
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015
2111

INVITED PAPER Special Section on Network Systems for Virtualized Environment

Application Specific Slicing for MVNO through Software-Defined
Data Plane Enhancing SDN

Akihiro NAKAO†a), Ping DU†b), Members, and Takamitsu IWAI†c), Nonmember

SUMMARY In this paper, we apply the concept of software-defined
data plane to defining new services for Mobile Virtual Network Opera-
tors (MVNOs). Although there are a large number of MVNOs prolifer-
ating all over the world and most of them provide low bandwidth at low
price, we propose a new business model for MVNOs and empower them
with capability of tailoring fine-grained subscription plans that can meet
users’ demands. For example, abundant bandwidth can be allocated for
some specific applications, while the rest of the applications are limited
to low bandwidth. For this purpose, we have recently proposed the con-
cept of application and/or device specific slicing that classifies application
and/or device specific traffic into slices and applies fine-grained quality of
services (QoS), introducing various applications of our proposed system
[9]. This paper reports the prototype implementation of such proposal in
the real MVNO connecting customized smartphones so that we can iden-
tify applications from the given traffic with 100% accuracy. In addition,
we propose a new method of identifying applications from the traffic of
unmodified smartphones by machine learning using the training data col-
lected from the customized smartphones. We show that a simple machine
learning technique such as random forest achives about 80% of accuracy in
applicaton identification.
key words: Software-Defined Networking (SDN), Network Functions Vir-
tualisation (NFV), network virtualization

1. Introduction

Software-Defined Networking (SDN) and Network Func-
tions Virtualization (NFV) have recently caught attentions
from industries as technologies for reducing capital ex-
pense (CAPEX) and operational expense (OPEX), where
software-defined programmable network equipment dis-
penses with high maintenance cost of hardware appliances
and enables rapid revisions of functionalities and the au-
tomation of operation and management (OAM) of network.
While SDN primarily focuses on the programmability on
the control of networking, NFV aims at implementing data
processing functions in software on top of virtual machines
(VMs) especially that exist today as hardware network ap-
pliances. Data packets can be programmatically redirected
by SDN and can be programmatically processed by NFV.

We have recently posited that software-defined data
plane, i.e., arbitrarily defining data plane by software pro-
gramming, significantly enhance the synergy between SDN
and NFV [8]. In carefully designed sandboxes such as vir-
tual machines inside network equipment, we should be able

Manuscript received August 11, 2015.
†The authors are with The University of Tokyo, Tokyo, 113-

0033 Japan.
a) E-mail: nakao@iii.u-tokyo.ac.jp
b) E-mail: duping@iii.u-tokyo.ac.jp
c) E-mail: iwai@nakao-lab.org

DOI: 10.1587/transcom.E98.B.2111

to enhance the data plane functionalities, e.g., those related
to OAM, and publish the SBI (Southbound Interface) for
controllers to use them. Such enhancement is only recently
discussed in a few research projects [1], [4]. Also, NFV is so
far limited to implementing network appliances in software,
and deals neither with crafting new protocols nor with OAM
functionalities. Since the current SDN’s data plane is not so
much flexibly programmable because it is still often imple-
mented in hardware, enhancing SDN with software-defined
data plane would fill the gap in the current NFV.

We have also proposed the application of software-
defined data plane to defining new services for Mobile Vir-
tual Network Operators (MVNOs) that obtain network ser-
vices from mobile network operators and resell network
services to customers at their own prices without owning
the wireless network infrastructure on their own [9]. More
specifically, we have defined application and/or device spe-
cific slicing that classifies application and/or device specific
traffic into slices and applies fine-grained quality of services
(QoS) for MVNO, introducing various applications of our
proposed system. There are a large number of MVNOs pro-
liferating all over the world and most of them provide low
bandwidth at low price. We have proposed a new business
model for MVNOs to empower them with capability of tai-
loring fine-grained subscription plans that can meet users’
demands, for example, abundant bandwidth is allocated for
some specific applications, but the rest of the applications
are limited to low bandwidth.

In this paper, we show our prototype implementation
of our proposal in [9] in the real MVNO connecting cus-
tomized smartphones so that we can identify applications
from the given traffic with 100% accuracy using deeply pro-
grammable nodes developed in FLARE project [1]. In ad-
dition, we propose a new method of identifying applica-
tions from the traffic of unmodified smartphones by ma-
chine learning using the training data collected from the
customized smartphones. We show that a simple machine
learning technique such as random forest [5] achieves about
80% of accuracy in application identification.

The rest of the paper is organized as follows. Sec-
tion 2 introduces our design decisions for enabling appli-
cation and/or device specific slicing utilizing programmable
software-defined data plane. Section 3 discusses various ap-
plications of our proposed system. Section 4 introduces our
prototype implementation and experiments using our pro-
grammable network node architecture called FLARE and
shows our preliminary evaluation on application identifica-

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

2112
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015

Fig. 1 Application/device specific slicing.

tion using machine learning. Finally, Sect. 5 discusses future
work and Sect. 6 briefly concludes.

2. Design

This section introduces our preliminary design for ap-
plication and device specific slicing to enable Software-
Defined Networking and Network-Functions Virtualization
for MVNO.

2.1 Overview

In order to realize application and/or device specific slic-
ing, as shown in Fig. 1, we have designed trailer slicing [1]
where meta information on applications and devices at the
end of packets (as discussed in more detail in Sect. 2.3.1.)
Note that in our design, the meta-information may include
many other kinds of information, but for the sake of brevity,
we limit its scope to applications and devices within this pa-
per.

In generic trailer slicing, each packet may carry trailer
bits containing meta information of the packet, such as
from which application process and/or from which device
a packet has been transmitted. For example, we install our
software on smartphones for capturing the very first packet
an application transmits, i.e., a TCP SYN packet when the
application establishes a TCP session, and then for attach-
ing trailer. In more detail, we capture the header informa-
tion of a TCP SYN packet and examine the process table

and the socket table of the operating system to look for a
corresponding application process that uses the flow space
(such as IP addresses and port numbers) and attach the in-
formation regarding the application process such as a name
and status as a trailer. Note that this approach can be easily
applied also any other transport protocol such as UDP. Also
we can attach device information as well as that of applica-
tion.

A programmable node, e.g., FLARE (explained in 4.1)
at the gateway to the MVNO backhaul network detects the
trailer attached to the unusual TCP SYN (with non-zero pay-
load size) or the packet that uses a flow space for the first
time, and decodes/removes the information in the trailer. It
also observes the flow space information of the packet at
the same time and maps the information on the application
processes and that of the flow. When the SDN controller
can receive this mapping information, the subsequent pack-
ets can be controlled by the SDN switches along the route to
the destination according to the flow space information as-
sociated with application/device information. For example,
we can perform QoS traffic control such as bandwidth throt-
tling for particular applications/devices using the traditional
flow-based traffic control.

2.2 Filling a Gap between Application/Device and Net-
work Programming

Although SDN and NFV are considered useful tools for pro-
grammable networking, we observe a gap between develop-

NAKAO et al.: APPLICATION SPECIFIC SLICING FOR MVNO THROUGH SOFTWARE-DEFINED DATA PLANE ENHANCING SDN
2113

ment of applications, services and devices, and that of pro-
grammable networking, mainly caused by the gap between
abstractions defined in two worlds.

In the current Internet, applications and services im-
plemented on end systems use socket interface to utilize
services provided by the communication infrastructures.
Since socket interface provides clear separation between
end-systems and networking, the context of applications,
services and devices are dismissed when packets are trans-
mitted into the network. In other words, unless performing
deep packet inspection (DPI) on packets or inferring from
various characteristics such as packet length and timing, it
is difficult to tell which application context sends/receives
those packets.

Operating systems on top of end-systems use processes
and threads as abstraction for programming applications and
services. The current SDN networking equipment uses flow
information as abstraction for programming network. In a
sense, our proposal for application/device specific slicing
bridges the abstractions used in operating systems and pro-
grammable networking.

2.3 Slicing Mechanism

2.3.1 Trailer-Slicing

The idea of trailer slicing is to attach a slice identifier at the
end of the packets under the agreement of the existence of
such bits among the users of the infrastructure, for example
in mobile backhaul networks, at cloud data centers, and in
any other administrative domains where the agreement may
be established. As briefly explained in 2.1, a slice identi-
fier may not just be an explicit number, but can be the meta
information to identify a slice such as application name or
device type under the agreement.

In SDN, we have been using the header information
to define a slice, specifically, so-called flow information,
which is a combination of MAC addresses, IP addresses
and port numbers. However, when we consider coopera-
tion between operating system entities and networking, we
conclude that we should use a more straightforward iden-
tifier, such as a process name, an application name and
a device type, etc. We can define a name space so that
within the name space a slice can be identified uniquely, e.g.,
com.android.google.youtube in case of the name space
for process names in the Android operating system.

The idea of trailer slicing is similar to MPLS in that
we use bits (that can be view as label) for switching, but
the difference is that the position of bits in layers and in
packets and the length of the bits. We intentionally put a
slice identifier at the end of packets. With adjustment of
header fields in L3 and/or L4, we can get packets through
with trailers through the existing network equipment, since
they treat trailers as L7 data bits. Of course, we need to
remove trailers before packets reach the destination, but that
should be taken care of by the agreement of trailer slicing
among administrative domain.

One may argue that we could use header option fields
instead of a trailer for storing a slice identifier. However,
there is a risk that non-standard header options may be re-
moved or may cause network equipment to malfunction.
Also option fields may be in short of bits, flexibility and ex-
tensibility. To avoid pressing header handling on the part of
legacy network equipment, we decide to use a trailer since
all the network equipment along the route of a packet treats
a trailer as a part of payload data, so it keeps preserved till
it gets parsed and removed. However, our scheme could be
easily implemented in header options of course, when the
concerns above are not an issue.

Note that not all packets need to carry trailers, although
such design is certainly possible. As long as we agree on
which packet in a flow carries a slice identifier, we can estab-
lish mapping between the traditional flow information and
the slice identifier in network equipment. After the mapping
is created, from then on, flow information could be used for
the slice identifier.

As an aside, there is an interesting use case of trailer
slicing called TagFlow [6], where we push expensive com-
plex classification to the edge of the network and use one
field trailer to simplify the classification at the core of net-
work. In TagFlow, every packet is expected to carry a trailer.

2.3.2 TCP-SYN Piggy-Backing

Some may argue that piggy-backing data in TCP SYN may
render incompatibility and security issues. However, such
unusual piggy-backing is not uncommon today. For exam-
ple, Google does this in TCP Fast Open (TFO) [10] for the
different purpose than ours, where they attempt to reduce the
number of packets and the delay in three-way handshaking,
storing “cookies” in newly emitted TCP SYN’s payloads
for already authenticated end systems via the past three-way
handshakes.

2.4 Signaling between End-Systems and Network

2.4.1 Out-of-Band Signaling

Even if applications keep track of their flow information,
they need to let the SDN controller know the flow informa-
tion out of band, that is, besides the application data traffic,
they must open control channels to convey such flow infor-
mation to the SDN controller so that they may be able to
control their flows. This approach is prohibitive for a large
number of small devices such as smartphones and sensors
since it may become significant overhead for them.

2.4.2 In-Band Signaling

We propose a method to modify operating systems of the
end systems such as smartphones, so that we can find ap-
plication process information and convey such information
through an in-band communication. Our prototype system
attaches the application process information as a trailer on

2114
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015

the part of the end systems, and decodes the information in
it then removes it on the part of the programmable node lo-
cated in the backhaul, ideally at the first hop from the gate-
way from a mobile network operator (MNO). In this way,
we learn the mapping of the information on application pro-
cesses and flows and inform the SDN controller so that sub-
sequent nodes can just perform the conventional flow-based
traffic control.

2.5 Wide-Area End-System Management

There are two main challenges in designing a wide-area end-
system management: security and reliability. The manage-
ment system should have identification and authentication
mechanisms so that it cannot be easily hijacked. Reliability
means that the control messages should be able to reach to
end-system independent of the network/device status.

We address the above two challenges with cloud ser-
vices such as Google Cloud Messaging (GCM) service. Al-
though from now on, we explain our design for wide-area
end-system management using the GCM service, for the
sake of ease of understanding of the requirements in our de-
sign, any other similar cloud service system can be used in
our system design.

When we register with GCM service, we are issued
with a Sender ID as well as a Sender Auth Token. The former
enables smartphones to talk to the GCM server while latter
enables our management system to talk to the GCM server.
Since a smartphone may be in sleep or offline mode that
cannot receive/process a control message from our manage-
ment system instantly, the management system doesn’t send
control messages to smartphones directly. Instead, it sends a
message via the GCM server. The GCM server can enqueue
and store the message in case a smartphone is offline. When
it is online, the GCM server checks the message queue and
sends stored messages to the smartphones. The GCM server
can be also configured to wake up smartphones in sleep on
receiving GCM messages.

Figure 2 illustrates the basic work flow of a our de-
signed wide-area end-system management. It consists of
two parts: registration (red arrows) and messaging (blue ar-
rows).

Steps 1-2: When a smartphone boots up, it sends a

Fig. 2 Wide-area end-system management architecture.

registration request to the GCM server. After the successful
registration, the GCM server issues a device unique regis-
tration id back to the smartphone.

Step 3: After receiving the registration id, the smart-
phone sends its registration id with IMEI to end-system
management system (MVNO center). The MVNO center
stores the information in its database. We use IMEI to iden-
tify a smartphone user because we find that some carriers
may reassign IP address to a smartphone when the phone is
in sleep. A phone number is not a good candidate for the
identifier since a user may unplug or change his/her SIM
card.

Steps 4-5: When MVNO center needs to send a GCM
message to a smartphone, it first looks up the database
and gets the registration id. Then, it sends a message to
the GCM server together with registration id. The GCM
server forwards the message to a corresponding smartphone.
To check the smartphones’ states, the MVNO center sends
keepalive GCM messages to the smartphones periodically.

2.6 Deep Data Plane Programmability

We should note that in order to enable application/device
specific slicing for MVNO, data-plane functionality must be
extended from the current SDN model where data-plane el-
ements have limited pattern match capabilities and too few
actions. Especially note that the manipulation of the packet
trailer at Layer 7 (L7) is largely missing from the current
SDN data-plane elements and the extension to support such
manipulation is useful to enable new applications.

3. Applications

3.1 Traffic Engineering

Traffic engineering such as Quality of Service (QoS) and
route/switch control for specific applications and devices
is the immediate application of our proposal in this paper.
We can create slices according to (1) application names, (2)
application processes, (3) device types, and (4) device sta-
tus/location, etc. However, it is obviously possible to extend
a trailer to include much more information about applica-
tions, devices, the context of usage of them, etc.

3.2 Value-Add Services

After classifying application and/or device specific traffic
into slices, we can apply NFV virtual functions to perform
useful data processing such as compression and decompres-
sion and packet caching, etc. This application helps differ-
entiating competing applications such as web browsers. For
example, a certain browser can benefit from installing trans-
parent data cache near smartphones, while other browsers
may not. We expect more and more applications on smart-
phones can be empowered by small, yet smart functionali-
ties embedded in NFV for aiding the operations of the ap-
plications.

NAKAO et al.: APPLICATION SPECIFIC SLICING FOR MVNO THROUGH SOFTWARE-DEFINED DATA PLANE ENHANCING SDN
2115

3.3 In-Network Security

Another interesting example application is in-network secu-
rity. Malware containment in a slice is one example appli-
cation. In our prototype, as long as malwares on the smart-
phones transmit packets, we can catch the traffic from those
processes and contain the traffic into a slice, by examining
the application process names associated with flows. Our
prototype system even raises alerts to smartphones that they
may have accidentally installed malwares on them once their
traffic get detected.

Also, in-network parental control is another example
application in the security area. Usually, parents would
like to restrict the usage of applications on their childrens’
smartphones by installing parental control software on them.
However, in most of the cases, those applications may be re-
moved easily by the children. In our system, since applica-
tion and device specific traffic can be classified into a slice,
we can easily set policy and control bandwidth such traffic.
For example, the traffic from a specific application on a spe-
cific device can be controlled on the part of network, not on
the device, for a determined period of time. The parental
control enabled by this mechanism is not easily removed by
the hands of the children.

3.4 Big-Data Analysis

Neither capturing nor deeply inspecting users’ traffic are al-
lowed in several countries such as Japan. However, MVNO
operators are interested in collecting application specific
bandwidth usage to provide more fine-grained subscription
plan. We intentionally design our system so that the pri-
vacy of user data (L7 payload data) may not be infringed. If
users are fine with their application usage being collected,
we believe we can alleviate the dilemma between MVNOs’
demands for bandwidth usage data and users’ privacy. Most
of the related work for identifying applications from the traf-
fic trace relies on deep packet inspection (DPI) of the user
data, which may not work if DPI is restricted by law or the
packet payload data is encrypted.

There are lots of MVNOs proliferating in Japan,
but most of them offer low bandwidth at cheap price,
which causes fighting for selling ever-lower-cost subscrip-
tion plans among those MVNOs. We believe an MVNO
may be able to create a fine-grained and tailored subscrip-
tion plan that can meet users’ demands, for example, pro-
visioning bandwidth for some specific applications, but the
rest of the applications are limited to low bandwidth. In or-
der to come up with viable subscription plans, application
traffic analysis becomes a key.

3.5 Application-Specific QoS For Unmodified Smart-
phones

Another possible application of our proposed system is ap-
plication specific QoS for unmodified smartphones. We pro-

pose a method for inferring applications from given traffic
in real-time by machine learning using reliable training data
generated by the customized smartphones as discussed so
far.

In the existing research, the proposed method often
captures traffic data for a long time, e.g., for several months
and then characterizes it using deep packet inspection (DPI),
thus has limitations such as costly generation of training
data (e.g., large volume of traffic capture data), privacy vi-
olation caused by inspecting packet payloads via DPI, and
difficulty of DPI due to encryption. As a result, they end up
with unreliable training data for classifying traffic.

In contrast, our method relies only on a small number
of customized smartphones that generate the mapping be-
tween characterization of a given flow and the application
that transmit the flow. We characterize a given flow using
only stateful behaviors such as means and variations of the
packet length or in header information in a train of packets
contained in the flow, without even looking at the payload of
packets. Therefore, our method compensates for the draw-
backs of the existing methods in that (1) we can generate
the training data in realtime (less cost), and (2) we neither
violate the privacy nor have difficulty of DPI in encrypted
flows.

Figure 3 illustrates our proposed method. We capture
the training data, that is, the packets tagged with application
information, transmitted from a small number of customized
smartphones, store them for a certain period and character-
ize them in a batch using the stateful information of the flow
explained above. Thus we construct a classifier according
to application kinds using the characterization of the train-
ing data. Then, we classify the traffic that is not tagged with
the application information.

According to our test run of the proposed method, our
proposal can analyze the real traffic captured at an MVNO
and successfully identify mobile applications with about
80% credibility when the learning period is 5 days using
a simple machine learning technique called random forest
[5], an ensemble learning method where a multitude of de-
cision trees are constructed at training time, each of which
is obtained by a randomly sampled subset of training data.

Although our method seems promising, we have lots

Fig. 3 In-network application classification through machine learning.

2116
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015

of challenges for the near future, such as increasing the ac-
curacy that is sufficient for application-specific QoS and in-
vestigating which machine learning algorithm is best for ap-
plication identification, such as deep learning and support
vector machine.

In Sect. 4, we introduce more detailed experiment re-
sults regarding this application.

4. Implementation and Evaluation

4.1 FLARE

FLARE is a deeply programmable network node architec-
ture [1] utilizing a hybrid of computational resources, such
as network processors, general purpose processors, (and op-
tionally GPGPU) hierarchically to extend data plane pro-
cessing functions easily by software program.

FLARE tackles three research challenges, (1) ease of
programming, (2) reasonable and predictable performance,
and (3) enabling multiple concurrent isolated logics. For (1),
we introduce Toy-Block networking programming model
[7] to facilitate drag and drop data plane programming.
For (2), we combine of high-frequency small-number-core
processors for control and management functionalities, and
low-frequency many-core processors for massively parallel
processing for a large number of flows. And finally, for (3),
we employ a lightweight resource virtualization technique
called resource container for isolation of multiple logics.
For the best isolation, we decide to partition many cores into
groups and deploy a resource container per group.

The goal of FLARE is similar in spirit to that of Open-
DataPlane [3], especially in that the purpose is to flexibly
and easily extend data plane. However, the key difference is
that we consider isolation of resources to support multiple
concurrent data plane logics via virtualization. For example,
FLARE program multiple concurrent logics such as Open-
Flow 1.0 and OpenFlow 1.3 data plane elements in isolated
execution environments.

4.2 Prototype Implementation

Utilizing FLARE prototypes, we have implemented our pro-
totype system to enable application and/or device specific
slicing for MVNO as shown in the overview of our design
depicted in Sect. 2.1. We have developed Android smart-
phone software to enable trailer slicing, i.e., embedding a
slice identifier at the trailer of TCP SYN packets and QoS
traffic engineering per slice on our FLARE platform [1]. We
have discovered that we can use TCP SYN trailers unless
ISPs do not filter unusual TCP SYN in fear of SYN Flood-
ing, which is not really performed in most MVNO services
of today.

In implementing our prototype, we reconsider south-
bound API (SBI) for your application. As reviewed in
Sect. 2.2, we believe application users and developers,
process-based traffic control is more natural than flow-based
one. Extending the Openflow model, the right abstraction

for programming in this case may be one such as,

<Application/Device><Action><Stat>,

instead of

<Flow><Action><Stat>,

although we may not have to follow OpenFlow’s conven-
tion for programming abstraction and also one could rather
define one’s own programming abstraction, as long as it is
open and published as an API.

We also jointly operate our prototype system with
an ISP in Japan with 65 Android phones and success-
fully demonstrate our prototype system works on top of an
MVNO. We plan to extend our experiments to enable vari-
ous application ideas shown in Sect. 3. Note that the same
prototype but with WiFi network has been demonstrated
successfully at various venues such as GEC20 [2]. We be-
lieve that empowering MVNOs with application/device spe-
cific traffic engineering would become the norm of the next
generation MVNO business.

4.3 Characteristics of MVNO Network

In order to manage MVNO effectively, it is desirable to
understand the traffic pattern and the user behaviors. In
this section, we show the statistics collected from the real
MVNO with FLARE programmable nodes deployed by
connecting customized smartphones.

Usually, MVNO may not be able to obtain the accurate
classification of the total amount according to the transmit-
ting applications. However, our proposed system can show
the breakdown of application traffic with 100% accuracy as
follows.

Figure 4 shows the fractions of application sessions ob-
served in the week of Feb 21 to 27, 2015. We discover that
the main part of the traffic sessions is generated by a small
fraction of applications and that 10 popular applications ac-
count for more than 80% sessions while all the other appli-
cations have less than 20% sessions. We believe that per-app
traffic engineering is possible since we only need to track
and monitor a few popular applications.

Figure 5 shows the real-time bandwidth monitoring of
each application in the same week as that in Fig. 4. We

Fig. 4 Fractions of application sessions observed (Feb. 21–27, 2015).

NAKAO et al.: APPLICATION SPECIFIC SLICING FOR MVNO THROUGH SOFTWARE-DEFINED DATA PLANE ENHANCING SDN
2117

Fig. 5 Per-application bandwidth monitoring (Feb. 21–27, 2015).

can monitor not only traffic from the normal applications
but also that from tethering devices. Usually, a tethering de-
vice can generate much more traffic than a smartphone. ISPs
would want to make users pay extra charge for their tether-
ing traffic on top of regular subscription plan. How to detect
and block unauthorized tethering traffic has been an impor-
tant issue for mobile carriers to manage their networks more
efficiently. We should be able to provide the solution to this
problem if an MVNO adopts our proposed mechanism of
creating application/device specific slices.

4.4 Application Identification Without Customizing
Smartphones

In order to examine the validity of our proposal introduced
in Sect. 3.5, that is, a method for inferring applications from
given traffic in real-time by machine learning using reliable
training data generated by the customized smartphones, we
have conducted analysis on the traffic data captured at a real
MVNO deployed with FLARE programmable nodes.

We have distributed 65 customized smartphones to
the university students and get them connected to the real
MVNO network with a FLARE programmable node de-
ployed at the packet gateway (P-gateway). We have cap-
tured the traffic at the FLARE node during the period from
2014/11/20 to 2014/12/13, where the total traffic includes
500 kinds of mobile applications and the amount of the data
is about 6 GB per day.

Analyzing the captured data, we have evaluated how
accurately we can infer the application that has transmitted
the packets by observing the characteristics of the flow of
the packets after we characterize the traffic using a simple
machine learning technique called random forest [5]. For
example, we use a combination of flow characteristics such
as addresses, ports, packet lengths, jitter, TCP headers, etc.
In our analysis, after collecting the data for a various learn-
ing period, we train the classifier using them and compare
the accuracy of inference of applications.

4.4.1 Inference Accuracy by Naı̈ve Method

First, using random forest, we can identify the traffic with
the accuracy of about 80% after 5 days of machine learn-

Fig. 6 Identification accuracy (without rejection region).

Fig. 7 Improvement in inference accuracy when extending learning pe-
riod by one day.

ing. Also, we observe that the benefit is marginal even if we
increase the learning period.

Figure 6 shows the accuracy of the application identi-
fication by our method. This result shows our method can
identify about 80% mobile application when we set the term
of the learning period 5 days. The error bar of each plot
represents the standard deviation (likewise in all the other
graphs from here on).

We examine the effectiveness of expanding the length
of the learning period. Figure 7 shows the improvement in
inference accuracy by extending learning period by one day
after a given period (x-axis). For example, the improvement
is about 5% if we extend the learning period from two days
to three. Figure 7 indicates that the improvement by extend-
ing the learning period by one day after five days is less than
1%.

4.4.2 Inference Accuracy with Rejection Region

Second, after the first experiment, we figure that our clas-
sifier cannot infer the correct application when the many
candidate applications have the almost same likelihood of
inference, especially when we encounter a new application
that has not been learned before. In this case, we should
categorize that as “unknown” (meaning unable to classify)
to avoid incorrect inference. Therefore, we set the rejection
region and make the classifier reject the inference when it

2118
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015

Fig. 8 Identification accuracy (with rejection region, including rejec-
tion).

Fig. 9 Identification accuracy (with rejection region, excluding rejec-
tion).

Fig. 10 Accuracy inference comparison among all methods.

cannot identify the application precisely.
Figures 8, 9 and 10 show the following results. Fig-

ure 8 shows the accuracy of all the inferences including the
rejected ones, i.e., calculates the accuracy treating the re-
jected inferences as failure. Figure 9 shows the accuracy of
all the inferences except the rejected ones. Figure 10 shows
the comparison of the accuracies mentioned above without
error bars for the sake of visibility.

These graphs indicate that setting the rejection region
reduces false positive and that expanding the learning period
reduces the variance of the accuracy and raises the mean

Fig. 11 Cumulative distribution of applications with total days of flow
appearance.

Fig. 12 Effect of limiting scope of inference (limited: limiting the num-
ber of target applications to those frequently observed, unlimited: inferring
all the applications observed).

of the accuracy, thus, it is meaningful to set the rejection
region.

4.4.3 Limiting the Scope of Inference

Figure 11 shows cumulative distribution of applications with
total days of flow appearance, i.e., how many days we ob-
serve application flows during the course of the experiment.
We observe that most applications do not always connect to
the Internet and some of them are not observed all the time,
which may have negative impact on the accuracy of infer-
ence.

Therefore, we evaluate the effect of limiting scope of
inference, i.e., limiting the number of target applications to
the ones that are frequently observed (more than 6 days in
total) as shown in Fig. 12. Figure 12 indicates that if we limit
the number of target applications to the ones that are ob-
served more than 6 days during our experiment of 21 days,
we can improve the accuracy of application inference by
more than 2%.

5. Future Work

There are several possible improvements to be considered in
near future in our proposed system.

NAKAO et al.: APPLICATION SPECIFIC SLICING FOR MVNO THROUGH SOFTWARE-DEFINED DATA PLANE ENHANCING SDN
2119

First, in terms of application inference shown as one
of the applications in Sect. 4.4, we plan to employ the other
more advanced machine learning techniques. Our immedi-
ate future plan in this regard is to extend our analysis by
using the other techniques such as support vector machine,
bag of words, deep learning etc.

As for the future work for the proposed fundamen-
tal MVNO infrastructure, there are several important exten-
sions we plan to explore.

First, we plan to design high-speed network functions
within SDN data-plane using FLARE nodes so that we may
execute a simple network function without external com-
putational boxes beside FLARE nodes since usually the
data center rack space cost is the primary concern for most
MVNOs. To achieve high-speed packet I/O, an SDN data
plane element built on top of FLARE must receive pack-
ets from physical link directly, bypassing Linux kernel net-
work stack. This may speed up packet-level network func-
tions such as router and load balancer to tens of millions
packets per second. Session-level network functions such
as Web HTTP proxies that perform stateful data process-
ing with high-layer information are still beyond the current
SDN architecture where only simple stateless actions are
supported. We plan to integrate more high speed network
functions such as user-space TCP/IP stack into SDN data
plane without sacrificing the performance too much.

Second, our work can be extended to support non-IP
data plane network functions such as information-centric
network (ICN). In a software-defined ICN network, the no-
tion of a flow can be mapped to an ICN entry at the edge
network while the core ICN functions can be implemented
in a non-IP environment.

Finally, our work can be extended to support intelligent
network management. For example, with big-data analysis
of social networks (e.g., Facebook and Twitter) and appli-
cation/device based flow patterns collected in real-time, we
can reactively deal with possible network disruptions caused
by large social events, the Internet flaming acts, natural dis-
asters, etc. We may also proactively program the data-plane
for business agility and fast disaster recovery.

6. Conclusion

Our contributions in this paper are five-fold.
First, we propose application and/or device specific

slicing applying the concept of software-defined data plane
to defining new services for MVNOs. More specifically,
we use software-defined deeply programmable data plane
to handle trailer bits to attach a slice identifier, so that we
can classify application and/or device specific traffic into
slices and apply fine-grained quality of services (QoS). Most
MVNOs of today provide low bandwidth at low price and
thus, they are forced into fighting for the market with ever-
lower-cost subscription plans. However, low flat-rate band-
width services may not be attractive to users any more, since
certain applications, such as a YouTube browser needs more
bandwidth than low flat-rate bandwidth. Our solution can

provide pay-as-you-go bandwidth services for a specific set
of applications of customers’ choice, and low flat-rate band-
width services for the rest of applications. We expect our
proposed system change business models of MVNOs and
enhance the market of the MVNO business.

Second, we also introduce various applications of
our proposed system, e.g., (1) traffic engineering based
on application names, application processes, device types,
and device status/location etc., (2) value-add services
for specific applications and devices such as acceleration
of content access and traffic reduction through compres-
sion/decompression and packet caching, (3) realizing in-
network security such as malwares containment in a slice,
and in-network parental control, (4) big-data analysis to im-
prove the bandwidth utilization according to the statistical
usage of applications and devices, and (5) application and
device specific QoS even for unmodified smartphones, us-
ing machine learning on the training data collected from the
customized smartphones to tag application/device informa-
tion.

Third, our contribution includes not only providing
new services for MVNOs, but also pointing out a com-
pelling use case of software defined data plane, which is
extended from the current SDN and NFV for allowing one
(1) to define useful data processing within data plane in SDN
and (2) to publish the access method to them as a (sub)set of
southbound interface (SBI). We strongly believe that there
are more and more useful use cases of software-defined data
plane.

Fourth, we show our prototype implementation using
FLARE deeply programmable nodes in a real MVNO net-
work and proves that our concept in fact works in the real
environment. We also show a preliminary analysis and eval-
uation using collected data to justify one of the applications,
a new method of identifying applications from the traffic
of unmodified smartphones by machine learning using the
training data collected from the customized smartphones.
We show that a simple machine learning technique such as
random forest achieves about 80% of accuracy in applica-
tion identification.

At last, another rather high-level contribution is, while
most people are paying attention to OPEX/CAPEX reduc-
tion in SDN/NFV, we attempt to create new values out of
applications of SDN/NFV. For this, we believe that it is im-
portant to think application-driven programmable network-
ing where starting from the application that cannot be built
without the help from the in-network functions, i.e., the net-
work functions embedded inside the data plane of SDN so-
lution. Developing generic infrastructure to accommodate
all the applications, that is, bottom-up approach may not
correctly define APIs. It is important to think top-down,
from applications that do not exist today due to the limi-
tation in the network, down to defining what are necessary
inside the data plane of SDN.

We strongly believe that enabling deeper programma-
bility in SDN data-plane with ease of programming and rea-
sonable performance surely open the door to bringing more

2120
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015

innovations.

References

[1] Flare: Deeply programmable network node architecture. http://
netseminar.stanford.edu/10 18 12.html

[2] Geni engineering conference 20. http://groups.geni.net/geni/wiki/
GEC20Agenda/EveningDemoSession

[3] Opendataplane. http://www.opendataplane.org
[4] Protocol oblivious forwarding. http://www.poforwarding.org
[5] L. Breiman, “Random forests,” Mach. Learn., vol.45, no.1, pp.5–32,

2001.
[6] H. Farhady and A. Nakao, “TagFlow: Efficient flow classification

in SDN,” IEICE Trans. Commun., vol.E97-B, no.11, pp.2302–2310,
Nov. 2014.

[7] M. Fukushima, Y. Yoshida, A. Tagami, S. Yamamoto, and A. Nakao,
“Toy block networking: Easily deploying diverse network func-
tions in programmable networks,” Proc. 2014 IEEE 38th Interna-
tional Computer Software and Applications Conference Workshops,
pp.61–66, 2014.

[8] A. Nakao, “Software-defined data plane enhancing SDN and NFV,”
IEICE Trans. Commun., vol.E98-B, no.1, pp.12–19, Jan. 2015.

[9] A. Nakao and P. Du, “Application and device specific slicing for
MVNO,” 2014 First International Science and Technology Confer-
ence (Modern Networking Technologies) (MoNeTeC), pp.1–5, Oct.
2014.

[10] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan,
“TCP fast open,” Proc. Seventh Conference on Emerging Network-
ing EXperiments and Technologies — CoNEXT’11, pp.1–12, 2011.

Akihiro Nakao received B.S. (1991) in
Physics, M.E. (1994) in Information Engineer-
ing from the University of Tokyo. He was
at IBM Yamato Laboratory, Tokyo Research
Laboratory, and IBM Texas Austin from 1994
till 2005. He received M.S. (2001) and Ph.D.
(2005) in Computer Science from Princeton
University. He has been teaching as an associate
professor (2005–2014) and as a professor (2014-
present) in Applied Computer Science, at Inter-
faculty Initiative in Information Studies, Gradu-

ate School of Interdisciplinary Information Studies, the University.

Ping Du received B.E. and M.E. degree
from University of Science and Technology of
China in 2000 and 2003, respectively. He re-
ceived a Ph.D. from the Graduate University for
Advanced Studies in Japan in 2007. From 2008,
he worked for the National Institute of Informa-
tion and Communication Technologies (NICT)
of Japan. Now, he works for the University
of Tokyo as a project assistant professor. His
research interests include optical network, net-
work security, network virtualization etc.

Takamitsu Iwai received B.A. degree from
University of Tokyo in 2015. He is a graduate
student at Graduate School of Interdisciplinary
Infomation Studies, Univesity of Tokyo now.

http://netseminar.stanford.edu/10_18_12.html
http://groups.geni.net/geni/wiki/GEC20Agenda/EveningDemoSession
http://www.opendataplane.org
http://www.poforwarding.org
http://dx.doi.org/10.1023/a:1010933404324
http://dx.doi.org/10.1587/transcom.e97.b.2302
http://dx.doi.org/10.1109/compsacw.2014.14
http://dx.doi.org/10.1587/transcom.e98.b.12
http://dx.doi.org/10.1109/monetec.2014.6995592
http://dx.doi.org/10.1145/2079296.2079317

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

