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SUMMARY  This paper proposes and evaluates machine learning (ML)-
based compensation methods for the transmit (Tx) weight matrices of actual
singular value decomposition (SVD)-multiple-input and multiple-output
(MIMO) transmissions. These methods train ML models and compensate
the Tx weight matrices by using a large amount of training data created from
statistical distributions. Moreover, this paper proposes simplified channel
metrics based on the channel quality of actual SVD-MIMO transmissions
to evaluate compensation performance. The optimal parameters are deter-
mined from many ML parameters by using the metrics, and the metrics
for this determination are evaluated. Finally, a comprehensive computer
simulation shows that the optimal parameters improve performance by up
to 7.0 dB compared with the conventional method.
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1. Introduction

Singular value decomposition (SVD)-multiple-input and
multiple-output (MIMO) technology has been studied in the
fields of broadcasting and communications as a spatial mul-
tiplexing methods to achieve large-capacity transmissions
[1]-[8]. Because the transmit (Tx) weight matrices change
depending on the propagation environment, it is hard to cre-
ate sufficiently diverse training data for ML; in fact, ML
methods have not yet been studied for this purpose. In this
study, we created a large amount of training data from statis-
tical distributions and used it for ML training and compen-
sation purposes. Since a bit error rate (BER) performance
evaluation is computationally complicated, it is hard to use
one to compare the various ML parameters. Moreover, the
coefficient of determination used in regression problems is
not directly related to the transmission quality. Here, we
propose simplified channel metrics to evaluate compensa-
tion performance, and use them to determine the optimal pa-
rameters. Then we examine the the validity of the simplified
channel metrics and report the results of a comprehensive
performance in a computer simulation.

SVD-MIMO uses Tx and receive (Rx) weight matrices
calculated by SVD and transmits over multiple equivalent
independent channels called eigenmodes or streams [1]—[8].
In this paper, we call these channels streams. In particular,
an optimal transmission for the channel capacity can be ex-
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pected when SVD-MIMO is combined with adaptive trans-
mission control (ATC) [7]-[9]. However, it is hard to create
and use ideal Tx/Rx weight matrices in time-varying mobile
environments. Incomplete Tx/Rx weight matrices that dif-
fer from the ideal ones degrade the channel quality of each
stream [6], [7]. Moreover, when SVD-MIMO is combined
with an ATC that does not consider the degraded channel
quality of each stream, the overall transmission performance
significantly deteriorates [8].

This paper proposes ML-based compensation methods
using support vector regression (SVR) for compensating the
Tx weight matrices that are degraded from the ideal one.
The compensation target is limited to the degradation that
occurs when quantization is used to avoid bandwidth pres-
sure with feedback of the Tx weight matrices. The training
data were prepared by pairing ideal Tx weight matrices and
deteriorated Tx weight matrices generated from many chan-
nel matrices created based on statistical distributions. This
paper also proposes simplified channel metrics to evaluate
the attenuation in channel gain caused by the degraded ma-
trices. The optimal parameters for the training data and
learning kernels are determined using the simplified chan-
nel metrics. Moreover, the validity of using the simplified
channel metrics for the determination and the compensation
performance are evaluated. Finally, the overall performance
of the compensation methods for the Tx weight matrices
and the previously proposed ATC (P-ATC) algorithm [8]
using the compensated matrices are evaluated. The results
show that the method with compensation improves the re-
quired signal-to-noise ratio (SNR) at a specific BER by up to
5.5 dB and the method combining compensation and P-ATC
improves it by up to 7.0 dB.

The contributions of this paper are as follows.

» Simplified channel metrics to evaluate compensation
for degradation due to quantization (Sect. 4)

* ML-based compensation methods for the Tx weight
matrices (Sect. 5)

* A method for creating training data based on statistical
distributions in mobile communication environments
(Sect.5.1)

* A comparison of compensation methods using simpli-
fied channel metrics (Sect. 6)

* A computer simulation showing that the proposed ML-
based methods are effective for quantization compen-
sation and the simplified channel metrics are effective
for selecting the optinum parameters (Sects. 7.1, 8.1)
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* A computer simulation showing that the transmission
using a combination of compensation and P-ATC meth-
ods has the highest performance in comparative meth-
ods (Sects. 7.2, 8.2)

2. Related Work

SVD-MIMO transmission methods have been researched
as next-generation wireless links for mobile-relay broadcast
programs [3]-[5], [8]. In particular, a method using modula-
tion schemes with a high modulation order and turbo codes
achieved a maximum transmission rate of 180 Mbps and a
frequency utilization efficiency of 10bit/s/Hz in an experi-
mental mobile environment [3].

Several improvements to the SVD-MIMO transmission
method with incomplete Tx weight matrices have been pro-
posed. In [6], an ATC method based on the BER without
decoding was proposed. However, it does not compensate
for the degradation of the Tx weight matrices. The compen-
sation methods proposed in [7] are used for channel predic-
tion at the Tx and channel estimation at the Rx. However,
these methods focus on compensating for the degradation
caused by time-varying channels. In [8], ATC methods and
channel metrics for using incomplete Tx weight matrices
were proposed, but these methods do not compensate for the
degradation of the Tx weight matrices.

Estimating a scalar value from a vector is a regression
problem. SVR, logistic regression, ridge regression, regres-
sion methods using neural networks (NNs), etc., are used for
solving regression problems [10]. Reference [11] applied re-
gression to wireless communications. However, the method
used therein targeted only channel estimation. Numerous
other methods, such as decoding error correction code, chan-
nel estimation methods, and detecting MIMO signals, have
been proposed as applications of ML to wireless communi-
cations [12], [13]. Although NN that operate equivalently
to SVD have been researched [14], there is no research on
using ML to compensate for the degradation of the Tx weight
matrices for SVD-MIMO transmissions or generating a large
amount of training data based on statistical distributions. To
the best of our knowledge, there is no research on simplified
channel metrics for evaluating the degradation in perfor-
mance of the Tx weight matrices.

3. System Model

This paper uses the uplink (UL) transmission that is spec-
ified in ARIB STD-B75 [5] and used in [3], [4], [8] as a
system model. The system transmits with up to four streams
made by 4 X 4 SVD-MIMO and uses ATC to control the
power allocation, coding rate, and modulation schemes in
accordance with the channel quality.

Table 1 shows the parameters of the system. The pa-
rameters written in red were used in the computer simulation
described in Sect.7. Figure 1 shows the frame structure of
time division duplex (TDD) used in the evaluations, where
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Table 1  Specifications of ARIB STD-B75 (UL).
Parameter
Frequency band 1.2 GHz (1.24-1.30),

2.3GHz (2.33-2.37)

Spatial multiplexing SVD-MIMO

FFT size 1024 20438

Subcarrier spacing 0 0

(kHz) 19.97 9.99

Mode Half Full Half Full

Occupied Bandwidth

(MHz) 8.47 17.18 8.47 17.18
f .

(S;Tmﬂ) mod. orders 10,12, 14,16,18,20,22, and 24

Modulation schemes BPSK (1), QPSK (2),

(Modulation order) ..o, and 4096QAM (12)

Inner code Turbo codes

Outer code Reed-Solomon codes

GI length (us) 6.26| 9.39 | 125 | 125 | 18.8 | 25.0

Sym. length (us) 56.3| 59.5 | 62.6 | 113 119 | 125

UL: from the MS to the BS
DL: from the BS to the MS
|

|
I ~Preamble -Pilot symbol Data symbol
; [l
Wil
I
> 4+—) '<¢4—

UL subframe (1.91 ms) DL subframel UL subf.

»
(0.28 ms) 1
Calculate parameters of _ _ _,| Transmit parameters of Apply parameters
the next UL subframe at the BS the next UL subframe [~ | at the MS

< >

Time (Symboly) TDD frame w/o guard time (2.19 ms)

A

Frequency (subcarriers)

Fig.1 Example of TDD frame configuration.

BS is the base station and MS is the mobile station, respec-
tively.

3.1 Overview of SVD-MIMO Transmission

The actual (non-ideal) SVD-MIMO transmission in the sys-
tem model uses incomplete Tx/Rx weight matrices due to re-
strictions on equipment implementations; consequently, the
transmission quality deviates from the ideal SVD-MIMO
transmission. Figure 2 shows the procedure of the SVD-
MIMO transmission.

The SVD-MIMO transmission uses a MIMO channel
matrix H € C*4, First, H is decomposed by SVD:

H=UXvH )

where U,V € C¥* are unitary matrices, £ € R¥* is a
diagonal matrix whose elements are the singular values {&;}
of H, and the superscript H means Hermitian transpose.
i = 0,1,2,3 is the stream index. In an ideal SVD-MIMO
transmission, V, UH, and X! are the Tx weight matrix, Rx
weight (signal detection) matrix, and equalization matrix,
respectively [1]. When using x € C* as the transmit signal,
the equalized received signal y € C*is y = x + X~ 'U"n.
Here, n € C* is an additive white-Gaussian-noise (AWGN)
vector. The undesired component in the received signal is

"The channel matrix H is used for not only SVD-MIMO trans-
missions but also all variations of MIMO transmissions. Appendix
A describes the details of H and MIMO transmission without pre-
coding.
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Fig.2  Procedure of actual SVD-MIMO transmission for the system
model.

only the emphasized noise £~ 'U"n.

However, in actual SVD-MIMO transmissions, it is hard
to use ideal weight matrices for various reasons described
later. In that case, V refers to the incomplete Tx weight
matrix, and W is the signal detection matrix". The detected
received signal y € C*is

y=x+Wn+Ax, 2)

where 4 is called the interference matrix and is calculated
asd = WHYV — 1. I is an identity matrix. The undesired
components in the received signal are the emphasized noise
component Wr and the interference component Ax [8].

3.2 Degradation Factors in the Tx Weight Matrices

The system model conforms to the standard [S], wherein
various factors degrade the Tx weight matrices. The degra-
dation factors are described below.

3.2.1 Degradation due to Quantization

As shown in Fig. 1, the Tx weight matrices are created at the
BS and then transmitted to the MS via the downlink (DL).
The Tx weight matrices V are generated with the number
of bits depending on the hardware’s computing power. Be-
cause the evaluation in this study used 64-bit floating-point
arithmetic, the Tx weight matrices were also generated in
this format. The Tx weight matrices are specified in the
standard to transmit the minimum required one OFDM sym-
bol per TDD frame. However, considering the transmission
of the real and imaginary parts of the Tx weight matrices
V, the number of matrix elements, and the total number of
subcarriers (860), 1.76 Mbits (64 — bit X 2 X (4 X 4) x 860)
must be transmitted. It is impossible to transmit all the Tx
weight matrices because about 9 Kbits can be transmitted
for the DL subframe in the configuration of Fig. 1. On the
other hand, increasing the number of DL symbols causes
a decrease in the UL transmission rate. For these reasons,
the standard [5] specifies three-bit quantization for each ele-
ment, which causes a quantization error relative to the ideal
value. Figure 3 shows an example of the degradation in each
element of the real part caused by three-bit quantization. In

W s generated using the minimum mean squared error
(MMSE) [16] and HV .

1443

Ideal V' Three-bit quantized V"
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Fig.3  Quantization for each parameter of the Tx weight matrices.

Ideal V, each parameter varies continuously between —1.0
and 1.0. On the other hand, in the three-bit quantized V',
each parameter is limited to 2° = 8 patterns.

3.2.2  Other Degradation Factors

The Tx weight matrices are also degraded by a) channel
estimation errors and by b) the use of precoding blocks.
Although these sources of degradation are not accounted for
in ML, they are included in the computer simulation.
a) Degradation due to channel estimation error

This sort of degradation occurs because the estimated
channel matrices H for creating the Tx weight matrices are
different from the ideal ones. In particular, delays due to
feedback and the use of pilot symbols make a difference.
Differences due to delays always occur when estimating
channel matrices in time-varying channels. Furthermore,
because the Tx weight matrices in this system are fed back
to the MS via DL subframe as one of the transmission pa-
rameters of Fig. 1, especially long (sub)frames cause a large
difference.
b) Degradation due to the use of precoding blocks

This sort of degradation occurs when precoding blocks
are used to reduce the amount of feedback data in the Tx
weight matrix, similar to degradation due to quantization in
Sect. 3.2.1. Eight subcarriers are put together as a precoding
block, for which one representative Tx weight matrix is used
[5]. As aresult, the transmission is reduced to about 9 Kbits,
and it is possible to transmit the Tx weight matrix to the
MS in the frame structure shown in Fig. 1. However, the Tx
weight matrices are no longer ideal.

4. Channel Metrics

The channel quality can be evaluated from the received sig-
nal by using Eq. (2). Here, the modulation error ratio (MER),
which corresponds to the received signal-to-interference-
plus-noise power ratio (SINR) of each stream, is used as
the channel metric. The original MER is obtained from the
transmitted signals and the received ones. On the other hand,
an equivalent MER can be calculated from the received SNR
and channel matrix H. We call it the “calculated MER.”
The MER of the ideal SVD-MIMO is calculated using the
singular values &;, and the MER of actual SVD-MIMO is
calculated using the equivalent singular values g—‘;, as follows
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MERS™- = SNRM-¢2p;, A3)
N -1

MERfmp‘ = [(SNRAV'fizpi) + (Ek5z‘2,kpk)/Pi] , @

where the equivalent singular values are calculated using
each component w; ; of the signal detection matrix W to
&% = 1/Zk|lwik|>. These calculated MERs are called
the “conventional-calculated MER” and the “proposed-
calculated MER”. p; is power allocation of each stream and
0; k is a component of the interference matrix 4. The deriva-
tion of the calculated MER described here was first proposed
in [8] and is summarized in Appendix B.

The conventional-calculated MER includes only the
noise enhancement term (SNRAV'g-‘[.Zp,-). On the other
hand, the proposed-calculated MER includes the noise
enhancement term (SNRAV'§;2pl-) and interference term
(Zk6ikpk)/ pi- The proposed-calculated MER is mainly
affected by the noise enhancement and to a lesser extent
by the channel estimation error and interference due to the
weight matrix at reception. The effect of the ATC on the
noise-enhancement term is the multiplications of power al-
location term p., where * represents i or k. On the other
hand, ATC has a more complex effect on the interference
term than it does on the noise enhancement term, because
the interference term includes multiplications, summations,
and divisions with p, As it stands, it is hard to evaluate the
proposed-calculated MER because the interference term is
so complexly related to the ATC through p.. That is, cal-
culating the ATC results needs p., but obtaining p.. requires
the ATC to be calculated first.

4.1 Proposed Simplified Channel Metrics

This paper proposes met.1%4 = ¥:£2 and mer. QU4 = ¥,¢£2
as metrics to evaluate the noise enhancement terms of
Eqgs. (3) and (4). met.!%¥ which is the metric of the ideal
SVD-MIMO, is the sum of the squares of the singular val-
ues £7. It is known that mer.'% always equals 16 (4 x 4)
regardless of the correlation conditions [15]. met.19 jg
equivalent to the total channel gain over the transmission
power of each stream when the transmission powers of each
stream are equal in the ideal SVD-MIMO transmission. Sim-
ilarly, met. Q" is taken to be the total channel gain when
the transmission powers of each stream are equal in the ac-
tual SVD-MIMO transmissions. Therefore, it is possible to
evaluate the attenuation of the channel gain by comparing
met. QU with met.19 = 16. Because these metrics are
calculated from the amount of noise by using the weight ma-
trix at reception (here, the signal detection matrix W), those
metrics can be used for all MIMO transmissions using the
Rx weight matrices.

Figure 4 plots met.1% and met. Q"3 versus the number
of quantization bits for the case of quantization degradation
only. A plot of MIMO with zero-forcing (ZF) reception
[16], “met.Q** w/o precoding”, is shown for comparison.
(See Appendix A for explanation of ZF reception) The near-
est correlation values (py, pr) between the transmitting and
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Fig.4 Simplified channel metric evaluation of degradation due to quan-
tization.

receiving antennas are for four conditions, i.e., independent
and identically distributed (i.i.d.: 0, 0), low correlation (Low
cor.: 0.3, 0.3), medium correlation (Med. cor.: 0.7, 0.3) de-
scribed in [5], and high correlation (High cor.: 0.7, 0.7). The
method of creating the ML datasets is described in Sect. 5.1.
The ML datasets created with these four types of correlation
value are used as evaluation data.

The results confirm that the SVD-MIMO transmissions
have advantages over MIMO transmissions without precod-
ing, even when the Tx weight matrix is degraded. The ad-
vantage is regardless of the correlation or number of quan-
tization bits. On the other hand, their quantization degra-
dation is significant compared with the ideal SVD-MIMO
transmission, increasing as the correlation increases. Es-
pecially in the case of the three-bit quantization used in
the system model, the metrics decrease to 68% (16=10.9)
for ii.d., 35% (16=5.61) for medium correlation, and
17% (16=2.72) for high correlation. In ML, it is desir-
able to use different data and metrics when selecting mod-
els/methods and when evaluating performance. Therefore,
the optimal ML parameters would be determined by how
well they compensated the degradation due to quantization
by the simplified channel metrics in Sect.6. On the other
hand, a comprehensive transmission performance would be
that of the SNR vs. BER in Sect. 7.

5. Compensation Methods for the Tx Weight Matrices
Using Machine Learning

This section describes the method for creating the training
data, the training method, and the ML method for compen-
sating the Tx weight matrices.

The Tx weight matrix V € C** has 32 elements, in-
cluding real and imaginary parts. Since the Tx weight ma-
trix is created from a single channel matrix, its elements are
closely related. The Tx weight matrix V', in which each
element is quantized to three-bit, has 2% element patterns
in total. The use of all elements should be able to compen-
sate for the Tx weight matrices with higher precision than
three-bit. However, attempting compensation by matching
296 patterns is extremely difficult. Instead, we can treat the
compensation as a regression problem in which the input
is the Tx weight matrices V' and the output is each ele-
ment of V. Moreover, we propose to use ML, wherein the
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compensation is performed using computer-trained models
during transmission. Considering the hardware implemen-
tation, we chose to use SVR [17], which has a simplified test
procedure and a high level of performance when there is a
sufficient amount of training data.

5.1 Creation of Machine-Learning Datasets

In ML, if the training data are biased to a specific condi-
tion, the performance will be strongly degraded under other
conditions [18]. For this reason, creating a wide variety
of conceivable channel environments is important. In this
study, we created statistical data for static fading channels
without considering frequency selectivity or time-varying
channels in order to compensate for the degradation due
only to quantization. It is easy to create a large amount of
data statistically as there is no need to acquire data in the
field or by conducting a Monte Carlo simulation. On the
other hand, data for dynamic fading channels would have to
be created to compensate for the degradation described in
Sect.3.2.2.

Figure 5 shows the procedure for creating the training
and validation datasets. First, the channel matrices G € C*4
based on the Rayleigh fading of i.i.d. channels were created.
Since ideal Rayleigh fading affects the signal when both the
real and imaginary parts of channels have an i.i.d. Gaussian
distribution [19], G was calculated using X,Y € R4

G=X+jY. (&)

Since X and Y are random numbers representing statistical
properties, they can be used to make a wide variety of i.i.d.
matrices. Subsequently, the channel matrices H that take
account of correlation were defined using the Kronecker
model [20]:

H = \JII,G1I,, (©6)

where II; and II, are the correlation matrices of transmis-
sion and reception. Note that the procedure assumes that
the antennas are arranged at equal intervals, and the element
of the i-th row and j-th column of the correlation matrix is
defined using the nearest correlation value, as p; j = p(l)l E |2.
Two types of training data pg were used; static-medium cor-
relation values, called “static correlations” and values drawn
from a uniform distribution of py = [0, 1), called “uniformly
distributed correlations”. As described in Sect. 4.1, the eval-
uation data were made with the four types of correlation
value. The creation method is the same as that of “static
correlations”.

Subsequently, ideal Tx weight matrices V were created
from H by solving Eq.(1). Finally, the deteriorated Tx
weight matrices V' (three-bit quantization is used in this
study) were created. Here, V' and V are the input and output
in the training data.
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G=X+jY  H=\ILG\I. H=UZW"
Fig.5  Process of creating training/validation datasets for ML.
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5.2 Training Methods for Compensation

This section describes training methods for the models used
in the Tx weight matrix compensation. The input is the
Tx weight matrices V' after degradation and the Tx weight
matrices V before degradation, and the output is the trained
models.

SVR is an ML method for solving regression problems
that takes vectors as input and outputs scalar values [17].
Here, V/, V of the training data were converted into v', v E
R32, as shown in Fig. 6. Next, as shown in Fig. 7, the elements
of v, i.e., the training data for the output, and »” were used as
input for the SVR training; in total, 32 trained models were
created.



1446

5.3 Testing Methods for Compensation

This section describes the compensation methods for the Tx
weight matrices using the trained models created in Sect. 5.2.
The inputs were the deteriorated Tx weight matrices V' and
trained models, and the output consisted of the compensated
Tx weight matrices v, First, V' was converted into a 32-
dimensional real vector v’ € R32, as illustrated in Fig. 6.
After that, the parameters were predicted using the trained
SVR model, as in Fig.8. Finally, v” was converted into
V" e C**, as in Fig. 6.

5.4 Transmitting using Compensation Methods

This section describes the transmission using compensation
methods for the Tx weight matrices. Figure 9 shows the block
diagram. The MS (Tx-side) compensates the received Tx
weight matrices V' to V" and uses them for the transmission.
Similarly, BS (Rx-side) compensates the V' transmitted in
the previous DL frame and uses them for signal detection.

6. Simplified Evaluation of Compensation Methods

This section evaluates the compensation methods for the
Tx weight matrices by using the simplified channel metrics.
Table 2 shows the parameters of the evaluation. Note that the

Input data

Output data
V’ c R32 v 32

v'ER

0™ trained model

—_——
SVR predicting |
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SVR training included several other parameters besides the
ones described in the table, such as epsilon, the number of
support vectors used, and the number of power dimensions
when using a polynomial kernel. A lot of research has been
done on parameter optimization [21], but it is different from
the purpose of this study. Thus, we used only the default
values of Scikit-learn [22].

6.1 Simplified Comparison of Learning Kernels

Table 3 shows comparative results using the simplified met-
rics (met.) for each learning kernel. To evaluate the ker-
nels fairly, the number of training data was set to 30k,
and the correlation of the training data was set to the uni-
form distribution described in Sect.5.1. “Ideal” means the
ideal SVD-MIMO transmission performance without degra-
dation, which is 16.0 regardless of the correlation, as de-
scribed above. The other values are shown in parentheses
as ratios based on 16.0. “W/o comp.” is the transmission
performance without compensation, which corresponds to
the three-bit value in Fig.4. Red bold type indicates an
improvement was obtained under the same correlation con-
ditions. As can be seen, no improvement was obtained with
the linear kernel. On the other hand, an improvement was

Table 2

Implementation code
Regression method

Training/ validation conditions.

Python, scikit-learn, etc.
Support vector regression (SVR)
Linear, radial basis function (RBF)
, and polynomial
Number of train. data 10k (10,000), 30k, and 50k
Number of valid. data 2k
Correlation (for train.) Static (medium cor.) and uniform dist. [0,1]
Correlation (for valid.) i.i.d., low cor., medium cor., and high cor.
Evaluation metrics Proposed simplified channel metrics

Learning kernels

Table 3  Simplified evaluation of leaning kernels (correlation: [0,1]).
“ ii.d. [ Low cor. [ Med. cor. [ High cor.
31* trained model Ideal 16.0 16.0 16.0 16.0
5iSVR predicting W/o comp. || 10.9 (68%) | 9.82 (61%) | 5.61 (35%) | 2.72 (17%)
Linear 10.4 (65%) | 9.51 (59%) | 5.60 (35%) | 2.72 (17%)
RBF 10.0 (63%) | 9.37 (59%) | 6.02 (38%) | 2.95 (18%)
Fig.8 SVR testing methods for compensation. Polynomial || 10.8 (68%) | 10.2 (64%) | 7.29 (46%) | 3.72 (23%)
MS BS
A g & T 4]
=3 N S s Lo
| 28 ~ = Zal |8 S &3 .
o2 > [ S8 23 =e= s Elol Received
Data —= 5.3 = <! <E o 58 S o = data
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SE = © ﬂ ~ sl &% |&5||
= =
I H,SNR | fr I
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SVD Compensate V'
v MI_l_IER % SVR
'
parameters 4 I
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Fig.9 Block diagram of UL transmission with SVR compensation.
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Table4  Simplified evaluation of training data (kernel: polynomial).
|__iid. | Lowcor | Med cor | Highcor 6.3 Discussion on the Simplified Evaluation
Ideal 16.0 16.0 16.0 16.0
W/o comp. 10.9 (68%) | 9.82 (61%) | 5.61 (35%) | 2.72 (17%) . . . . .
Static cor. | 10K|| 3.28 (21%) | 5.59 (35%) | 6.99 (44%) | 3.29 21%) This se.ctlon discusses the above results of the simplified
(medium) |30k|| 4.97 (31%) | 7.26 (45%) | 7.60 (48%) | 3.82 (24%) evaluation.
for Train. |50k|| 5.94 (37%) | 8.03 (50%) | 7.86 (49%) | 3.98 (25%)
Unif. dist. | 10k|| 8.96 (56%) | 9.16 (57%) | 6.70 (42%) | 3.20 (20%) 631 Determination of the Optlmal ML Parameters
cor. [0,1] |30k|| 10.8 (68%) | 10.2 (64%) | 7.29 (46%) | 3.85 (24%)
for Train. |50k|| 11.1 (69%) | 10.5 (66%) | 7.52 (47%) | 3.85 (24%)

had with the polynomial and RBF kernels for medium and
high correlation. Moreover, the polynomial kernel showed
an improvement even at low correlation. The polynomial
kernel was thus used in the following evaluation.

6.2 Simplified Comparison of Training Data

Figure 10 and Table 4 show comparative results using the
simplified metrics (met.) for each training data condition.
The two types of correlation condition described in Sect. 5.1
were used for the training data. The simplified channel
metrics improved as the number of training data increased,
regardless of whether the correlation of the training data
followed a uniform distribution or was static. On the other
hand, the difference between 30k and 50k was relatively
small compared with the difference between 10k and 30k.
In particular, the difference was up to 2% in the case of the
uniform distribution for the correlation values of the training
data.

In addition, given the same number of training data (for
example, 30k), the uniform distribution outperformed the
static correlation under the i.i.d. and low correlation condi-
tions. In particular, the static correlation was much worse
than the conventional method regardless of the number of
training data. On the other hand, under the medium and
high correlation conditions for evaluation, the static corre-
lation had slightly higher performance compared with the
uniformly distributed correlations. Therefore, the training
data with the static correlation are specialized for medium
and high correlations, whereas the training data with the uni-
formly distributed correlations improves performance for a
wide variety of correlation conditions.

First, the results in Sect. 6.1 indicate that the amount of im-
provement (or degradation) differs for each kernel in SVR.
In addition, the polynomial kernel seems to be ideal since it
improved almost all of the evaluated correlation conditions.
In SVR, the kernel to be used is determined on the basis of
the comparative performance on each problem. It is known
that non-linear (polynomial and RBF) kernels have compli-
cated structures and higher performance than linear kernels
[23]. On the other hand, since the RBF kernel has an incred-
ibly complicated structure for solving complex problems,
the trained models are easier to overfit the data for uncom-
plex problems [24]. Therefore, it seems that the polynomial
kernel was the most effective because the quantization com-
pensation was moderately complex.

Next, the results in Sect. 6.2 indicate that it is desirable
to have as much training data as possible. On the other
hand, the number of multiplications increases in proportion
to the number of training data both during training and during
testing in SVR. Therefore, there is a trade-off between trans-
mission performance and hardware implementation scale.

Since data in i.i.d. channels were not included in the
training data with the static correlation, the evaluation data
were the outliers of the training data, and performance sig-
nificantly deteriorated. On the other hand, since the training
data with the static correlation were specialized for the cor-
related channels, performance significantly improved in the
correlated channels (Med. cor. and High cor.). These results
show that the training data with the static correlation made
models overfit the correlated channels. On the other hand,
the degradation was small when the models were trained with
uniformly distributed correlations, regardless of the correla-
tion of the evaluation data. A substantial improvement was
obtained for evaluation data with the medium or high cor-
relation. This is because the training data included a wide
variety of correlation conditions from i.i.d. to high correla-
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tion, and the trained model was very robust. Furthermore,
as shown in Table 4, when the training data with uniformly
distributed correlations were used, 30k was 4—12% better
than 10k. On the other hand, since the degradation in the
case of 30k was only 2% less than that of 50k, it was con-
cluded that about 30k is a reasonable amount of training
data. These results indicate that the training data should
have uniformly distributed correlations and a large amount
of data (preferably 30k or more) should be used.

6.3.2 Additional Evaluation and Future Prospects

We evaluated the performance while varying the number
of training data for each learning kernel. The results were
not much different from those in Tables 3 and 4, so their
evaluation and discussion will be omitted. Similarly, we
evaluated the performance of ridge regression or regression
with three-layer neural networks [10]. Their performance
did not exceed those of the methods using SVR, so we will
omit discussion of them as well.

Note that we also evaluated the performance using the
coefficient of determination [10], which is a general evalu-
ation index for regression problems. It measures the rate of
regression to statistically correct data. However, because the
purpose of the proposed methods is to improve the channel
quality, a discussion of this evaluation is not within the scope
of this paper (it is described in Appendix C).

On the other hand, the learning structure of SVR also
aims at the regression approach to the correct data. There-
fore, alearning structure that directly improves the simplified
channel metrics is expected to enhance the performance of
quantization compensation. In addition, a further perfor-
mance improvement can be expected by performing a pa-
rameter optimization [21], even with the current learning
structure.

7. Performance Evaluation of Compensation Methods

The validity of the simplified channel metrics and the trans-
mission performance with proposed compensation methods
were evaluated in a computer simulation. The evaluations
were performed using the transmission configuration with
the SVR compensation shown in Fig. 9. For the parts other
than the SVR compensation, the SVD-MIMO system de-
scribed in Sect.3 was implemented in python and numpy.
The channel model was an 11-path one obtained from out-
door experiments [3]. The Kronecker model [20], Eq. (6),
was used for the channel matrices H. Unlike the data cre-
ated for SVR in Sect. 5.1, G was a 4 X 4 i.i.d. fading channel
matrix created by the Jakes model [19] having a time vari-
ation and frequency selectivity. Therefore, an evaluation
using this channel matrix would be affected by the degrada-
tions described in Sect. 3.2.2. On the other hand, since the
compensation methods described in this study are only for
degradation due to quantization, the performance would be
degraded from the ideal SVD-MIMO transmission regard-
less of the method used. The Doppler frequency fp was
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set to 43 Hz; the simulation assumed a mobile relay in the
2.3 GHz band and a mobile speed of 20 km/h. The required
BER for pseudo-error-free operation was set to 1.0 x 107#
[5], and the required SNR to achieve that BER was used for
the evaluation.

7.1 Comparison of Compensation Conditions by Com-
puter Simulation

This section compares transmission performances for some
of the conditions in Table 4 in Sect.6. The ATC method
used in this section [4] did not consider degradation.

Figure 11 shows the results for the ideal condition
without quantization degradation (Ideal), the conventional
method without compensation (W /o comp.), the proposed
method with SVR compensation using 30k training data
and static correlation (Static-30k), and the proposed method
with SVR compensation using various numbers of training
data and a uniformly distributed correlations (10k, 30k, 50k)
in an i.i.d., medium correlation, or high correlation channel
environments. Note that even Ideal is affected by the degra-
dation described in Sect.3.2.2. The required SNR is shown
in Table 5, and the following performance comparisons were
performed with those values. W /o comp. after degradation
was used as the reference value, and the difference is shown
in parentheses for each compensation method. The coding
rate R was set to the maximum, 0.92.

First, in the i.i.d. environment, Static-30k significantly
deteriorated and 10k slightly deteriorated. In particular,
as shown in Fig. 11, the results for Static-30k had a larger
and gentler slope than those of the other methods. On the
other hand, 30k, 50k, and W/o comp. were equivalent in
performance.

In the medium correlation environment, all of the meth-
ods with SVR compensation were better than W /o comp..
In particular, the improvement for Static-30k and 50k was
more than 2.5dB. The increase in the amount of training
data (10k — 30k — 50Kk) led to the improvements.

Finally, in the high correlation environment, all of the
methods with SVR compensation showed a significant im-
provement over W/o comp.. In particular, Static-30k and
50k had the largest improvement, 4.5 dB. The use of the uni-
formly distributed correlations for training and more training
data led to the improvements.

In the following evaluation, the training data had uni-
formly distributed correlations and a size of 30k (30k).

7.2 Comparison of ATC Conditions by Computer Simula-
tion

The simulation examined different ATC methods in addi-
tion to the use of the SVR degradation compensations. An
ATC method suitable for transmissions with deteriorated
Tx weight matrices is described in Appendix D; here, it is
called P-ATC. Figure 12 shows the results for the conven-
tional ATC without SVR compensation (W /o comp.) and
P-ATC without SVR compensation (P-ATC), conventional
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Fig.11  Performance evaluation for different SVR-compensation conditions (coding rate R=0.92).

Table5 Required SNR in dB for different SVR-compensation conditions.
H ii.d. [ Med. cor. [ High cor.

Ideal 29.0 31.0 39.0

W /o comp. 30.0 36.5 46.5

Static-30k (Med. cor.) 36.5 (+6.5) | 34.0 (-2.5) | 42.0(-4.5)
10k (Unif. dist.) 31.5(+1.5) | 35.0(-1.5) | 43.5(-3.0)
30Kk (Unif. dist.) 30.5 (+0.5) | 34.0 (-2.5) | 42.5(-4.0)
50Kk (Unif. dist.) 30.5 (+0.5) | 33.5(-3.0) | 42.0(-4.5)

ATC with degradation compensation (30k), and P-ATC with
SVR compensation (30k + P-ATC). The required SNR is
shown in Table 6, and the performance comparisons reported
below were performed with those values. W/o comp. af-
ter degradation was used as the reference value, and the
difference is shown in parentheses for each compensation
condition.

In thei.i.d. environment, almost all methods were equiv-
alent in performance (the difference is up to 1.0dB). In
the medium correlation environment, for R = 0.33 and
R = 0.71, almost all methods were equivalent in perfor-
mance (the difference is up to 0.5 dB). For R = 0.92, P-ATC,
30k, and 30k + P-ATC improved by 2.0-3.5 dB. In the high
correlation environment, P-ATC, 30k, and 30k + P-ATC
improved by 1.0-7.0 dB for all variations of R.

Moreover, 30k + P-ATC improved by up to 0.5dB in
the i.i.d. and medium correlation environments and by up to

1.5dB in the high correlation environment compared with
P-ATC.

8. Discussion
This section discusses the results shown in Sects. 6 and 7.
8.1 Validity of Simplified Channel Metrics

The results in Table 5 indicate that the method using the uni-
formly distributed correlations for the training data has high
robustness: it did not cause much degradation in the i.i.d.
evaluation and showed a large improvement in the medium
and high correlation evaluation. On the other hand, the
method using the static correlation had poor robustness and
was overfitted to the correlation channels. It caused a large
degradation in the i.i.d. evaluation. In addition, the use of
uniformly distributed correlations for the training data led
to the transmission performance increasing with the amount
of training data. In particular, the performance difference
between 10k and 30k (1.0 dB) was larger than that between
30k and 50k (0-0.5dB). Therefore, to improve the overall
performance while suppressing the degradation in the i.i.d.
environment, it is desirable to use a large amount of training
data (more than 30K if possible) with uniformly distributed
correlations. This conclusion is similar to those on Table 4
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I R=0.33 —{]- W/o comp.
. R=0.71 -<>-+ P-ATC [8]
I =092 —¥- 30k (w/ SVR comp.)
—— 30k (w/ SVR comp.)+P-ATC
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Average SNR in dB

Fig.12  Performance evaluation for different correlations (poy, pr) and coding rates (R).

Table 6 Required SNR in dB for different correlations (por, pr) and coding rates (R).
| Compensation (SVR) | Proposed-ATC[8] || R=033 | R=071 | R=092 || Name
without without 18.0 24.5 30.0 W/o comp.
iid. without with 17.0 (-1.0) | 24.0 (-0.5) | 30.5(+0.5) P-ATC [8]
pe=pr=0 with (30k) without 17.5 (-0.5) 24.5 (0) 30.5 (+0.5) 30k
with (30k) with 17.0 (-1.0) 24.5 (0) 31.0 (+1.0) 30k + P-ATC
without without 18.5 26.5 36.5 W/o comp.
Medium correlation without with 18.0 (-0.5) | 27.0 (+0.5) | 34.5(-2.0) P-ATC [8]
pe=07,0,=0.3 with (30k) without 18.5 (0) 26.5 (0) 34.0 (-2.5) 30k
with (30k) with 18.5 (0) 26.5 (0) 33.0(-3.5) || 30k + P-ATC
without without 23.5 33.5 46.5 W/o comp.
High correlation without with 23.0 (-0.5) | 32.5(-1.0) | 41.0(-5.5) P-ATC [8]
pe=pr=0.7 with (30k) without 23.0 (-0.5) | 32.5(-1.0) | 42.5(-4.0) 30k
with (30k) with 22.5(-1.0) | 32.0(-1.5) | 39.5(=7.0) || 30k + P-ATC

that were discussed in Sect. 6.3.1. Accordingly, we find that
the simplified channel metrics proposed in Sect. 4 appropri-
ately express the degradation in transmission performance
due to the degradation of the Tx weight matrices.

8.2 Comparison of ATC Conditions

This section discusses the evaluation results in Table 6 in
Sect.7.2. First, in the i.i.d. environment, the improvements
or degradations are only about +1.0dB at maximum. Even
when R = 0.92, since the degradation compared with the
ideal is only about 1.0dB in Table 5, the amount of im-

provement is also small. When a low coding rate is used
(R = 0.33,0.71) in the medium correlation environment,
the degradation or improvement stays within the range of
+0.5dB regardless of the method. There was almost the
same performance as in the i.i.d. environment. On the other
hand, in the medium correlation environment with R = 0.92
and in the high correlation environment for all values of
R, the improvement had by the combination (30k + P-ATC)
was 1.3-2.0 times (0.5-5.5 dB=1.0-7.0 dB) that of the SVR
compensation method (30k) and P-ATC method (P-ATC).
For this reason, neither method alone is deemed insufficient
when it is used alone. On the other hand, a significant perfor-



MAKINO et al.: MACHINE LEARNING-BASED COMPENSATION METHODS FOR WEIGHT MATRICES OF SVD-MIMO

mance improvement of up to 7.0 dB can be obtained by using
the Tx weight matrices compensated by SVR together with
an ATC suitable for the compensated Tx weight matrices.

8.3 Opverall Discussion and Future Prospects

As an overall trend, performance improvement was relatively
higher in higher-correlation environments. The reason is that
the channel gain is more strongly affected by the compensa-
tion (and degradation) performance of the Tx weight matrix
in a higher-correlation environment. An explanations for
this is given below.

First, le us compare the channel gain of W/o comp.
relative to Ideal. As shown in Fig. 4, the quantization degra-
dation of the Tx weight matrix reduced the channel gain
(the simplified metrics) in the higher-correlation environ-
ment. This result make sense from the point of view of
wireless communications, because it is more difficult to cre-
ate streams (equivalent independent channels) in MIMO in
a higher-correlation environment. Since the channel gain is
directly linked to the SNR-BER performance, the degrada-
tion of the required SNR of W /o comp. is more significant
in a higher-correlation environment than that of Ideal (as
shown in Table 5, i.i.d.: 1.0dB, Med. cor.: 5.5dB, High
cor.: 7.5dB at R =0.92).

Next, we describe the channel gains of compensation
methods in comparison with w/o comp. As shown in Fig. 10
and Table 4, the simplified channel metrics were 0.99 times
(10.9—10.8) for i.i.d., 1.30 times (5.61—7.29) for Med.
cor., and 1.41 times (2.72—3.85) for High cor. with uni-
formly distributed correlations and 30k compared to w/o
comp. That is, the improvement of the channel gain was
higher in the high correlation environment. As a result, in a
high correlation environment, the improvement in required
SNR due to the compensation methods is more significant
than that of W/o comp. (For example, as shown in Table 6,
ii.d.: —0.5dB, Med. cor.: 2.5dB, High cor.: 4.0dB at 30k
and R=0.92).

Table 5 and Table 6 at R = 0.92 show the results of
the evaluation for the same coding rate but different com-
pensation conditions. Here, 30k + P-ATC is 31.0 dB versus
the 29.0dB of Ideal in the i.i.d. environment, 33.0dB ver-
sus 31.0dB in the medium correlation environment, and
39.5dB versus 39.0dB in the high correlation environment.
The amount of degradation is 0.5-2.0 dB. These values are
the limit to the improvement that can be achieved using the
training data created in Sect. 5.1. More improvements to the
ATC or ML methods will be needed in order to reduce the
degradation further.

On the other hand, as described in Sect. 3.2.2, the Tx
weight matrices also suffer degradation from channel esti-
mation errors and the use of precoding blocks. To com-
pensate for these degradations, it is necessary to use the Tx
weight matrices of the previous frame and adjacent precod-
ing blocks. Therefore, not only statistically created training
data (Sect. 5.1) but also data based on the Jakes model used
in computer simulations or data obtained in actual channel
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environments are needed as training data. In addition, the
machine-learning method must account for these degrada-
tions. Thus, while the evaluation showed there is a pos-
sibility of achieving a level of performance beyond Ideal,
investigations of these issues will have to be conducted in
future research.

9. Conclusion

This paper proposed and evaluated machine-learning-based
compensation methods for the Tx weight matrices used in
actual SVD-MIMO transmissions. It also proposed simpli-
fied channel metrics based on the channel quality to eval-
uate compensation performance and methods for creating
training data based on statistical distributions. The simpli-
fied channel metrics enabled the learning kernel, number of
training data, and correlations for the training data to be ex-
amined under many conditions. Furthermore, the results of
a computer simulation evaluation indicated that the metrics
could be used for selecting the optimum machine-learning
parameters. Finally, a computer simulation of transmis-
sions with SVR compensation using a polynomial kernel
and 30k of training data with uniformly distributed corre-
lations was conducted in different correlation environments
and for different coding rates. It was found that the proposed
SVR compensation method improved the SNR to achieve
the required BER by a maximum of 4.0 dB. Furthermore,
the maximum performance improved by 7.0dB when the
proposed compensation method was combined with a previ-
ously proposed ATC method suitable for transmissions with
deteriorated weight matrices.
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Appendix A: MIMO Transmission without Precoding

This appendix describes MIMO transmission without pre-
coding [16], which is a method that transmits using spatial
multiplexing and detects the signal at the reception. Fig-
ure A- 1 shows the procedure of the actual MIMO transmis-
sion. When the transmit signal is x, the received signal yq
is calculated as

yo = Hx + ny, (A-1)

using the channel matrix H. ng € C* is an AWGN vector.
When using ZF detection, H ~!is the signal detection matrix
(for W = H~! in Sect.4.1), so the received signal y(; after
signal detection is calculated as

y,=x+H 'ny. (A-2)

From this, the undesired signal at reception is only the em-
phasized noise component H ' ny.

Appendix B: Methods of Calculating MER

This appendix describes the calculated MER [8] that con-
siders the variation of the emphasized noise and interference
parameters. First, the noise enhancement component Wn in
Eq.(2) is

T
Wn = (Zk wo, k Nk, ...,Ek w3,knk)

T
(\/zklwo,k|2,.--,\/Zk|w3,k|2) n’,

where wo x is the element at the i-th row and k-th column
of W, k = 0,1,2,3 is the stream index, n’ is the noise
vector, and the subscript T means the transpose. The sum of
Gaussian distributions 7y is a Gaussian distribution. Since
VZk|w; k|? is the amount of amplitude variation from ny
of Zwoxnk, n’ = {n/} has the same distribution as n.
Similarly, the noise enhancement component in the ideal
SVD-MIMO transmission is n;/&;.

From a comparison with the noise enhancement com-
ponent in the ideal SVD-MIMO transmission, the equivalent

(A-3)

Tx signal Rx signal ~ Detected _slignal
¢ Hx+ny x+H ng
_——-—-
a 5
< sx—» 2
() 5 =
=1 S E E
5 - =3 g 7
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Fig.A-1  Procedure of MIMO transmission without precoding.


http://dx.doi.org/10.1109/twc.2006.1673089
http://dx.doi.org/10.1109/twc.2006.1673089
http://dx.doi.org/10.1109/twc.2006.1673089
http://dx.doi.org/10.1109/twc.2006.1673089
http://dx.doi.org/10.1587/comex.2018xbl0028
http://dx.doi.org/10.1587/comex.2018xbl0028
http://dx.doi.org/10.1587/comex.2018xbl0028
http://dx.doi.org/10.14923/transcomj.2022JBP3019
http://dx.doi.org/10.14923/transcomj.2022JBP3019
http://dx.doi.org/10.14923/transcomj.2022JBP3019
http://dx.doi.org/10.14923/transcomj.2022JBP3019
http://dx.doi.org/10.14923/transcomj.2022JBP3019
http://dx.doi.org/10.1109/t-wc.2008.071098
http://dx.doi.org/10.1109/t-wc.2008.071098
http://dx.doi.org/10.1109/t-wc.2008.071098
http://dx.doi.org/10.1109/t-wc.2008.071098
http://dx.doi.org/10.1016/j.neunet.2018.12.010
http://dx.doi.org/10.1016/j.neunet.2018.12.010
http://dx.doi.org/10.1016/j.neunet.2018.12.010
http://dx.doi.org/10.1016/j.neunet.2018.12.010
http://dx.doi.org/10.1109/glocom.2018.8647328
http://dx.doi.org/10.1109/glocom.2018.8647328
http://dx.doi.org/10.1109/glocom.2018.8647328
http://dx.doi.org/10.1109/glocom.2018.8647328
http://dx.doi.org/10.1109/comst.2018.2846401
http://dx.doi.org/10.1109/comst.2018.2846401
http://dx.doi.org/10.1109/comst.2018.2846401
http://dx.doi.org/10.1109/comst.2018.2846401
http://dx.doi.org/10.1587/transcom.2022cei0002
http://dx.doi.org/10.1587/transcom.2022cei0002
http://dx.doi.org/10.1587/transcom.2022cei0002
http://dx.doi.org/10.1109/twc.2020.3004386
http://dx.doi.org/10.1109/twc.2020.3004386
http://dx.doi.org/10.1109/twc.2020.3004386
http://dx.doi.org/10.1093/ietcom/e88-b.5.1829
http://dx.doi.org/10.1093/ietcom/e88-b.5.1829
http://dx.doi.org/10.1093/ietcom/e88-b.5.1829
http://dx.doi.org/10.1109/comst.2015.2425294
http://dx.doi.org/10.1109/comst.2015.2425294
http://dx.doi.org/10.1109/comst.2015.2425294
http://dx.doi.org/10.1109/comst.2015.2425294
http://dx.doi.org/10.1023/b:stco.0000035301.49549.88
http://dx.doi.org/10.1023/b:stco.0000035301.49549.88
http://dx.doi.org/10.1023/b:stco.0000035301.49549.88
http://dx.doi.org/10.1109/cvpr.2019.00922
http://dx.doi.org/10.1109/cvpr.2019.00922
http://dx.doi.org/10.1109/cvpr.2019.00922
http://dx.doi.org/10.1109/vetecf.2000.887129
http://dx.doi.org/10.1109/vetecf.2000.887129
http://dx.doi.org/10.1109/vetecf.2000.887129
http://dx.doi.org/10.1109/vetecf.2000.887129
http://dx.doi.org/10.1109/access.2020.2993267
http://dx.doi.org/10.1109/access.2020.2993267
http://dx.doi.org/10.1109/access.2020.2993267
http://dx.doi.org/10.1109/access.2020.2993267
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1756006.1859899
https://dl.acm.org/doi/10.5555/1756006.1859899
https://dl.acm.org/doi/10.5555/1756006.1859899
http://dx.doi.org/10.1109/ijcnn.2013.6706860
http://dx.doi.org/10.1109/ijcnn.2013.6706860
http://dx.doi.org/10.1109/ijcnn.2013.6706860

MAKINO et al.: MACHINE LEARNING-BASED COMPENSATION METHODS FOR WEIGHT MATRICES OF SVD-MIMO

singular value £/ is defined by

& = 1/yZkwo kn.
This value is treated in the same way as the singular value

&i

(A-4)

Similarly, the interference component Ax in Eq. (2) is

Ax = (S0 k Xks - Tk 03,1 %K) s (A-5)

where 6; i is the element at the i-th row and k-th column
of A. Each transmitted signal x; is normalized to have an
average power of one. Therefore, the calculated MER can be
determined from the expected value of the undesired power,
i.e., Eq. (4).

Appendix C: Evaluation of Compensation Methods Us-
ing the Coefficient of Determination r>
For regression problems, the coefficient of determination 2
is an index of accuracy, and it is generally used in evalua-
tions [10]. This appendix describes the coefficient of deter-
mination, re-evaluates part of Sect. 6 with the coefficient of
determination, and compares the results with Sect. 7.
The general coefficient of determination 72 is defined
as
I v -
SN tv - i
where {v;} is the correct data, {7; } is the data to be evaluated,
N is the number of data, i is the data index, and v is the
average value of the correct data.

Table A- 1 shows the evaluation results for the coeffi-
cient of determination under the same conditions as Table 4.
First, the degradation from the Ideal case using w/o comp. is
the same regardless of the correlation for evaluation. Since
this result is different from Table 4 and Table 5, the per-
formance evaluation using the coefficient of determination
does not accurately represent the transmission performance
difference between correlations due to quantization degra-
dation.

Next, the methods of giving the correlation value of the
training data are examined. The static correlation (medium)
is worse than the uniformly distributed correlations in the
i.i.d. and low correlation evaluations but is slightly better in
the medium and high correlation evaluations. This behavior
is the same as in Tables 4 and 5.

Comparing the performance using SVR compensation
for all numbers of training data (10k, 30k, 50k), medium
correlation is the highest performance, followed by high cor-
relation, low correlation, and i.i.d. This tendency is very
different from what is shown in Table 5, and we can see
that the performance evaluation based on the coefficient of
determination does not correctly represent the transmission
performance difference between correlations for SVR com-
pensation.

For these reasons, the use of the coefficient of determi-
nation is inappropriate for the determination of this study.

rr=1 (A-6)
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Table A-1 72 evaluation of training data (kernel: polynomial) (in %).
H i.i.d. [ Low cor. [ Med. cor. [ High cor.
Ideal 100 100 100 100
W/o comp. 96.3 96.3 96.3 96.3
Static cor. |10k 78.4 88.7 96.3 95.8
(medium) |30k 85.9 92.6 96.9 96.6
for Train. |50k 88.7 93.9 97.1 96.8
Unif. dist. |10k 94.4 95.1 96.2 95.9
cor. [0,1] |30k 95.6 96.1 96.9 96.7
for Train. |50k 96.2 96.5 97.0 96.9
Repeat
i - \
(A-T)-(A-8 Eq. (A-9) Eq(A'8) | [Fa.(A-10) Eq. (A-11)

-
Egs. /

|

[

allocation
Calculate
MER margi

{Margin;}

power allocation|

Calculate temp.
MER margin

Calculate power

Calculate temp.

Fig.A-2  Process of P-ATC (Fig. 6 in [8]).

Appendix D: Proposed Adaptive Transmission Control
Method

This appendix describes the ATC presented in [8]. This
ATC (called P-ATC) is an extension of the adaptive bit and
power allocation (ABPA) algorithm [4], which matches and
maximizes the “MER margins”’ between the streams. P-
ATC is suited to actual transmission environments, that is,
suited to the proposed calculated MER described in Ap-
pendix B. It is a power allocation and modulation scheme
determination method that maximizes the channel capacity
of each stream. It equalizes the channel capacities for each
stream to the channel capacity of each reference value of
MER. Figure A-2 shows the procedure of P-ATC described
in the reference. First, the provisional power allocation pj“ll
is calculated as

Av. /2 hre.
SNR™¢; /MER}}“’,

Margin?,i (A7)

pjcal1 =1/ Margin?’i ~2,~(1/Margin?’i) , (A-8)

where j is the modulation scheme allocation index, MER;.h?"

is the reference value of MER of the ith stream, and Margino.,l.
is the provisional MER margin. The reference MER is the
value obtained from the required SNR that achieves the re-
quired BER of 10 in the AWGN environment. In this
method, determining j is synonymous with determining the
modulation scheme for each stream.

After that, pj“ll is used as p}“ ; and the provisional MER

margin Margin?’i is updated as follows:

-1 -1
Prop.,0 Av. 22 i S i
MER;;™ = [(SNR & P}nl) + (Ek‘si,kP;'Ifk)/P}rji] ;

"The MER margin is obtained by dividing the MER of each
stream by the reference value of MER for each modulation scheme.
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Margin{ , = MER?f;’P-’O J(MER™® pin,), (A-9)

where MER"%" is the provisional calculated MER. These
equations 1nclude the derivation of the calculated MER in
Eq. (4). Eq. (A-8) gives the power allocation p““1 that opti-
mizes the MER margin when using p "' as the power alloca-
tion. However, changing p . changes the interference power
and the MER changes in turn that is, the appropriate p
changes. The optimal power allocation considering 1nterfer—
ence can be obtained by repeatedly substituting pc‘jll into p
and solving Egs. (A-9) and (A-8). Because p converges
sufficiently in less than three iterations, four 1terat10ns were
used in this study with a margin.

The final output of the MER margin Margm % using the
post-convergence power allocation is calculated as

1 -1
oweei) st o]

Margin§'} = MER,'?" [MER!"". (A- 10)

MER"™-,
Jl

When p I converges perfectly, Margm " is expected to be
the same value regardless of i. In the case of insufficient
convergence, the modulation scheme allocation index jmax
is determined on the basis of the stream having the lowest
MER margin.

Jmax = argmax; {mm MargmCal } . (A-11)

Jjmax, and {p;} = { pCal ;) are the outputs of the P-ATC.
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