)-based non-iterative positioning
algorithm in [46].

Based on the LED lamps projection model illustrated in

Fig. 3 The relationship of our recent works in Sect. 3.

Fig. 4 Image sensor-based VLP with three LED lamps using a SVD-based non-iterative positioning
algorithm: (a) LED lamps projection model, (b) experimental setup, (c) CDF of 3D positioning error
at two layers, and (d) comparison table of accuracy and robustness of LM & SVD based positioning
algorithms.

Fig. 4(a), the positioning process can be considered as a 3D
point fitting problem, and hence the low-complexity SVD-
based non-iterative positioning algorithm can be applied to
obtain the receiver’s position and orientation. Let NLED

denote the number of LED lamps adopted in theVLP system.
Defining the centroid coordinates of three objects and their
image points as two vectors P0 and P′0:

P0 =
1

NLED

NLED∑
i=1
(xi, yi, zi)T , (7)

P
′

0 =
1

NLED

NLED∑
i=1
(ui, vi, wi)

T , (8)

they should also satisfy P′0 = RP0 + θ. Based on P0 and P′0,
we further define the following two matrices:

Qi = (xi, yi, zi)T − P0, Q
′

i = (ui, vi, wi)
T − P

′

0 (9)

with i = 1,2, · · · ,NLED . Hence, by cancelling the transla-
tionmatrix θ, the square cumulative error (SCE) is calculated
by

E =
NLED∑
i=1
‖Q′i − RQi ‖

2
F . (10)

Here, Ropt should be found to minimize the error. Letting
Tr(·) denote the trace of a matrix, minimizing (10) becomes
minimizing (11):
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E =
NLED∑
i=1

Tr(2Q
′T
i RQi) = Tr(2RH), (11)

whereH =
∑NLED

i=1 QiQ′iT . The SVDofH can be expressed
by two orthonormal matrices V and U:

H = UΩVT , (12)

where Ω is a diagonal matrix. Thus, Ropt can be achieved
at: Ropt = VUT and the position can be estimated by:

θopt = P
′

0 − RoptP0. (13)

Figure 4(b) depicts the experimental setup of the image
sensor-based VLP system with three LED lamps, where the
three LED lamps are mounted on the floor for convenience
and the rear camera of a smartphone with a resolution of
about 40 Mega pixels is adopted as the receiver. Two posi-
tioning accuracy in two planeswith the heights of 120 cm and
160 cm are evaluated, where a total of 35 grid testing points
are deployed on each plane. Figure 4(c) shows the CDF of
the positioning errors for two heights. As we can observe,
the proposed system can achieve high-accuracy 3D position-
ing in centimeters in a practical environment. Moreover, it
can be observed from the Fig. 4(d) that the proposed SVD-
based non-iterative positioning algorithm achieves better or
at least the same positioning accuracy as the iteration-based
LM positioning algorithm. However, the iteration-based LM
positioning algorithm suffers from approximately 90 failures
out of 10000 runs, where a positioning failure is defined as
that the corresponding positioning error is larger than 50 cm,
while the proposed SVD-based non-iterative positioning al-
gorithm has no failures out of 10000 runs. Therefore, the
proposed SVD-based non-iterative positioning algorithmhas
much enhanced positioning robustness in comparison to the
iteration-based LM positioning algorithm.

3.1.2 Image Sensor-Based VLP with a Single LED Lamp

Due to the limited field of view (FoV) of smartphone cam-
eras, the sparse deployment of LED lamps and the potential
link blockage in practical indoor environments, it might be
difficult to ensure the requirement of using at least three LED
lamps for positioning. In order to address the limitation of
multi-LED positioning, we have proposed and experimen-
tally demonstrated an image sensor-based VLP system with
a single LED lamp in [47].

Instead of treating the LED lamps as point sources with
only location information, the geometric features of an LED
image can be fully exploited to realize single-LED position-
ing. More specifically, we adopt a common circular LED
lamp as the reference LED in the proposed image sensor-
based single-LED VLP system. By utilizing the geometric
features of the captured ellipse image including centroid, ma-
jor/minor axis length, major axis orientation, the receiver’s
pose and location relative to the reference LED lamp can
be successfully determined. Figure 5(a) depicts the circular
LED lamp with a a red marginal marker point on the x-axis,

which is placed on the x-y plane with its centroid being
coincided with the origin of the global coordinate system
(GCS). Figure 5(b) shows the projected ellipse image on the
i-j plane in the e receiver’s coordinate system (RCS). The
point (xn, yn) in the LED lamp plane has a corresponding
point in the image sensor plane (in, jn):[

in jn 0
]
= diag(s, s,0)

{
R

[
xn yn 0

]T
+ θ

]}
, (14)

where R is the rotation transform matrix between the LED
plane and the image plane, s is the size scaling factor between
the lamp in image and the actual lamp, and θ is the position
transformation between the LED plane and the image sensor.
Under the approximation of weak perspective projection, the
center of the circular lamp (O) is at the center of the eclipse
lamp image (E). The link OE passes through the center of
the camera lens and one diameter can be found in parallel to
the major axis of the eclipse in the image plane. Hence, the
scaling factor can be calculated by

s = a/r, (15)

where a is the length of the semi-major axis of the ellipse and
r is the radius of the circular LED lamp. To avoid circular
symmetry, a marker dot sticks to the lamp to determine (r,0)
in GCS. The rotation matrix is then R from the marker,
center, rightmost and upper most point pairs in both image
and lamp, as in Fig. 5. The location of the receiver (xr yr zr )
can be directly obtained by compute (14) with the marker
point pair. The detailed image processing workflow is given
in Fig. 5(c).

Figure 5(d) shows the experimental setup, where the
positioning accuracy is tested in an area of 3m × 3m and
the height of the single LED lamp is set to 1.5m and 2m.
Figures 5(e) and (f) show the circular LED lamp with a
red marker and the captured LED image with modulated
signal and a red marker, respectively. The CDF plot of the
3D positioning error is shown in Fig. 5(g). As we can see,
a centimeter-level positioning accuracy can be achieved in
proposed image sensor-based VLP with a single LED lamp.

3.2 PD-Based VLP

3.2.1 Reducing Complexity of TDOA-Based VLP and
PDOA-Based VLP

Despite of the commonly accepted fact that TDOA and
PDOA can achieve higher positioning accuracy than other
methods, higher complexity contributed by the adoption of
high-speed digitizer and local oscillators hinders the wide
application of TDOA-based and PDOA-based VLP. In the
year of 2017, we were committed to reducing the complexity
of TDOA and PDOA algorithm for VLP. Two representative
works were reported as below.

(1) PD-based VLP Using Low-Complexity TDOA

High complexity of TDOA-based VLP due to usage of real
local oscillator (RLO) and high sampling-rate digitizer for
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Fig. 5 Image sensor-based VLP with a single LED lamp: (a) the circular LED lamp with a marker in
the GCS, (b) the ellipse image of the circular LED lamp in the RCS, (c) image processing workflow, (d)
experimental setup, (e) circular LED lamp with a red marker, (f) captured LED image with modulated
signal and a red marker, and (g) the CDF plot of the 3D positioning error.

signal processing is always a big concern. In order to ad-
dress those two drawbacks, a practical TDOA-based VLP
algorithm was proposed in [22] by introducing virtual local
oscillator (VLO) and interpolation onto conventional corre-
lation operation.

The diagram of the TDOA estimation is illustrated in
Fig. 6(a). Different from the conventional TDOA estimator,
the proposed system adopts cross-correlation followed with
the cubic spline interpolation to measure the TDOA values,
hence easing the strict requirement of sampling rate onADC.
Moreover, the local signal for cross-correlation is proposed
to be from a software-defined VLO to further simplify the
TDOA estimation. Upon mixed signals from multiple LEDs
received, the narrow bandpass filters will extract the corre-
sponding carrier signals. Then, the carrier signals are sent to
the sync cutters and a peak locator simultaneously. The peak
locator finds the first peak of the accumulation of the carrier
signals within the first period. Then, the sync cutter behind
the filters on each carrier channel receives the original carrier
signal and cuts off a certain amount of sample points based
on the output from the peak locator. Last but not the least,
the correlator receives the trimmed signal and correlates it
with the virtual local signal. The remaining steps just follow
the conventional TDOA estimation. Likewise, the output of
the TDOA estimator is obtained by subtracting ti+1 from ti
that is output by the corresponding peak detector, which is

T DOAi =
1

Sp
· (argmax

n
(Ri+1(n)) − argmax

n
(Ri(n))).

(16)

The cross-correlation sequence of i-th carrier signal from
the i-th LED is denoted by Ri(m) with the displacement of
n, and Sp represents the sampling rate.

The proof-of-concept system is implemented as illus-
trated in Figs. 6(b) and (c), respectively. Three LED trans-
mitters (Lumileds Rebel white LED) are mounted on fake
ceiling in a height of 2.2m. The carrier frequencies allocated
to three transmitters are 4, 4.2 and 4.4MHz, respectively.
The carriers generated from a waveform generator (Tabor
WW2074) are amplified before they are used to drive the
LEDs. The receiver is composed of an photodetectormodule
(Hamamatsu C12907) attached with a blue filter, a digitizer
and a personal computer (PC). As shown in Fig. 6(c), the
coordinate system follows the left-thumb rule with its origin
on the drilling hole at the edge of the fake ceiling.

To further save consumption resources as much as pos-
sible while maintaining the system performance, parameter
optimization is conducted on the data length for correlation
and the interpolation factor. As shown in Fig. 6(d), the po-
sitioning error decreases only with the combination of the
physical sampling rate and the interpolation factor. There-
fore, the positioning accuracy under significantly different
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Fig. 6 Low-complexity TDOA based VLP system: (a) proposed TDOA estimator with VLO and inter-
polator, (b) signal flow in the experiment, (c) experimental setup, positioning errors vs. (d) interpolation
factor and (e) data length for correlation, (f) experiment results and (g) CDF of positioning errors.

physical sampling rate can still be comparable to each other
only if the multiplication of the physical sampling rate and
the interpolation factor are at the same level. After the multi-
plication value of the physical sampling rate and the interpo-
lation factor reaches 50GSa/s, the decrease of the positioning
error becomesminor. It can be inferred that the enhancement
from interpolation has an upper limit. This is understand-
able because the measured time-of-flight itself inherently
contains the digitization error and noise from practical hard-
ware settings, which can not be perfectly compensated. As
such, it is safe to set the multiplication of the physical sam-
pling rate and the interpolation factor as 50GSa/s, and under
this constraint, the optimal combination of the physical sam-
pling rate and the interpolation factor should be 500MSa/s
and 100 for the VLP system to reduce the physical sampling
rate. Furthermore, we also consider the positioning error at
90% confidence versus the data length for correlation under
500MSa/s and an interpolation factor of 100, in order to
derive the acceptable minimum data length for correlation.
As shown in Fig. 6(e), the positioning error increases with
decrease of the data length. A critical value can also be
found, below which the corresponding error is dramatically
increased. As observed in Fig. 6(e), dramatic increase of
positioning error occurs near 250k samples when the data
length reduced from 1000k samples to 50k samples. As
such, the acceptable minimum data length can be as low as

250k sample points.
Figure 6(f) depicts the overall accuracy in a coverage

area of 1.2×1.2m2 with the sampling rate of 500MSa/s. The
average positioning accuracy of the proposed TDOA-based
VLP system is less than 10 cm. Each position ismeasured for
25 times to assure the precision of the measurements. Since
the positions of the LEDs are at the edge of the tested cover-
age shown in Fig. 6(f), a similar performance at the opposite
area can be expected. Hence, a much larger coverage of
at least 2×1.2m2 can be achieved for the demonstrated sys-
tem. Figure 6(g) depicts the cumulative distribution function
(CDF) curves of the positioning errors shown in Fig. 6(f).
The positioning error is less than 18 cm at the confidence
of 95% and the average positioning accuracy is 9.2 cm. In
addition, the proposed system using VLO has slightly higher
positioning accuracy than that using RLO, as per Fig. 6(g).
The root cause is actually from the ways of experiment con-
duction. Since the RLO is mimicked in the demonstration
by means of transmitting a real local signal via a cable from
the waveform generator to the digitizer, the impedance of
the cable slightly changes with the bending and rotation of
the cable, hence causing different initial TDOA at different
positions which are supposed to be constant. In conclusion,
the proposed TDOA-based VLP can successfully remove
RLOs and reduce required sampling rate, while still keeping
comparable positioning accuracy.
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Fig. 7 RSS-based VLP system using deep learning: Workflow of (a) offline preparation and (b) online
position estimation of the proposed VLP system, (c) Structure of proposed ANN, (d) Experimental
set-up, 3D Position estimation at heights of (e) 1.094 m, (f) 0.794 m and (g) 0.494 m, 2D horizontal
positioning error and vertical error at heights of (h) 1.094m, (i) 0.794m and (j) 0.494m, (k) Computation
time of position estimation for our proposition vs. the conventional 3D positioning method.

(2) PD-based VLP using DPDOA

Differential PDOA (DPDOA) was proposed by us in the year
2017 with the initial motivation of removing local oscillators
from the PDOA based VLP systems [24]. Local oscillator is
initially implemented to calibrate the pseudo synchronization
problem when using PDOAmethods. Strict synchronization
between transmitter and receiver is not required inTDOAand
PDOA systems, but the combined periodical signals in the
receiver end forms a periodical envelope. Also the starting
point of calculating these signals has to be fixed. Hence,
in TDOA and PDOA systems, a header is usually needed to
distinguish the start of the received signal. However, errors
in detecting the header is hard to avoid, which introduce
errors in position calculations.

The introduction of the headers poses limits in the time
resolution of the signals and hence the sampling rate of these
systems has to be above 1GSa/s. We introduce another fre-
quency combined with the lowest frequency modulated to
the same LED lamp to eliminate the pseudo synchronization
term mathematically. Eventually, no headers and pseudo
synchronization are required to perform PDOA, which re-
duces the hardware requirement to as low as 50 to 200MSa/s
sampling rate while maintain the same or even better posi-
tioning accuracy.

The transmitted signals are sine-waves of five frequen-

cies ωi (i = 1,2, · · · ,5), and these frequencies are equally
spaced (ωi = ω1 + (i − 1)∆ω). It is worth noticing that ω1
and ω5 are modulated to the same LED lamp while the other
three lamps have single frequency modulation. The received
signal from the PD is a summation of them based on the
distance and can be expressed in the following equation:

Rx =
∑5

i=1 RSSi × sin
(
ωi(t + ti + Tsample)

)
, (17)

where RSSi is the distance related RSS measurement, ti is
the time of flight between Li and the PD, and Tsample is
the difference between transmitters’ clock and the receiver’s
clock which is different at every collection of the signal. It
is worth noticing that t5 = t1 as ω5 is modulated to the same
LED lamp with ω1.

As Tsample is different at every measurement, PDOA
and TDOA based methods use headers to neutralize the term
by fixing the start point of sampling. Our proposed DPDOA
method neutralizes it theoretically through a double differ-
ential process. After filtering, the received sine-wave signals
of different frequencies are separated:

Rxi = RSSi sin(ωi(t + ti + Tsample)). (18)

It is known that multiplying two sinewaves of different fre-
quencies results in their frequency difference after filtering.
We perform the first difference using Dxi = Rxi × Rxi+1.
After filtering with a band-pass filter at ∆ω, we have:
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Fig. 8 Differential PDOA based VLP system: (a) DPDOA signal flow and a individual VLP unit,
(b) illustration of received positioning signals, (c) experimental DPDOA positioning results with and
without neural network (NN) based shifting corrections and Kalman Filter convergence, (d) shifting
errors, (e) evaluation of positioning RMS errors.

Dxi(t) =
RSSiRSSi+1

2
cos(∆ω(t + Tsample)

−ωiti + ωi+1ti+1).
(19)

Then we perform another differential using DDxi = Dxi ×
Dxi+1. This time a low pass filter is taken to obtain the term
without Tsample:

DDxi =
Ai A2

i+1 Ai+2

8
cos(ωiti + ωi+2ti+2 − 2ωi+1ti+1).

(20)

With the use of Hilbert transform, similarly DDsi =
Dxi × Hilb(Dxi+1) can be obtained. Hence, we can obtain
the distance differences from phase differences without the
need of accurate header extraction:

©«
ω1 −ω3 0
0 ω2 −ω4
ω5 ω5 ω5 + ω3

ª®¬ ©«
d1 − d2
d2 − d3
d3 − d4

ª®¬ = c ©«
Dph1
Dph2
Dph3

ª®¬ ,
(21)

where Dphi = arctan
(
DDsi
DDxi

)
and ti = di/c. The Dphi can

be obtained from the received signals, and then the distance
differences are computed for the final calculation of the 3D
position. With the reduced sample rate requirement, more
periods of signals can be obtained to further improve the
positioning accuracy.

The final position of the receiver (PD) can be calculated
from classical ways. The position estimations of DPDOA in
the quarter of our testbed is shown in Fig. 8(c). Large shift-
ing errors occur in the Y direction as shown in Fig. 8(d) up
to 40 cm at the far edge of the testbed. Such distortions of

the positioning space is concluded to be due to the imperfect
modelling of the phase and intensity distributions. Hence,
we further introduce theNNbased solution to perform distor-
tion calibrations. A NN of two hidden layers is implemented
to perform both the position estimation and distortion cor-
rection. The NN based DPDOA VLP experimental results
are shown in the bottom two sub-figures in Fig. 8(c). It
can be observed that the distortions of the testbed are largely
corrected especially at the edges of the testbed. To further re-
duce the variation of DPDOA based position estimations, we
implement Kalman filter to converge the positioning errors
based on the variation observed in the former estimations.
The converged position estimations reduce the overall errors
to as low as 5 cm, as shown in Figs. 8(d) and (e).

3.2.2 LeveragingMachine Learning (ML) to Improve VLP
Performance

With rapid development of machine-learning-based classi-
fication and regression that are able to benefit signal pro-
cessing in terms of both accuracy and processing time, we
have been striving to apply the latest machine-learning al-
gorithm into VLP since the year of 2018. Such data-driven
approaches can fill in the gap between the theoretical model
of PDOA or RSS and the complex actual environment, hence
advancing the practical usage of VLP.

(1) 3D RSS VLP using deep-learning-assisted trilateration

3D VLP using RSS currently has bottlenecks in two-fold.
The first is tedious calibration during deployment, the other
is lengthy computation time of position estimation. In or-
der to address those two issues, a practical 3D VLP system,
which retains the RSS-based ranging and further integrates
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deep learning to simplify the trilateration, is proposed in
[20]. In this way, the computation speed of the proposed
RSS-based VLP can be substantially increased with mini-
mum offline preparation work. The proposed RSS-based
VLP system is in the form of atto-cellular at the transmit-
ter side to realize a full coverage indoors where a certain
number of neighboring LED lamps are grouped into one
atto-cellular unit, adopting the frequency division multiple
access scheme. Unfortunately, the actual Lambertian order
mi is not close to the theoretical value. Particularly, each
LED lamp has slightly different values for mi . Hence, it
is necessary to perform the offline preparation to measure
mi using the reference positions with known coordinates.
Differing from the previous work [48]–[50], our proposed
offline preparation needs as minimum as two reference po-
sitions without details about the number or the transmitted
power of LEDs. The only condition is that the span of the
two reference positions should cover the localization area.

The workflow of the offline preparation is depicted in
Fig. 7(a). As we can see in Fig. 7(a), there are three steps
to fulfill the offline preparation, and the ultimate goal is to
obtain the corrected Lambertian order. In [20], we theoreti-
cally derived the formula and proved that only two reference
positions can help to calibrate the channel modelling well. In
this way, the corrected channel model can be very close to the
practical scenario. As such, the online position estimation
depicted in Fig. 7(b) can be more precise.

The deep-learning techniques are adopted to replace
the conventional process of trilateration. The structure of
the proposed artificial NN (ANN) is illustrated in Fig. 7(c).
The input of ANN is the set of RSS values measured from
all LED lamps, and the output is the desired position coor-
dinates. As shown in Fig. 7(c), there are three inputs of RSS
and three outputs corresponding to the coordinate (r1,r2,r3).
There are n hidden layers, and the activation function is de-
noted by f . The offline preparation is twofold. The first
stage is to use the two reference positions to obtain Lam-
bertian orders as in Fig. 7(b) to derive a calibrated channel
model. The second stage is to train the ANN using the
theoretical RSS values derived from the calibrated channel
model with known positions. The dataset for training herein
contains 80631 RSS samples along with the respective po-
sition coordinates. The locations of the samples form a grid
with 5-cm resolution in the space of 2.5×2.5×1.5m3. The
class of MLPRegressor from Scikit-learn library [51] and
the backpropagation algorithm is adopted for training. 70%
of the dataset is allocated for training, while 10% and 20%
of the dataset is used for validating and testing, respectively.
The learning rate is set as a constant value of 0.001.

Figure 7(d) is the photograph of the experimental setup.
Three LED (Lumiled LXK8-PW50-0016) lamps were used
as transmitters. They were installed on a horizontal panel
whose height is 2.2m. The power of each LED lamp was
9W (27W for one cell unit). The divergence angle was
120◦, and the modulation index was set as 0.5 to assure
LEDmodulation operated in the linear region. Provided that
the frequency response of the LED chips in our works is

less than 7MHz, we allocated carrier frequencies of 1MHz,
1.2MHz and 1.4MHz to three LEDs, respectively. The
carriers are generated from a signal generator (Spectrum
M4x.6622-x4) and amplified by the current boosters (Ana-
log Devices Inc. AD811 and Burr-Brown BUF634) be-
fore they are used to drive the LEDs. The receiver was
mounted on a trolley, which is consisted of an avalanche
photo-diode module (Hamamatsu S8664-50K), an oscillo-
scope (Tektronix MSO3102) and a laptop. As limited by
the experimental environment, we only select one quarter of
the illumination coverage of LED lamps to test. The area is
1.2×2m2. Considering the ceiling height, the 3Dpositioning
space is 1.2×1.2×2m3, and the actual coverage for practical
usage will be more than 3 times larger than tested herein.
During the experiment, 6 × 6 × 3 locations were estimated
(marked by red crosses in Figs. 7(e)–(g)). The heights of the
vertical layers in Fig. 7(e), (f), (g) were 0.494m, 0.794m and
1.094m, respectively.

It can be seen from Figs. 7(e)–(g) that most of the po-
sition estimations are close to the true positions. The po-
sitioning errors of those three heights are summarized by
Fig. 7(h), (i), (j) in terms of horizontal errors and vertical
errors. It is found that Z-coordinate is mostly worse than the
X-Y coordinate. 90% vertical error is not more than 12 cm,
which is still in an acceptable range. More importantly, the
processing of position estimation achieves 50 times faster
computing speed than the conventional system, as illustrated
by Figs. 7(k). In conclusion, the deep-learning-based posi-
tion estimator can easily fulfil the task of traditional estimator
with significantly faster speed. Regarding the computation
time, the deep-learning technique is superior over the tradi-
tional methods, but we need to acknowledge that more time
is involved during offline preparation. Fortunately, the extra
offline training hardly adds extra labor intensity, due to that
the training is autonomous and the parameters of the ANN
are constant for a completed deployment. In general, our
proposition is especially suitable for those scenarios where
zero-latency of positioning is needed.

(2) Hybrid RSS and DPDOA based VLP system using
ANN

The RSS-based VLC systems usually have good SNR but are
sensitive to all kinds of intensity disturbances from power-
line/driver of the LED transmitters, indoor channel and re-
ceiver power supplies. These disturbanceswill induce higher
positioning errors or even shifting.

As addressed formerly, we have implemented neural
networks for both RSS and DPDOA based positioning algo-
rithms with much faster position calculation speed, enabling
the computation for both RSS and DPDOA with the same
received signal at real time. Hence the variance based in-
tegration has been introduced to combine these results and
yield enhanced positioning accuracy and stability [52].

The positioning results are based on statistical selec-
tions. We propose a T-selection and a V-selection approach
for the hybrid system. The V-selection is based on the mea-
sured RSS variations as shown in the equation below:
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Fig. 9 Hybrid DPDOA based VLP system: (a) flowchart of the online and offline process of the hybrid
system, (b) RMS positioning error under different intensity variations, (c) CDF of different positioning
approaches under different intensity variations, (d) comparison of V and T selection under different
levels of random rotations.

V =

√∑N
n=1(RSSk ,n − RSSk)2/N

RSSk
, (22)

where RSSk ,n is the n-th measurement of RSS from the k-
th LED lamp at the total measurements of N times. The
variation factor V is based on the standard deviation of the
RSS measurements:

Poupuls =

{
PRSS V ≤ p%
PDPDOA V > p% . (23)

If the measured V factor is less than or equal to p%, RSS
is considered to be a good choice of position estimations,
otherwise the position estimations from DPDOA approach
is preferred.

The T-selection is based on the criteria of student’s t-
test [53]. The following equation is the calculation of the T
factor:

t =
|PDPDOA − PRSS |

s
×

dlim
d
, (24)

where s is the standard deviation of the position estimations
from DPDOA based approaches. The difference between
the position estimation of DPDOA and RSS divided by the
variation of DPDOA estimations is considered as the key of
the t-factor. The t-factor is compensated by the distance,

where the further distance the t will be reduced and posi-
tioning estimation from RSS is more trusted as better SNR
is obtained by RSS measurements. The selection criteria of
t-factor is shown as follows:

Poupuls =

{
PDPDOA T(t) ≤ α%
PRSS T(t) > α% , (25)

where T(t) is the students’ t-test distribution function and α
is the significance level. When t is larger, the T(t) will be
smaller, and DPDOA based estimation is selected when T(t)
below the significant level α.

The overall hybrid scheme is shown in Fig. 9(a). The
proposed hybrid scheme is fully based onNNposition solvers
for both RSS and PDOA measurements. In the off-line
process, we perform simulations to generate a large size
dataset to perform pre-training to learn the basic positioning
theories. With the pre-trained NN for both RSS and PDOA
measurements (RSSMs and PDMs), a small dataset collected
from experiments is introduced to further tune the NNs.
After tuning, both NNs learn the intensity and time models
in the current testbed and put in online applications. In the
online part, real-time RSSMs and PDMs are feed in the RSS
NN and PDOANN separately to estimate positions PRSS and
PPDOA. Use V-selection or T-selection, the final position
estimation is provided.

Under different intensity variations up to 20%, as in
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Fig. 10 Integrated VLCP system based on FBMC-SCM and PDOA: (a) schematic diagram, (b) exper-
imental setup, (c) BER distribution, (d) positioning results using FBMC-SCM, (e) CDF of positioning
errors and (f) positioning error vs. GB frequency spacing.

Fig. 9(b), T-selection achieves generally the best accuracy
follows by V-selection. Pure ANN-based RSS solution suf-
fers when variation over 8%. ANN-PDOA is not sensitive
to variations but is relative low in accuracy when only small
intensity variation introduced, as in Fig. 9(c). Under an-
gular variation tests, as shown in Fig. 9(d), the stability of
T-selection outperforms V-selection as more PDOA based
estimations are involved.

3.3 Integrated VLCP

3.3.1 Integrated VLCP Based on FBMC-SCM and PDOA

In order to simultaneously perform communication and po-
sitioning using visible light LEDs, we have proposed and ex-
perimentally demonstrated a quasi-gapless integrated VLCP
system based filter bank multicarrier-based subcarrier mul-
tiplexing (FBMC-SCM) and PDOA in [33].

Figure 10(a) shows the schematic diagram of the in-
tegrated VLCP system based on FBMC-SCM and PDOA,
where three LED lamps are grouped as a unit to realize
communication and positioning simultaneously. On the one
hand, two-dimensional (2D) positioning is performed by ap-
plying four synchronized sinusoidal signals with different
frequencies to three LED lamps and using a PD to collect
the signal for PDOA calculation. On the other hand, commu-
nication is achieved by transmitting the same FBMC signal
through the LED lamps so as to obtain transmit diversity and
reduce implementation complexity. Due to the use of SCM to

multiplex the communication and positioning signals in the
frequency domain, guard bands (GBs) are generally required
to eliminate the interference between each other. Compared
with OFDM which usually exhibits high out-of-band inter-
ference (OOBI), FBMC has much lower OOBI and hence
can substantially reduce the requirement of GBs, leading to
higher spectral efficiency and improved positioning accuracy
[32].

The experimental setup of the integrated VLCP system
based on FBMC-SCM and PDOA is depicted in Fig. 10(b),
where the communication and positioning performance is
tested in a quarter area of 1.2m × 1.2m with a vertical sep-
aration between the LED lamps and the PD of 2.1m. More-
over, the overall modulation bandwidth of the integrated
VLCP system is 10MHz, where the frequencies of the four
sinusoidal signals for PDOA positioning are within the range
between 5.1 to 5.7MHz and the frequency gap is 0.2 MHz.
Figs. 10(c) and (d) show the communication and positioning
results over the testing area in the integrated VLCP system.
As we can observe from Fig. 10(c), the BER values for both
OFDM-SCM and FBMC-SCM over the testing area are all
less than the 7% forward error correction (FEC) coding limit
of 3.8×10−3. Moreover, it can be seen from Fig. 10(d) that a
much higher positioning accuracy can be achieved when the
user is near the LED lamps, while the positioning accuracy
is gradually reduced when the user is moving away from the
LED lamps. Figure 10(e) compares the cumulative distribu-
tion functions (CDFs) of the positioning errors of the inte-
grated VLCP system using OFDM-SCM and FBMC-SCM.
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Fig. 11 Multi-user integrated VLCP system with intelligent resource allocation: (a) systemmodel, (b)
MERAC learning framework, (c) reward vs. training, (d) sum rate of users vs. minimum rate threshold,
and (e) sum rate of users vs. maximum positioning error threshold.

Clearly, the system using FBMC-SCM can achieve a much
enhanced positioning accuracy in comparison to that using
OFDM-SCM.More specifically, the positioning error at 90%
confidence for OFDM-SCM is 19.6 cm, which is reduced to
11.2 cm for FBMC-SCM. Figure 10(f) studies the impact of
GB frequency spacing on the position performance of the in-
tegrated VLCP system. We can observe that a negligible GB
frequency spacing of 0.1MHz is required by the system us-
ing FBMC-SCM, while a significant 1.4MHz GB frequency
spacing is needed by the system using OFDM-SCM, sug-
gesting a greatly improved effective bandwidth utilization
ratio by using FBMC-SCM in comparison to OFDM-SCM.

3.3.2 Integrated VLCP with Intelligent Resource Alloca-
tion

The performance of a practical multi-user integrated VLCP
system is largely determined by the adopted resource al-
location strategy. Nevertheless, the design of an efficient
resource allocation framework for practical multi-user inte-
grated VLCP system is very challenging due to the issues
of user mobility, diverse quality-of-services (QoS) require-
ments and distinctive user arrival and departure dynamics.
In order to address the above issues when performing re-
source allocation, an intelligent resource allocation frame-
work based on reinforcement learning (RL) has been pro-
posed and investigated in [34].

Figure 11(a) shows the system model of the multi-
user integrated VLCP system, where four LED lamps are
mounted in the ceiling, multiple users are randomly located
over the floor and each user is equipped with a PD. A central
controller is adopted to connect all LED lamps and Wi-Fi
links are used to provide the uplink feedback information.
In the considered multi-user integrated VLCP system, RSS-

based positioning is applied, and FBMC-SCM is employed
to multiplex the FBMC signal and the positioning signal in
the frequency domain. Considering the user mobility, di-
verse QoS requirements and distinctive user arrival and de-
parture dynamics, conventional optimization technologies to
perform resource allocation are usually non-convex and NP-
hard, and hence the model-free RL technique is utilized to
solve optimization problem in the proposed multi-user inte-
grated VLCP system. Particularly, a Markov decision pro-
cess (MDP) is used to model the decision making problem
for power and subcarrier allocation, while a reward function
is designed by considering users’ requirements. Moreover,
a modified experience replay actor-critic (MERAC) RL ap-
proach is further proposed to enhance the the learning effi-
ciency and convergence speed of finding the optimal solution
in dynamic integrated VLCP systems, which is illustrated in
Fig. 11(b).

The performance of the multi-user integrated VLCP
system with intelligent resource allocation has been eval-
uated via computer simulations, where an indoor room of
5m × 5m × 3m is considered. Figure 11(c) depicts the
reward versus the number of training time steps for vari-
ous RL approaches. As we can see, the MERAC approach
achieves the highest reward and its convergence speed is the
fastest in comparison to other RL approaches. It can also
be found in Figs. 11(d) and (e) that the MERAC approach
always obtains the highest sum rate of users with the changes
of minimum rate threshold and maximum positioning error
threshold among all the benchmark approaches.

3.4 Heterogeneous RF/VLC

In practical industrial Internet of Things (IoT) networks, the
devices usually have diverse QoS requirements (e.g., ul-



ZHANG et al.: RECENT PROGRESS IN VISIBLE LIGHT POSITIONING AND COMMUNICATION SYSTEMS
97

Fig. 12 Indoor heterogeneous RF/VLC industrial network: (a) system model, (b) deep PDS-ERT
learning-based intelligent resource management, (c) learning process comparisons of RL algorithms, (d)
energy efficiency vs. packet arrival rate, and (e) URLLC latency per packet vs. packet arrival rate.

trareliable low-latency communications (URLLC) or high
transmission data rates), and the spectrum and energy re-
sources might be severely limited. In order to meet the
users’ QoS requirements, we proposed and evaluated a het-
erogeneous RF/VLC industrial network in [41], where RF
communication can offer a wide communication coverage
while the VLC can provide high-speed data transmission.

Figure 12(a) shows the system model of the indoor
heterogeneous RF/VLC industrial network, where multiple
VLC access points (APs) are uniformly distributed in the
ceiling of the room and one RF AP is located at the cen-
ter of the ceiling. In the heterogeneous RF/VLC industrial
network, VLC is used in the downlink, while RF is used in
both the downlink and uplink. As we can see, each VLC
AP only covers a small area while the RF AP can cover the
whole area. In order to perform intelligent resource man-
agement, a deep post-decision state (PDS)-based experience
replay and transfer (PDS-ERT) RL algorithm is proposed,
and its principle is shown in Fig. 12(b).

We evaluate the performance of the indoor heteroge-
neous RF/VLC industrial network through computer simu-
lations, where an indoor industrial room with a dimension
of 24m × 24m × 6m is considered and totally 6 × 6 VLC
APs are assumed to be uniformly deployed in the network.
Figure 12(c) depicts the learning process of various RL algo-
rithms in terms of the reward. It can be clearly observed that
the deep PDS-ERT learning algorithm achieves the highest

reward with the fastest convergence and the best stability.
It can also be seen that the deep PDS-ERT learning algo-
rithm obtains the highest energy efficiency per device and
the lowest URLLC latency per packet in comparison to other
benchmark RL algorithms.

4. Conclusion and Outlook

In this paper, we have conducted a detailed review of our
recent works on visible light positioning and communica-
tion systems using illumination LEDs. To provide high-
accuracy indoor positioning, two types of VLP systems in-
cluding image sensor-based VLP and photodetector-based
VLP are developed and demonstrated. Moreover, to support
simultaneous communication and positioning services for
indoor users, integrated VLCP systems are further designed
and evaluated. Finally, heterogeneous RF/VLC systems are
also investigated to ensure the diverse QoS requirements of
users. In brief, the progress in the field of visible light
positioning and communication is rapid, which attracts the
attention from both academia and industry.

In the future, visible light positioning and communica-
tion systems are expected to achieve much higher data rates
and more accurate positioning in practical real-world appli-
cation scenarios. Some of the potential research directions
include the cooperation of VLC and VLP for overall perfor-
mance enhancement, the application of powerful machine
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learning/artificial intelligence tools in visible light position-
ing and communication systems, etc.
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