
2180
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015

PAPER Special Section on Network Systems for Virtualized Environment

Accelerating the Performance of Software Tunneling Using a
Receive Offload-Aware Novel L4 Protocol

Ryota KAWASHIMA†a) and Hiroshi MATSUO†b), Members

SUMMARY An L2-in-L3 tunneling technology plays an important role
in network virtualization based on the concept of Software-Defined Net-
working (SDN). VXLAN (Virtual eXtensible LAN) and NVGRE (Network
Virtualization using Generic Routing Encapsulation) protocols are being
widely used in public cloud datacenters. These protocols resolve traditional
VLAN problems such as a limitation of the number of virtual networks,
however, their network performances are low without dedicated hardware
acceleration. Although STT (Stateless Transport Tunneling) achieves far
better performance, it has pragmatic problems in that STT packets can be
dropped by network middleboxes like stateful firewalls because of modi-
fied TCP header semantics. In this paper, we propose yet another layer 4
protocol (Segment-oriented Connection-less Protocol, SCLP) for existing
tunneling protocols. Our previous study revealed that the high-performance
of STT mainly comes from 2-level software packet pre-reassembly before
decapsulation. The SCLP header is designed to take advantage of such
processing without modifying existing protocol semantics. We implement
a VXLAN over SCLP tunneling and evaluate its performance by compar-
ing with the original VXLAN (over UDP), NVGRE, Geneve, and STT. The
results show that the throughput of the proposed method was comparable
to STT and almost 70% higher than that of other protocols.
key words: Software-Defined Networking, network virtualization, Network
Function Virtualization, datacenter networks

1. Introduction

Many functionalities of various network appliances includ-
ing routers, switches, and firewalls have been migrated to
virtual networks with the notion of Network Function Virtu-
alization (NFV) [1]. A cutting-edge network virtualization
is mainly based on two approaches, Hop-by-Hop and Edge-
Overlay, however, the former requires a fully OpenFlow [2]
ready network environment. The Edge-Overlay approach or
Network Virtualization Overlays over Layer 3 (NVO3) [3]
introduces L2-in-L3 tunneling between Tunnel End-Points
(TEPs) to convey virtual traffic over physical networks. That
is, the performance characteristic of the tunneling protocol
can affect overall performance of virtual networks. In the
NFV concept, high-performance ability of virtual networks
is a key requirement for service quality.

VXLAN (Virtual eXtensible Local Area Network) [4]
and NVGRE (Network Virtualization using Generic Rout-
ing Encapsulation) [5] are representative L2-in-L3 tunnel-
ing protocols used in commercial datacenters. In particular,

Manuscript received March 27, 2015.
Manuscript revised June 26, 2015.
†The authors are with the Dept. of Computer Science and En-

gineering, Nagoya Institute of Technology, Nagoya-shi, 466-8555
Japan.

a) E-mail: kawa1983@ieee.org (Corresponding author)
b) E-mail: matsuo@nitech.ac.jp

DOI: 10.1587/transcom.E98.B.2180

VXLAN has been adopted as RFC 7348 and supported by
various platforms. However, VXLAN-based communica-
tions with software switches limit the performance of virtual
networks compared with no-encapsulation communications
[6], and the performance of NVGRE is almost the same with
VXLAN. STT (Stateless Transport Tunneling) [7] had been
proposed to achieve high-performance tunneling by exploit-
ing a hardware offload feature of NIC (TCP Segmentation
Offload [8], TSO). The STT protocol has a pseudo-TCP
header to disguise STT packets as normal TCP packets as
well as to make the STT protocol connection-less and state-
less. The use of the pseudo-TCP header, however, causes an
additional problem in that middleboxes such as stateful fire-
walls and load balancers can discard STT packets because of
the modified header semantics. Therefore, yet another high-
performance and middlebox-transparent tunneling protocol
is required.

In our previous work [9], we analyzed the performance
of STT and evaluation results revealed that the cause of the
high-performance ability of the protocol is 2-level software
packet pre-reassembly before decapsulation, rather than
TSO feature. In practice, a software-implemented Generic
Receive Offload (GRO) [10] feature which reassembles the
received packets before SoftIRQ improves the performance
of STT considerably. This implicates that the pseudo-TCP
header (or the TSO feature) is not necessary to realize high-
performance tunneling. Based on the previous results, this
paper proposes a novel L4 protocol named SCLP (Segment-
oriented Connection-less Protocol) ∗. SCLP is a simple
connection-less protocol but is designed to take advantage
of the GRO feature unlike UDP, and the performance of ex-
isting tunneling can be improved by replacing the original
L4 protocol with SCLP. Besides, SCLP does not face the
packet discarding problem because header semantics of ex-
isting protocols are not changed.

In this paper, we describe the design and implemen-
tation of the SCLP protocol as well as how SCLP en-
ables the 2-level pre-reassembly. In addition, we evalu-
ate the performance of SCLP-based tunneling in a Cen-
tOS 6.6 platform by comparing with no-encapsulation, orig-
inal VXLAN, NVGRE, STT, and recently appeared Gen-
eve [12]. The results show that the throughput of the pro-
posed method (VXLAN over SCLP) was comparable to no-
encapsulation and STT, and almost 70% higher than that of

∗The concept of SCLP is first introduced at IEEE NetSoft 2015
[11].

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

KAWASHIMA and MATSUO: ACCELERATING THE PERFORMANCE OF SOFTWARE TUNNELING
2181

all the other protocols.
The reminder of this paper is organized as follows.

Section 2 discusses related work. Section 3 explains the
effect of an L4 protocol type for tunneling. The design of
the SCLP protocol is described in Sect. 4 and Sect. 5 pro-
vides implementation details of offload features for SCLP.
Section 6 gives the evaluation results, and finally, Sect. 7
concludes this study and shows future work.

2. Related Work

The STT [7] protocol had been proposed by Nicira, Inc.
(acquired by VMware Inc.) for high-performance L2-in-L3
tunneling. STT can exploit the TCP Segmentation Offload
(TSO) feature of NIC by using the pseudo-TCP header. A
VMware’s report [13] said that the performance of STT was
almost equal to a no-encapsulation model. However, STT
has pragmatic problems in that STT packets can be dropped
by network appliances which can interpret the TCP header.
Even though explicit flow entries accepting STT packets
based on the destination port number are set, middleboxes’
TCP state machine function can implicitly discard the pack-
ets as illegal TCP packets. Furthermore, its RFC standard-
ization process is no longer active.

There are further network virtualization technologies
other than the L2-in-L3 tunneling. We have proposed a non-
tunneling edge-overlay model [6] for high-performance vir-
tual networks. This model uses both dynamic Virtual/Phys-
ical L2 address translation with OpenFlow [2] protocol and
host-based VLAN methods. A performance overhead of this
model is negligible, however, this approach cannot be ap-
plied to L3 datacenter networks, and therefore, a scalable
L2 technology like Ethernet Fabric is required.

DCPortalsNg [14] also modifies MAC address fields of
Ethernet frames for network virtualization purpose. DCPor-
talsNg further overwrites IP address fields in order to iden-
tify source/destination VMs on L2-based physical networks
while ensuring address space isolation among virtual net-
works. Considering the coexistence of IPv4 and IPv6 proto-
cols, a special address mapping mechanism is needed (e.g.
OpenFlow does not support IPv4–IPv6 address translation).

IP Rewrites [15] had been provided by the first version
of Microsoft R© Windows R© Server 2012. IP Rewrites mod-
ify both L2 and L3 address fields for network virtualization
too, but there is some difference from DCPortalsNg in that
IP Rewrites target L3 datacenter networks. A Provider Ad-
dress (PA) which is available in physical networks has to
be assigned to each VM to support IP-based switching in
datacenter networks, which faces complexities of network
management because of too many L3 addresses.

OpenVirteX (OVX) [16] is a platform of creating and
managing virtual Software-Defined Networks (vSDNs) on
physical OpenFlow-based networks. OVX provides various
mechanisms of address space and network topology virtual-
izations to each tenant by internally mapping physical and
virtual network elements, such as switches, links and ad-
dresses. OVX internally uses the IP address rewriting tech-

nique to support L3 address virtualization, therefore, OVX
also faces the aforementioned address translation problem.

3. Effect of a L4 Protocol Type for L2-in-L3 Tunneling

In this section, we explain how physical servers (hosts or hy-
pervisors) perform segmentation and reassembly processes
for L2-in-L3 tunneling. Basically, offload features perform a
packet segmentation process at the sender side and a packet
reassembly process at the receiver side. There are two
implementation types, hardware-based and software-based.
TCP Segmentation Offload (TSO) and Large Receive Of-
fload (LRO) [17] are hardware-based features, and Generic
Segmentation Offload (GSO) [18] and GRO are software-
based ones. Modern physical NICs have the hardware-based
offload features but supported protocols are generally lim-
ited (e.g. TCP over IPv4). Instead, GSO and GRO are pro-
vided by the Linux kernel and programmers can implement
additional protocol support.

Another important aspect of offload features is that
their effects depend on L4 protocol types, segment-oriented
or message-oriented. Segment-oriented protocols (e.g.
TCP) have a notion of byte-level sequence, and can support
a concatenation of consecutive sequences as a large L4 seg-
ment before executing the L3/L4 protocol processing at the
receiver side. On the other hand, the message-oriented (e.g.
UDP) means that consecutive packets in the same flow are
independent of one another. Therefore, this type of protocol
is not appropriate for the receive offload feature.

Figure 1 shows an example of a sequence of packet en-
capsulation and segmentation, and Fig. 2 depicts a reverse
sequence at a receiver host. Suppose that a VM transmits a
large Ethernet frame and the underlying host system encap-
sulates and divides it into multiple MTU-sized packets. In
this example, the pseudo-TCP (pTCP) for STT and UDP for
VXLAN are supposed as segment-oriented and message-
oriented L4 protocols.

The UDP protocol, which is used by VXLAN and
Geneve tunneling, is a representative message-oriented one.
When transmitting a large UDP-encapsulated packet whose
inner L4 protocol is segment-oriented, the Linux kernel di-
vides the packet into multiple packets using the GSO fea-
ture, and each of them has inner L2-L4 headers as shown in
the figure. At the receiver side, each UDP packet is decapsu-
lated respectively and the same number of Ethernet frames
are forwarded to the destination VM. That is, the greater the
size of transmitting Ethernet frames, the greater number of
UDP packets have to be received by the receiver host, and
therefore, the packet handling process can be performance
bottleneck of VM-to-VM communications.

On the other hand, STT tunneling solves this prob-
lem by using the pseudo-TCP header. As the original TCP
header includes a sequence number filed which denotes the
byte-level sequence in the flow, the pseudo-TCP header also
has a similar field† and a receive offloader can combine con-

†The sequence number of pTCP actually denotes an offset to

2182
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015

Fig. 1 A sequence of packet encapsulation and segmentation.

Fig. 2 A sequence of packet decapsulation and reassembly.

secutive L4 segments into a large segment. In the example
scenario, the number of divided packets for transmission is
the same with the UDP-based encapsulation, but only the
first packet contains inner headers. At the receiver side, re-
ceived packets are merged into larger packets by the GRO
feature (first pre-reassembly)††, and then the virtual switch
further combines the packets to restore the original L4 seg-

the original (before segmentation) large payload.
††Current GRO implementation can reassemble up to 16 pack-

ets.

ment for decapsulation (second pre-reassembly). Finally,
the original-sized Ethernet frames are passed to the des-
tination VM. Such characteristics of the segment-oriented
protocol can drastically reduce the number of both packets
and software interruptions, and our previous study [9] has
revealed that this 2-level software pre-reassembly is a key
aspect of the high-performance ability of STT tunneling.

4. Proposed L4 Protocol (SCLP)

STT achieves high-performance tunneling by taking advan-

KAWASHIMA and MATSUO: ACCELERATING THE PERFORMANCE OF SOFTWARE TUNNELING
2183

Fig. 3 A header format of the SCLP protocol.

tage of the pre-reassembly with GRO as described in the
previous section, but use of the preudo-TCP header intro-
duces additional issues in that STT packets have drop-prone
characteristics on physical networks with stateful firewalls,
load balancers, and Deep Packet Inspection appliances. In
this paper, we propose yet another segment-oriented L4 pro-
tocol, Segment-oriented Connection-less Protocol (SCLP),
for replacing an L4 protocol of existing tunneling protocols
like VXLAN.

SCLP itself is a connection-less protocol as indicated
by the name and this property is suitable for L2-in-L3 tun-
neling. The important aspect of SCLP is that it is a segment-
oriented protocol unlike UDP. That is, SCLP also supports
the notion of byte-level sequence like the pseudo-TCP of
STT. SCLP has a simple protocol format and several header
fields, such as port numbers, are equivalent to UDP. The dif-
ference is that SCLP further provides three fields to make
pre-reassembly effective. Figure 3 depicts a header for-
mat of the SCLP protocol. SCLP has fixed header length
(12 bytes) and each field is explained as follows.

· Source Port (16 bits)
SCLP source port number is determined by a hashing
mechanism for ECMP (Equal Cost Multi Path)-based
load balancing. The hash value is calculated from in-
ner protocol headers such that every packet of the same
flow has a same port number.

· Dest Port (16 bits)
Destination port number indicates the upper layer (tun-
neling) protocol.

· Identification (31 bits)
This value identifies an original payload data. If mul-
tiple SCLP packets have a same value, all of their pay-
loads have been segmented from the same giant pay-
load data at the sender side. This value is used to re-
assemble the received SCLP segments.

· (F)irst segment flag (1 bit)
This one bit flag is used to declare that the SCLP seg-
ment is the first one among all SCLP segments divided
from the same payload data.

· Remaining (16 bits)
This 16 bits value represents the remaining payload
size used to restore the original payload data. The re-
maining value decreases to zero with receiving the sub-
sequent SCLP segments. That is, this mechanism can
be thought as a reverse (byte-level) sequencing, and

Fig. 4 An example of SCLP segmentation.

therefore, the receive offload feature can be applied to
consecutive SCLP segments.

· SCLP Checksum (16 bits)
This field stores a 1’s complement sum starting from
head of the SCLP header to end of the packet. Unlike
the UDP header, the checksum calculation cannot be
omitted because SCLP segments except first one do not
include inner headers (See Fig. 2).

Here, we explain segmentation and reassembly pro-
cesses of SCLP with an example scenario. There are two
VMs on different physical servers and one VM sends a large
Ethernet frame to another using SCLP-based tunneling in
this scenario. Note that the size of the frame with a tun-
nel header is just 3000 bytes and Maximum Segment Size
(MSS) in the environment is 1468 bytes (1500 − 20 − 12).

Figure 4 shows a sender side segmentation. There is
the original payload data (3000 bytes) for transmission. An
SCLP-enabled segmentation offloader divides the payload
into three segments and each of the three has an SCLP
header with the same identification value (0×12345678).
First two segments include MSS-sized payload and ‘F’ flag
of the first segment is set by the definition. The ‘remain-
der’ field of the first one is 1532 bytes (3000−1468) and the
value of the second one is 64 bytes. The ‘remainder’ field of
the last segment is 0, which indicates there is no subsequent
segment.

Next two figures explain a reassembly process at the
receiver side. Figure 5 shows a sequence of the reassembly
process when the three SCLP segments are received in or-
der. The SCLP-enabled kernel internally manages reassem-
bly queues with three variables, id, size, and offset. The id
and the size variables store the identification and the total
size of the original payload respectively, and the offset vari-
able denotes an offset to the next payload. The value of the
id variable is easily determined by the ‘identification’ field
within the header. The other variables can be set by the fol-
lowing equations:

size = S first + Rfirst (1)

offset = size − Rcurrent (2)

where S denotes the size of the segment and R represents
the ‘remaining’ field value of the segment. Eventually, the
reassembly process completes when the values of the offset
and the size are equal.

2184
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015

Fig. 5 An example of SCLP reassembly (normal order).

Fig. 6 An example of SCLP reassembly (out of order).

Figure 6 shows a case when the SCLP segments are re-
ceived in the wrong order. The SCLP-enabled kernel can
detect the out of order sequence by the following calcula-
tion:

offset � size − (S current + Rcurrent) (3)

In such case, the current SCLP segment is enqueued to an
out-of-order queue (ooo list) and the reassembly process is
suspended.

In terms of interoperability, SCLP requires a new IP
protocol number because SCLP is a new L4 protocol over IP.
Once the IP protocol number is assigned, network adminis-
trators can add a simple flow rule to their middleboxes (e.g.
if the IP protocol number of the packet is 234→ ACCEPT).
In the mid-term, middlebox vendors will extend their prod-
ucts to interpret the SCLP header fields for more detailed
actions. Unlike the STT protocol, SCLP does not pretend to
existing L4 protocols having state machine, and therefore,
aforementioned middlebox problems can be avoided.

5. Implementation

We have implemented the SCLP protocol and an SCLP-
based tunneling mechanism in Linux platform (CentOS
6.6). Generally, high-functional virtual switches play a role

of tunnel end-points, but we have used a CVSW (Co-Virtual
SWitch) [19] component as the tunnel end-point to ease the
development of tunneling protocols. CVSW is implemented
as a virtual NIC driver and performs high-functional packet
processing, such as the OpenFlow Match/Action and the
tunnel encapsulation/decapsulation. Currently, CVSW sup-
ports VXLAN, NVGRE, STT, and Geneve tunneling proto-
cols, and we implemented the VXLAN over SCLP tunneling
feature into the CVSW component. In addition, we imple-
mented a Linux kernel module which performs both GSO
and GRO processing for SCLP segments.

In our implementation, CVSW exists in the VM as a
virtual NIC driver, and executes encapsulation and decapsu-
lation processes†. A virtio [20] module and Open vSwitch
(OVS) [21] bridge the VM and the underlying physical
server. The offload module is inserted into the protocol stack
of the physical server in order to perform GSO and GRO
processing for SCLP segments. The Linux kernel offers a
mechanism such that developers can implement both fea-
tures for custom L4 protocols without modifying existing
kernel code, and therefore, we utilized this mechanism for
SCLP. Sample code of GSO and GRO implementations are
presented as follows:

Program 1: GSO implementation of the SCLP protocol

1 struct sk_buff *sclp_gso_segment(
2 struct sk_buff *skb,
3 int features)
4 {
5 struct sk_buff *segs;
6 struct sclphdr *sclph;
7 ...

8
9 sclph = sclp_hdr(skb); /* SCLP header */

10 __skb_pull(skb, sizeof(struct sclphdr));
11
12 mss = skb_shinfo(skb)->gso_size;

13 rem = skb->len - mss; /* Remaining size */

14 /* Clear ‘F’ bit */

15 sclph->id &= htonl(SCLP_ID_MASK);

16 /* Divide the original payload */

17 segs = skb_segment(skb, features);

18
19 skb = segs; /* First segment */

20 /* Set ‘F’ bit */

21 sclp_set_first_segment(sclp_hdr(skb));

22
23 while (skb) { /* For each segment */
24 sclph = sclp_hdr(skb);

25 sclph->rem = htons(rem);

26
27 /* Checksum */

28
29 if (rem >= mss) {
30 rem -= mss;

31 } else {

†CVSW sets up outer headers including Ethernet, IP, and SCLP
headers too at the encapsulation process. Likewise, CVSW ana-
lyzes entire outer headers at the decapsulation process

KAWASHIMA and MATSUO: ACCELERATING THE PERFORMANCE OF SOFTWARE TUNNELING
2185

32 rem = 0; /* This is last */

33 }

34 skb = skb->next;

35 }

36 ...

37 }

Program 2: GRO implementation of the SCLP protocol

1 struct sk_buff **sclp_gro_receive_impl(
2 struct sk_buff **head,
3 struct sk_buff *skb)
4 {
5 struct sk_buff **ppskb;
6 struct sk_buff *pskb;
7 struct sclphdr *sclph;
8 struct sclphdr *sclph2;
9 ...

10
11 skb_gro_pull(skb, sizeof(struct sclphdr));
12 /* Preserve remaining size */

13 rem = sclph->rem;

14
15 /* Look up a segment of the same flow */

16 for (; (pskb=*head); head = &pskb->next) {
17 if (! NAPI_GRO_CB(pskb)->same_flow) {
18 continue;
19 }

20 sclph2 = sclp_hdr(pskb);

21 if (*(u32*)&sclph->source !=
22 *(u32*)&sclph2 ->source) {

23 NAPI_GRO_CB(pskb)->same_flow = 0;

24 continue;
25 }

26 goto found; /* Same flow ! */
27 }

28 ...

29 found:
30 flush = NAPI_GRO_CB(pskb)->flush;

31 /* Has same id? */

32 flush |= (sclph->id ˆ sclph2->id) &

33 htonl(SCLP_ID_MASK);

34
35 mss = skb_shinfo(pskb)->gso_size;

36 flush |= (len - 1) >= mss;

37 /* Is valid offset ? */

38 flush |= (ntohs(sclph->rem) +

39 skb_gro_len(skb)) ˆ

40 ntohs(sclph2 ->rem);

41
42 /* Validation check */

43
44 /* skb is concatenated to pskb *

45 pskb = *head;

46 sclph2 = sclp_hdr(pskb);

47 /* Reset remaining size */

48 sclph2->rem = rem;

49 ...

50 }

6. Evaluation

In this section, we describe performance evaluation results
of the implemented SCLP-based tunneling (VXLAN over
SCLP) using 40GbE environment. For comparison, the
performance of original VXLAN (CVSW-based and OVS-

Fig. 7 An evaluation environment.

Table 1 Machine specifications.

Virtual VM 1 (Sender) VM 2 (Receiver)

OS CentOS 6.6 (2.6.32) CentOS 6.6 (2.6.32)

CPU 1 core 1 core

Memory 2 GBytes 2 GBytes

Virtual NIC CVSW (virtio-net) CVSW (virtio-net)

MTU adjusted adjusted

Offloading TSO, UFO, GSO, TSO, UFO, GSO,

features GRO, CSUM GRO, CSUM

Physical Physical server 1 Physical server 2

OS CentOS 6.6 (2.6.32) CentOS 6.6 (2.6.32)

VMM KVM KVM

Virtual switch Open vSwitch 2.3.1 Open vSwitch 2.3.1

CPU Core i7 (3.60 GHz) Core i7 (3.40 GHz)

Memory 64 GBytes 32 GBytes

MTU 1500 bytes 1500 bytes

Offloading TSO, GSO, GRO, TSO, GSO, GRO,

features CSUM CSUM

Network 40GBASE-SR4 40GBASE-SR4

based), NVGRE, Geneve, STT tunnelings were evaluated,
and besides, a no-encapsulation (No-Encap) model that
VMs are directly connected to the physical network without
tunneling was also evaluated to indicate baseline throughput
in the evaluation environment.

Figure 7 and Table 1 show the evaluation environ-
ment and machine specifications respectively. In the ex-
periment, an Iperf [22] client which runs in a VM contin-
uously writes fixed-sized datagram to the socket layer and
TCP/UDP packets are sent to the counterpart Iperf server
for 60 seconds. The encapsulation/decapsulation processing
was performed by CVSW for every tunneling model except
OVS-based VXLAN and no-encapsulation. A flow table of
CVSW was manually set in advance. Finally, MTU size of
each VM was adjusted properly for every tunneling model
to prevent IP fragmentation at the encapsulation process.

2186
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015

Fig. 8 The evaluation results with TCP communication.

6.1 TCP Communication

First, we evaluated the performance of TCP communication
between end-to-end VMs with various write buffer sizes of
the Iperf client (64–65495 bytes)†. Figure 8 shows the actual
throughput of every model. The performance of these mod-
els were stable throughout the experiment, and the through-
put of every model was almost the same when write buffer
size was between 64–8192 bytes. However, No-Encap, Pro-
posal and STT models outperformed the others for larger
write buffer size and their throughputs finally went up to
about 12 Gbps. Considering these models use segment-
oriented L4 protocols (TCP, SCLP, and pseudo-TCP), the
cause of the performance gap arose from the offload fea-
ture. In other words, reducing the number of packets to be
software-interrupted can improve the end-to-end throughput
drastically.

6.2 Pre-Reassembly Effect for SCLP-Based Tunneling

Next, we evaluated the performance effect of the 2-level
pre-reassembly. The effect of first-stage pre-reassembly can
be evaluated by disabling the GRO feature, and effect of
the second one can be estimated by comparing with the
message-oriented tunneling like VXLAN over UDP. Fig-
ure 9 shows the throughput of the three cases and the re-
sult proves that the pre-reassembly can achieve considerable
performance improvement. Note that GRO effect in our pre-
vious evaluation [11] on CentOS 6.5 was larger than that in
this evaluation, even though the same implementation was
used. (The performance gap was about 4 Gbps in the previ-
ous experiment).

6.3 Multiple VM-to-VM Communications

We next evaluated aggregated throughput of multiple VMs-
to-VMs communications. In this experiment, Receive Side

†TCP packet size can be larger/smaller than this size because
of TCP’s protocol nature.

Fig. 9 The performance effect of pre-reassembly for SCLP.

Fig. 10 The total throughput of 2VMs-to-2VMs communications.

Scaling (RSS) [23] feature of the physical NICs was enabled
to distribute received packet processing load. Figiure 10
shows total throughput of 2 flows (VM1–VM2, VM3–VM4)
and Fig. 11 shows that of 4 flows (VM1–VM2, VM3–VM4,
VM5–VM6, VM7–VM8). The results show that perfor-
mance of STT and Proposal was almost the same, and
VXLAN’s performance was obviously below at larger write
buffer size. Since original VXLAN requires the greater
number of packet processing, total throughput was peaked
at lower level. For STT and Proposal, packet processing at
receiver side is almost the same manner. In terms of sender
side, only STT can take advantage of TSO feature of phys-
ical NIC, but as we reported in our previous paper [9], ef-
fect of enabling TSO feature on end-to-end throughput was
unclear with recent machine power. Therefore, aggregated
throughput of both protocols was equivalent.

6.4 UDP Communication

Finally, we measured the performance and packet loss rate
of UDP communication. The Iperf client continuously sent
UDP packets at 10 Gbps rate (maximum) in this experiment.
The results are given in Fig. 12 and Fig. 13. The through-

KAWASHIMA and MATSUO: ACCELERATING THE PERFORMANCE OF SOFTWARE TUNNELING
2187

Fig. 11 The total throughput of 4VMs-to-4VMs communications.

Fig. 12 The evaluation results with UDP communication.

Fig. 13 Packet loss rate of tunneling protocols with UDP.

put of both Proposal and STT models was stable at any
packet size and higher than that of No-Encap and VXLAN
models with large write buffer sizes. The reason of this
performance difference is that received packets of former
models are treated as segment-oriented even though the in-
ner L4 protocol is UDP (message-oriented). Therefore, the

pre-reassembly effect was applied to these packets. On the
other hand, the throughput of No-Encap and VXLAN mod-
els peaked under 6 Gbps because the receiver side was not
able to handle lots of packets and many of them were even-
tually dropped as shown in Fig. 13.

6.5 Discussion

The evaluation results have shown that performance of the
SCLP-based tunneling is equivalent to STT in various sit-
uations. In terms of throughput, both STT and proposed
tunneling protocols outperform other protocols when appli-
cations use larger write buffer. That is, these two protocols
are effective for applications which transmit large data set,
and such applications include HTTP/2 [24]-enabled Web
servers†, software tunnel gateways like VMware’s NSX
Edge Gateway [25], virtualized Hadoop clusters [26], and
scientific applications for academic clouds.

There is another approach for high-performance
overlay-based network virtualization. Header rewriting
methods [6], [14], [15], [27] can achieve ‘No-Encap’-
equivalent throughput, and therefore, there is no clear per-
formance difference between their methods and the pro-
posed method. However, the header rewriting method
supports restricted protocols of physical/virtual networks
(e.g. L2-based physical networks, TCP/IPv4 virtual network
flows).

7. Conclusion

Overlay-based network virtualization has been adopted by
various networks including commercial datacenter networks
and enterprise networks. Under the concepts of Software-
Defined Networking (SDN) and Network Function Virtual-
ization (NFV), further network nodes and appliances will
be migrated to virtual networks. Hence, improving the per-
formance of virtual networks is essential for raising service
quality.

VXLAN and NVGRE are widely used tunneling pro-
tocols but their network performance is lower than that of
physical networks. STT is known as the faster tunneling
protocol, however, STT faces some practical issue in that
various middleboxes discard STT packets because of the
modified TCP header semantics.

In this paper, we proposed yet another segment-
oriented L4 protocol (Segment-oriented Connection-less
Protocol, SCLP) for high-performance software tunneling
by exploiting 2-level software pre-reassembly before de-
capsulation. SCLP can improve the performance of exist-
ing tunneling protocols by replacing the original L4 proto-
col. We implemented SCLP-based tunneling and the of-
fload module in the Linux platform. The evaluation re-
sults showed that the throughput of the proposed method
(VXLAN over SCLP) exceeded 10 Gbps and was almost

†HTTP/2 uses single TCP connection to transfer entire web
content.

2188
IEICE TRANS. COMMUN., VOL.E98–B, NO.11 NOVEMBER 2015

70% higher than other mainstream tunneling protocols in-
cluding original VXLAN.

We are planning to implement VXLAN over SCLP tun-
neling into Open vSwitch† and develop a hardware-based
receive offload feature (e.g. LRO) of the SCLP protocol into
programmable network processors for further performance
improvement.

Abbreviations

CVSW Co-Virtual SWitch

ECMP Equal Cost Multi Path

GRO Generic Receive Offload

GSO Generic Segmentation Offload

LRO Large Receive Offload

MSS Maximum Segment Size

MTU Maximum Transfer Unit

NFV Network Function Virtualization

NVGRE Network Virtualization using Generic Routing
Encapsulation

NVO3 Network Virtualization Overlays over Layer 3

OVS Open vSwitch

RSS Receive Side Scaling

SCLP Segment-oriented Connection-less Protocol

STT Stateless Transport Tunneling

TEP Tunnel End-Point

TSO TCP Segmentation Offload

VXLAN Virtual eXtensible Local Area Network

References

[1] Network Function Virtualization (NFV), http://www.etsi.org/techn
ologies-clusters/technologies/nfv

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peter-
son, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol.38, no.2, pp.69–74, April 2008.

[3] M. Lasserre, F. Balus, T. Morin, N. Bitar, and Y. Rekhter, “Frame-
work for data center (DC) network virtualization,” RFC 7365, 2014.

[4] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T.
Sridhar, M. Bursell, and C. Wright, “Virtual eXtensible local area
network (VXLAN): A framework for overlaying virtualized layer 2
networks over layer 3 networks,” RFC 7348, 2014.

[5] M. Sridharan, A. Greenberg, N. Venkataramiah, Y. Wang, K. Duda,
I. Ganga, G. Lin, M. Pearson, P. Thaler, and C. Tumuluri, “NVGRE:

†OVS-based SCLP implementation is now available at GitHub
(https://github.com/sdnnit/sclp)

Network virtualization using generic routing encapsulation,” Inter-
net draft, 2014.

[6] R. Kawashima and H. Matsuo, “Non-tunneling overlay approach
for virtual tenant networks in cloud datacenter,” IEICE Trans. Com-
mun., vol.E97-B, no.11, pp.2259–2268, 2014.

[7] B. Davie, Ed. and J. Gross, “A stateless transport tunneling protocol
for network virtualization (STT),” Internet draft (expired), 2014.

[8] Offloading the Segmentation of Large TCP Packets, http://msdn.
microsoft.com/en-us/library/windows/hardware/ff568840(v=vs.85).
aspx

[9] R. Kawashima and H. Matsuo, “Implementation and performance
analysis of STT tunneling using vNIC offloading framework
(CVSW),” Proc. 2014 IEEE 6th International Conference on Cloud
Computing Technology and Science, pp.929–934, Dec. 2014.

[10] JLS2009: Generic receive offload, http://lwn.net/Articles/358910/
[11] R. Kawashima, S. Muramatsu, H. Nakayama, T. Hayashi, and

H. Matsuo, “SCLP: Segment-oriented connection-less protocol for
high-performance software tunneling in datacenter networks,” Proc.
2015 1st IEEE Conference on Network Softwarization (NetSoft),
pp.1–8, 2015.

[12] J. Gross, T. Sridhar, P. Garg, C. Wright, I. Ganga, P. Agarwal, K.
Duda, D. Dutt, and J. Hudson, “Geneve: Generic network virtual-
ization encapsulation,” Internet draft, 2014.

[13] T. Koponen et al., “Network virtualization in multi-tenant datacen-
ters,” http://download3.vmware.com/software/vmw-tools/technical
reports/network virt in multi tenant dc.pdf, VMware, Technical
Report TR-2013-001E, 2013.

[14] H.M.B. Moraes, R.V. Nunes, and D. Guedes, “DCPortalsNg: Ef-
ficient isolation of tenant networks in virtualized datacenters,”
Proc. Thirteenth International Conference on Networks (ICN 2014),
pp.230–235, France, Feb. 2014.

[15] J. Savill, Microsoft Virtualization Secrets, Wiley, July, 2012.
[16] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,

E. Salvadori, and B. Snow, “OpenVirteX: Make your virtual SDNs
programmable,” Proc. Third Workshop on Hot Topics in Software
Defined Networking — HotSDN’14, pp.25–30, 2014.

[17] L. Grossman, “Large receive offload implementation in neterion
10 GbE Ethernet driver,” Proc. Linux Symposium, vol.1, pp.195–
200, Ottawa, CA, July 2005.

[18] Generic Segmentation Offload (GSO), http://www.linuxfoundation.
org/collaborate/workgroups/networking/gso

[19] cvsw net, https://github.com/sdnnit/cvsw net
[20] R. Russell, “virtio: Towards a De-Facto standard for virtual I/O de-

vices,” SIGOPS Oper. Syst. Rev., vol.42, no.5, pp.95–103, 2008.
[21] Open vSwitch, http://openvswitch.org/
[22] Iperf, http://iperf.sourceforge.net/
[23] Microsoft Corporation, “Scalable networking: Eliminating the re-

ceive processing bottleneck — Introducing RSS,” Technical report,
http://download.microsoft.com/download/5/D/6/5D6EAF2B-7DDF-
476B-93DC-7CF0072878E6/NDIS RSS.doc, 2004.

[24] M. Belshe, R. Peon, and M. Thomson, Ed., “Hypertext Transfer Pro-
tocol Version 2 (HTTP/2),” RFC 7540, 2015.

[25] VMware, Inc., “VMware NSX for vSphere (NSX-V) network
virtualization design guide,” https://www.vmware.com/files/pdf/pro
ducts/nsx/vmw-nsx-network-virtualization-design-guide.pdf

[26] K. Ye, X. Jiang, Y. He, X. Li, H. Yan, and P. Huang, “vHadoop: A
scalable Hadoop virtual cluster platform for MapReduce-based par-
allel machine learning with performance consideration,” Proc. 2012
IEEE International Conference on Cluster Computing Workshops,
pp.152–160, 2012.

[27] S. Guenender, K. Barabash, Y. Ben-Itzhak, A. Levin, E. Raichstein,
and L. Schour, “NoEncap: Overlay Network Virtualization with no
Encapsulation Overheads,” Proc. 1st ACM SIGCOMM Symposium
on Software Defined Networking Research — SOSR’15, pp.1–7,
2015.

http://www.etsi.org/techn ologies-clusters/technologies/nfv
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.17487/rfc7365
http://dx.doi.org/10.17487/rfc7348
http://dx.doi.org/10.1587/transcom.e97.b.2259
http://msdn.microsoft.com/en-us/library/windows/hardware/ff568840(v=vs.85).aspx
http://dx.doi.org/10.1109/cloudcom.2014.77
http://lwn.net/Articles/358910/
http://dx.doi.org/10.1109/netsoft.2015.7116161
http://download3.vmware.com/software/vmw-tools/technical_reports/network_virt_in_multi_tenant_dc.pdf
http://dx.doi.org/10.1145/2620728.2620741
http://www.linuxfoundation.org/collaborate/workgroups/networking/gso
https://github.com/sdnnit/cvsw_net
http://dx.doi.org/10.1145/1400097.1400108
http://openvswitch.org/
http://iperf.sourceforge.net/
http://download.microsoft.com/download/5/D/6/5D6EAF2B-7DDF-476B-93DC-7CF0072878E6/NDIS_RSS.doc
http://dx.doi.org/10.17487/rfc7540
https://www.vmware.com/files/pdf/products/nsx/vmw-nsx-network-virtualization-design-guide.pdf
http://dx.doi.org/10.1109/clusterw.2012.32
http://dx.doi.org/10.1145/2774993.2775003

KAWASHIMA and MATSUO: ACCELERATING THE PERFORMANCE OF SOFTWARE TUNNELING
2189

Ryota Kawashima was born in 1983.
He received his M.S. degree from Iwate Pre-
fectural University in 2007 and also received
Ph.D. degree from The Graduate University for
Advanced Studies (SOKENDAI) in 2010. He
had worked as a software engineer at ACCESS
CO., LTD. and Stratosphere, Inc. He has be-
come an assistant professor at Nagoya Institute
of Technology in 2013. His research interest is
Software-Defined Networking. He is a member
of IEICE, IPSJ, and IEEE.

Hiroshi Matsuo was born in 1960. He re-
ceived his M.S. in 1985 and also received Ph.D.
degree in 1989 from Nagoya Institute of Tech-
nology. He became an assistant professor in
1989, lecturer in 1993, associate professor in
1995, and professor in 2003 at Nagoya Insti-
tute of Technology. His research interest is dis-
tributed cooperative system. He is a member of
IEICE, IPSJ, and IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

