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PAPER
An Algorithm Based on Distance Measurement for SAR Image
Recognition

Yuxiu LIU†, Na WEI†, and Yongjie LI†a), Nonmembers

SUMMARY In recent years, deep convolutional neural networks (CNN)
have been widely used in synthetic aperture radar (SAR) image recognition.
However, due to the difficulty in obtaining SAR image samples, training data
is relatively few and overfitting is easy to occurwhen using traditional CNNS
used in optical image recognition. In this paper, a CNN-based SAR image
recognition algorithm is proposed, which can effectively reduce network
parameters, avoid model overfitting and improve recognition accuracy. The
algorithm first constructs a convolutional network feature extractor with
a small size convolution kernel, then constructs a classifier based on the
convolution layer, and designs a loss function based on distance measure-
ment. The networks are trained in two stages: in the first stage, the distance
measurement loss function is used to train the feature extraction network;
in the second stage, cross-entropy is used to train the whole model. The
public benchmark dataset MSTAR is used for experiments. Comparison
experiments prove that the proposed method has higher accuracy than the
state-of-the-art algorithms and the classical image recognition algorithms.
The ablation experiment results prove the effectiveness of each part of the
proposed algorithm.
key words: SAR image recognition, convolutional neural networks, distance
measurement, all convolutional network

1. Introduction

Synthetic aperture radar (SAR) can realize high-resolution
microwave remote sensing imaging by using the principle
of synthetic aperture, which has advantages of all-sky, all-
weather and strong penetration etc., and has important ap-
plication value in Marine monitoring, environmental analy-
sis, military reconnaissance and geological survey [1], [2].
However, the principle of SAR imaging determines that SAR
images have strong speckle noise and geometric distortion
[3], [4], which poses challenges to SAR image interpreta-
tion. Automatic Target Recognition (ATR) which integrates
image detection, sign extraction, and image recognition pro-
cesses, is one of the key technologies for achieving automatic
interpretation of SAR images [5]–[7].

Image recognition, as the last crucial aspect of ATR, has
been the focus of SAR imaging research. Traditional SAR
image recognitionmethodsmainly include two steps: feature
extraction and classification recognition. The commonly
used extracted features include geometric features, projec-
tion features and scattering features [8], [9], and the general
classification and recognition algorithms include K-Nearest
Neighbor classifier (KNN) [10], support vector machine
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(SVM) [11], sparse representation classifier [11], [12], etc.
Traditional SAR image recognition methods have achieved
good results and brought certain research progress to SAR
ATR. However, the effectiveness of these methods requires
experts to manually extract features, which is complicated,
inefficient and poor robustness. For different SAR datasets
and usage scenarios, feature extraction algorithms need to
be redesigned.

In recent years, with the development of deep learn-
ing technology, especially the development of convolutional
neural networks, the research of image recognition technol-
ogy has made remarkable progress. The proposal and suc-
cessful application of AlexNet [13] marked the beginning
of the development of deep learning, followed by VGGNet
[14] and Restnet [15], which made breakthroughs in natural
image recognition. Inspired by the achievements of deep
learning in optical images, researchers try to apply deep
learning to SAR image recognition. Deep learning is an
end-to-end learning method that unifies feature extraction
and classification recognition. It can automatically learn the
required features based on the learning objectives without
the need for additional feature extraction algorithms, reduc-
ing manual work and greatly improving the robustness of
the algorithm. However, deep learning algorithms require
a large amount of training data, while obtaining SAR im-
age training data is difficult compared to optical images.
As a result, the available samples for SAR image training
are relatively few. Directly applying ordinary optical im-
age recognition algorithms to SAR image recognition can
easily cause the overfitting phenomenon [16]–[18]. There-
fore, multiple researchers have conducted in-depth research
on the application of deep learning in SAR image recogni-
tion. Y. Li [19] used CNN networks to extract SAR image
features, and used meta-learning training methods and dis-
tance metric loss functions to classify images. High recog-
nition accuracy was achieved on both OPENSARSHIP and
MSTAR datasets. Jian Guan [20] proposed a CNN network
that combines multiple-size convolutional kernels and dense
residual networks. The method combines the cosine loss
function and cross-entropy loss function to train the network
in two stages and performs well in small sample data sce-
narios. Ying Zhang [21] proposed a training method for
convolutional networks, which combines deep metric learn-
ing (DML) and an imbalanced sampling strategy to improve
classification performance in the imbalanced training sam-
ple scenario. Zhang Ting [12] used CNN networks to extract
multi-layer depth features of SAR images to improve recog-
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nition accuracy. S. Chen [17] used a fully convolutional
network to reduce parameters while achieving high recogni-
tion accuracy.

Through the in-depth study of convolutional neural net-
works, the above algorithms have achieved good results in
SAR image recognition scenes. Inspired by the above re-
search, this article proposes a SAR image recognition algo-
rithm based on distance measurement and small-size con-
volutional networks, which aims to simplify the network
structure, prevent overfitting and improve the recognition
accuracy. The paper carries out work from optimizing sev-
eral aspects including loss function, network structure and
training method. The main innovations of this paper are as
follows:

1. A small-size convolutional kernel convolutional net-
workwas constructed to form the backbone of thewhole
model, which can reduce the number of parameters of
the model and improve the final image recognition rate.

2. A loss function based on distance measurement is pro-
posed, which considers the distance from samples to
the class centre, the distance between class centres, and
the class variance, to guide the model to train in the
direction of intra-class aggregation and inter-class dis-
persion.

3. A convolutional network classifier has been con-
structed, which reducesmodel parameters and improves
model performancewhen comparedwith traditional lin-
ear layer classifiers.

4. A two-stage training method is proposed. In the first
stage, the distance metric loss function is used to train
the feature extraction network, and the cross-entropy
is used to train the classification in the second stage.
Comparative experiments show the effectiveness of this
method.

The rest of this paper is organized as follows: Section 2
introduces the algorithm proposed in this paper, Sect. 3 in-
troduces the experimental results, and Sect. 4 summarises
the work.

2. SAR Image Recognition Algorithm Based on Dis-
tance Measurement and Small-Size Convolutional
Network

2.1 Overall Framework

The overall framework of the image recognition method is
shown in Fig. 1. The entire process is divided into three
stages. The first stage is the feature extractor training stage, in
which the distance measurement loss function is used. After
the first stage is completed, it goes into the second stage, in
which a convolutional layer is added to the feature extraction
network as a classifier and the cross-entropy loss function
is used to fine-tune the whole network. After completion,
a trained image recognition model is obtained. In the third
stage, the performance of the model is tested using a test
dataset.

Fig. 1 Overall framework of algorithm.

2.2 Loss Function

In this paper, the algorithm is trained in two stages. In
the first stage, the distance measurement method is used to
calculate the loss, and in the second stage, the cross-entropy
is used to calculate the loss. The loss function is written as
follows:

loss =
{

lossdistance 0 < E < E1
losscross_entropy E1 < E < E2

(1)

in which E is the epoch variant, E1 is the epoch num in the
first stage, E2 is the total epoch num.

2.2.1 Loss Function in the First Stage

The formula designed in this paper synthesizes three consid-
erations: the distance from samples to their class centre, the
distance between class centres, and the class variance, so as
to guide themodel to train towards the direction of intra-class
aggregation and inter-class dispersion. The formula for the
distance measurement loss is:

lossdistance=α·losss−c+β·lossvar+(1−α−β)·lossc−c
(2)

in which, losss−c is the loss of distance from the sample to its
class centre, lossvar is the loss of the class variance, lossc−c
is the loss of distance between class centres, α and β are
the hyper-parameters. The following describes the detailed
calculation methods of the three parts.

losss−c is calculated by taking the average of the dis-
tance loss from each sample to its class centre. The formula
is:

losss−c =

N∑
i=1

loss(xi)

N
(3)

where loss(xi) is the distance loss from the i-th sample to its
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class centre, N is the total number of samples in the current
batch, loss(xi) is calculated by the formula:

loss(xi) = − log(
e−Dis(xi ,cyi )

L-1∑
l=0

e−Dis(xi ,cl )

) (4)

in which, yi ∈ {0...L − 1} is the label of xi , and Dis(xi, cl)is
the distance from the i-th sample to the l-th class centre. The
paper uses Euclidean distance which is calculated by:

Dis(xi, cl) =

√√√
M−1∑
m=0
( fθ (xi)[m] − cl[m])2 (5)

Where fθ (xi) is the feature vector output of the sample xi
through the feature extraction network, M is the feature vec-
tor dimension and fθ (xi)[m] is the m-th dimension of fθ (xi).
cl is the l-th class centre, which is the mean value of feature
vectors belonging to the l-th class in this batch, cl[m] is the
m-th dimension of cl . cl is calculated by:

cl =
1
|I(l)|

∑
i∈I (l)

fθ (xi) (6)

in which, I ≡ {1...N} is the set of indices of all input samples
in current batch, I(l) ≡ {p ∈ I : yp = l} is the set of indices
of samples whose label is l. |I(l)| is its cardinality. It should
be noted that cl will be updated in each batch.

lossvar is the loss of sample variance in the same class,
and is calculated by:

lossvar =
1
L

L-1∑
l=0

varl (7)

where varl is the variance of the l-th class, and is calculated
by:

varl =
M−1∑
m=0

var( fθ (X(l))[m]) (8)

where X(l) ≡ {xi : i ∈ I(l)} is the sample set whose label is
l, var(�) is the variance function.

lossc−c is the loss of distance between class centres.
After training, the larger the distance of inter-class, the better
the classification effect of the model. However, the absolute
distance cannot reflect the distinguishing ability between
classes. In this paper, the distance between class centres
is compared with the variance of samples belonging to this
class. The larger the value, the bigger the difference exists
between classes. Figure 2 shows the meaning. Figure 2(a)
and Fig. 2(b) have the same distance between class centres,
but Fig. 2(a) has a better distinguishing effect. lossc−c is
calculated by the formula:

lossc−c =
L-1∑
i=0

1
DisFunc(ci)

(9)

Fig. 2 Influence of the ratio of the distance between category centres
and variance on discrimination ability. The distance between the two class
centres is the same in (a) and (b), but in (a), the variance is smaller and the
discrimination ability is stronger, and in (b), the variance is larger and the
discrimination ability is weaker.

DisFunc(ci) =
L-1∑
l=0

Dis(ci, cl)
vari + varl

(10)

in which the l-th class centre cl is calculated by formula (6),
the l-th class sample variance varl is calculated by formula
(8), Dis(ci, cl) is the Euclidean distance between the centre
of the i-th class and the l-th class.

Distance measurement has been applied to both pro-
totype networks [22], supervised contrast learning [23] and
Improved Triplet Loss [24], but there are differences in its
connotation. In the prototype network, the distance metric
loss function is defined as:

loss(xi) = − log(
e−Dis(xi ,cyi )

L-1∑
l=0

e−Dis(xi ,cl )

) (11)

loss =
1
N

N∑
i=1

loss(xi) (12)

The loss function of the supervised contrast learning is
defined as:

loss =
∑
i∈I

loss(xi)

=
∑
i∈I

−1
|P(i)|

∑
p∈P(i)

log(
e fθ (xi )� fθ (xp )/τ∑

a∈A(i)
e fθ (xi )� fθ (xa )/τ

)
(13)

in which, I ≡ {1...N} is the set of indices of all input samples
in the current batch, A(i) ≡ I\{i} is the set of I excluded
i, P(i) ≡ {p ∈ A(i) : yp = yi} is the set of indices of
all positives in the batch distinct from i, and |P(i)| is its
cardinality, τ is the temperature hyper-parameter.

In the Improved Triplet Loss, denote Xi= <
Xo
i ,X

+
i ,X

−
i > as a group of input, in which Xo

i and X+i
belong to the same class, Xo

i and X−i are in different classes.
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Fig. 3 Network structure of proposed algorithm.

The loss function is defined as:

loss =
1
N

N∑
i=1
(max{dn(Xo

i ,X
+
i ,X

−
i ), τ1} + βmax{dp(Xo

i ,X
+
i ), τ2})

where τ1, τ2 and β are the hyper-parameters, and:

dn(Xo
i ,X

+
i ,X

−
i ) = d( fθ (Xo

i ), fθ (X+i )) − d( fθ (Xo
i ), fθ (X−i ))

dp(Xo
i ,X

+
i ) = d( fθ (Xo

i ), fθ (X+i ))

d( fθ (Xo
i ), fθ (X+i )) = | | fθ (X

o
i ) − fθ (X+i )| |

2

From the above formulas, it can be seen that in the
prototype network, only the distance between the sample and
the centre of samples in the same class (prototype) is used. In
supervised comparative learning, only the distance between
the sample and other samples in the same class is considered.
In Improved Triplet Loss, only the distance between samples
belongs to the same class and different classes are used.
So all of them only consider the relationship between the
sample and other samples. In addition to the above, this
article further considers the internal variance of samples
of the same class and the distance between different class
centres. This paper simultaneously considers both individual
and overall loss of the sample, to guide the model to be
trained towards the direction of intra-class aggregation and
inter-class dispersion comprehensively.

2.2.2 Loss Function in the Second Stage

The cross-entropy function is used to calculate the loss in
the second stage, the formula is:

losscross_entropy = -
1
N

N∑
i=1

log(
eg(xi )[yi ]

L−1∑
l=0

eg(xi )[l]
) (14)

where N is the number of samples in this batch, and, g(xi) is
the output of classifier for the sample xi , whose dimension
is L, g(xi)[l] is the l-th dimension of g(xi). yi ∈ {0...L − 1}
is the label of xi , g(xi)[yi ] is the yi-th dimension of g(xi).

2.3 Feature Extraction Network and Classifier

In 2014, Karen Simonyan from Oxford University proposed

VGGNet [14] and explored the depth of the network. Due
to its simplicity and practicality, it quickly became the most
popular convolutional neural network at that time. The in-
spirations brought by the VGGNet include: (1) Replacing a
large convolutional layer with multiple small convolutional
layers can obtain the same receptive field size, but signifi-
cantly reduces parameter size and computational complexity;
(2) Using a unified 2x2 max-pool with a stride of 2 to in-
crease local information diversity and reduce feature size,
can better capture local information changes and describe
edge and texture structures.

Inspired by VGGNet, a feature extraction network com-
posed of small-size convolutional layers and a classifier com-
posed of a convolutional layer is designed, as shown in Fig. 3.
The feature extraction network consists of 5 convolutional
blocks. Each block is composed of two 3x3 convolutional
layers, one Batch-Normalize layer, one RELU activation
layer, and one max-pool pooling layer. The pooling layer’s
size is 2x2 and the stride is 2, it can reduce the feature map
size by half. Except for the first convolution block, the num-
ber of channels in the first convolution layer of each other
convolution block is doubled. In order to reduce network pa-
rameters, increase network robustness and avoid overfitting,
the 1x1 convolution layer rather than the conventional linear
layer is used as the network classifier.

3. Experiments

3.1 Dataset and Parameter Configuration

This article uses the MSTAR dataset to verify the perfor-
mance of the proposed algorithm. The MSTAR dataset is
a public dataset for SAR automatic target recognition pro-
vided by the US Advanced Research Projects Agency and
the Air Force Laboratory (DARPA/AFRL). The images are
obtained by an X-band HH polarized constrained radar with
resolution of 0.3m × 0.3m. In this paper, 10 types of mili-
tary ground target data in the Standard Operating Conditions
(SOC) of the MSTAR dataset are selected for experiments.
The distribution of the dataset is shown in Table 1.

In the experiment, Pytorch was used under Ubuntu
20.04 LTS and GPU RTX 3090 was used to accelerate cal-
culation. The experiment parameters were configured as fol-
lows: Batch size (N in Eq. (3)) was 100; The dimension of
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Fig. 4 Model training data (for training data). (a) Loss at stage 1. (b) Accuracy at stage 1. (c) Loss at
stage 2. (d) Accuracy at stage 2.

Table 1 MSTAR SOC training dataset and test dataset.

the feature extractor output (M in Eq. (5)) was 512; Adamw
optimizer was selected with the learning rate setting to 0.001
and the weight decay setting to 0.004.

3.2 Training and Test Experiments

Figure 4 shows the loss and accuracy changing as the iteration
progresses. Figure 4(a) and Fig. 4(b) represent the results
in the first stage, and Fig. 4(c) and Fig. 4(d) represent the
results in the second stage. As shown in the figure, in the
initial stage of training, the loss value drops rapidly and the
model converges quickly. In the second stage, the accuracy
of training data rises faster than that in the first stage, and the
model converges faster. By the 10th round of training, the
accuracy has already reached its maximum value, indicating

Fig. 5 Confusion matrix.

that the model has been adjusted to near the optimal value
after the first stage of training.

Figure 5 shows the confusion matrix evaluated by the
trained model on the test dataset. It can be seen that the
recognition accuracy is high, even reaching 100% for some
classes, and the average recognition accuracy is 99.67%,
which proves the effectiveness of this model.
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3.3 Comparative Experiments

3.3.1 Comparison with Algorithms in Other Literature

In order to further prove the effectiveness of the proposed al-
gorithm, this paper compares the proposed algorithms with
literatures [17], [20], [24], classical image recognition con-
volutional networks VGG16, ResNet-50, and ResNet-18.
This article selects data from the MSTAR dataset both in
standard operating conditions (SOC) and extended operat-
ing conditions (EOC) for comparative experiments. Com-
pared to SOC, EOC data has a greater difference between the
training and testing datasets. This article selects two types of
EOC datasets (denoted by EOC-1 and EOC-2) that are con-
sistent with reference [17]. In EOC-1, there is a significant
difference in the depression angle between the training and
test dataset. The training dataset is composed of four targets
(2S1, BRDM-2, T-72, and ZSU-234) in the 17◦ depression
angle chosen from Table 1, and the test dataset (shown in
Table 2) is composed of data in the 30◦ depression angle. In
EOC-2, there are significant differences in the serial numbers
and configurations of targets between the training and test
datasets. The training set is composed of four targets (BMP-
2, BRDM-2, BTR-70, and T-72) in the 17◦ depression angle
chosen from Table 1, while the test set contains two groups
listed in Table 3 (EOC-2-1) and Table 4 (EOC-2-2), corre-
sponding to configuration variants and version variants.

The comparative experimental results are shown in Ta-
ble 5, in which the results of the literature [17], [20] are
obtained from the original data of the literature. Results of
VGG16, ResNet-50 and ResNet-18 are obtained through the
experiment using the same parameter as the proposed algo-

Table 2 EOC-1 test dataset (large depression variant).

Table 3 EOC-2-1 test dataset (configuration variants).

Table 4 EOC-2-2 test dataset (version variants).

rithm in this paper. The results of Improved Triplet Loss
algorithmn are obtained by replacing the distance measure-
ment method proposed in this paper with that in reference
[24], and keeping other parameters and training methods in
accordance with this paper. It can be seen from the table that
VGG16 performs the worst, followed by ResNet-50. This is
mainly due to that the VGG16 and ResNet-50 have a large
number of parameters by adopting multiple fully connected
layers and multiple layers respectively, and the algorithm
complexity comparison can be found in Sect. 3.3.4. Because
of the difficulty of obtaining SAR images, the available sam-
ples for SAR image training are relatively few, and a model
with a big parameter number can easily cause overfitting and
performance degradation phenomenon [17]. The models of
ResNet-18, literature [17], literature [20], Improved Triplet
Loss [24], and this paper have fewer parameters compared
to the first two, so their performance is better, reaching over
99% in the SOC dataset. The algorithm proposed in this
paper not only achieves optimal performance under the SOC
dataset, but also outperforms other algorithms under various
EOCdatasets, further proving the superiority of the proposed
method.

3.3.2 Comparison of Different Feature Extraction Net-
works (Backbones)

To prove the superiority of the feature extraction network of
the proposed algorithm, the feature extraction network was
replaced as EfficientNetV2 [25] and MobileNetV3 [26], and
comparative experiments were conducted on three types of
networks under the same condition. The comparison results
are shown in Table 6. It can be seen that the feature extraction
network used in this paper has a significant advantage in
accuracy compared to the other two.

3.3.3 Comparison of Different Distance Measurement
Methods

In order to prove the superiority of the distance measurement
method proposed in this paper, the loss function trained in the
first stage is replaced by the loss function of the prototype

Table 5 Comparison of accuracy with algorithms in other literature.

Table 6 Comparison of experimental results of different feature extrac-
tion networks.
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Fig. 6 Visualization of the output features of models trained with different loss functions after PCA
reduction. (a) Prototype network loss function. (b) Supervised contrast learning network loss function.
(c) Improved Triplet Loss. (d) This paper.

Table 7 Comparison of different distance measurement loss functions.

Table 8 Comparison of algorithm complexity.

network [22], the supervised contrastive learning network
[23] and Improved Triplet Loss [24]. Experiments were
conducted under the same conditions, and the comparison
results are shown in Table 7. It can be seen that the algorithm
proposed in this paper performs best. Using three different
loss functions to train the model, the output features are
dimensionally reduced by PCA, and the visualization results
are shown in Fig. 6. It can be seen that the algorithm in
this paper distinguishes each category more clearly and has
a stronger classification ability.

3.3.4 Comparison of Algorithm Complexity

Table 8 provides a comparison between our algorithm and
other algorithms in terms of parameter size, floating point
operations (FLOPs), and accuracy. It can be seen that the
algorithm in this paper has the minimum parameter size,
and FLOPs are only higher than MobileNetV3_S, but the
accuracy is the highest. The overall algorithm complexity is
low while ensuring a high recognition rate.

3.4 Ablation Experiment

In order to verify the effectiveness of the three design ideas
proposed in this paper, namely, convolution classifier, small-
size convolution kernel and distance measurement loss func-

Table 9 Ablation experiment result of variant algorithms.

Fig. 7 Comparison of the training process of variant algorithms.

tion(represented by A, B, and C respectively), this paper uses
several variants of the algorithm to conduct ablation experi-
ments, namely Variant 1: use a linear layer as the final clas-
sifier; Variant 2: use a 7x7 convolutional kernel instead of
three 3x3 convolutional kernels, and use a 5x5 convolutional
kernel instead of two 3x3 convolutional kernels; Variant
3: do not use the distance measurement loss function, and
directly use cross entropy for training. The experimental re-
sults of the three variants are shown in Table 9, which shows
that all three variants perform varying degrees of reduction
in accuracy. Figure 7 shows their training processes, and it
can be seen that after using the two-stage training method,
the convergence speed of the second training is significantly
accelerated due to the completion of the first training. From
the embedded zoomed figure, we can see that Variant 1 has
the worst performance, followed by Variant 2 which has
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Fig. 8 Visualization of feature extraction network’s output after PCA
dimensionality reduction. (a) Themodel trainedwith distancemeasurement
loss. (b) The model trained without distance measurement loss.

large-scale convolution kernels, followed by Variant 3 with
the model that does not use the distance metric. The model
that does not make any changes has the best performance.
This proves the effectiveness of convolution classifier, dis-
tancemeasurement loss function and small-size convolution.
In addition, from the experimental results, it can be seen that
the accuracy of variant 1 and variant 2 are relatively low,
which can be ascribed to that the use of linear classifiers
and large convolutional kernels has increased the number of
model parameters to a certain extent, and the overfitting oc-
curs. The phenomenon of performance degradation caused
by increasing the number of parameters is also reflected in
reference [17]. In this paper, the model can reduce the num-
ber of parameters by simplifying the network, thus supress
overfitting to a certain extent.

Figure 8 shows the visualization of the feature extrac-
tion network’s output after PCA dimensionality reduction.
Figure 8(a) and Fig. 8(b) show the results of the trained
model with and without distance measurement loss func-
tion, respectively. It can be seen that after training with the
distance measurement loss function, categories are distin-
guishedmore clearly and the classification ability is stronger.

3.5 Hyper-Parameter Settings

α and β in Eq. (2) are the two important parameters of the
loss function in this paper. Experiments were conducted by
changing α and β from 0.1 to 0.8 (we choose the value meet
α+β < 1 since the ratio of lossc−c is 1-α-β) respectively,
other parameters are consistent with that in Sect. 3.1, and
the accuracy results are shown in Fig. 9. It can be seen
that high accuracy can be obtained at several points such as
(α,β)={(0.8,0.1),(0.3,0.2),(0.7,0.2)}. The paper chooses the
point of (α=0.8, β=0.1).

4. Conclusion

In order to improve the accuracy of SAR image recognition,
this paper proposes a small-size full convolutional network
based on distance measurement. The feature extraction part
of the network is composed of multiple 3x3 convolution lay-
ers, and the classifier of the network is composed of a 1x1

Fig. 9 Results with different α and β settings.

convolution layer. The design of small-size and convolu-
tion classifiers improves accuracy while reducing network
parameters and computational complexity. A loss function
based on distance measurement is designed, which makes
comprehensive use of the distance from the sample to the
category centre, the distance between category centres and
the variance of samples in the same category. Feature map
visualization shows, after trainingwith the distancemeasure-
ment loss function, categories are distinguished more clearly
and the features of samples in the same category are more
clustered, the classification ability is stronger. Finally, mul-
tiple comparative experiments have shown that the method
proposed in this paper is superior to the methods proposed
in other papers and classic image recognition models.
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