
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024
965

PAPER
Model for Jointly Determining Service Function Chain Routes and
Update Scheduling with State Consistency

Tomoki TAKAHASHI†a), Student Member, Takehiro SATO†, Member, and Eiji OKI†, Fellow

SUMMARY Service chaining technology realizes that packets are pro-
cessed through virtual network functions (VNFs); the set of successive
VNFs is called a service function chain (SFC). Routes of SFCs need to be
updated in order to resolve a quality of service degradation due to concentra-
tion of processing loads on certain VNFs. When updating the SFC routes,
states of migrated VNF instances need to be kept consistent to prevent a
degradation of processing accuracy of the VNF instances. Existing studies
determine SFCs to be updated, their routes, and an update scheduling in
multiple phases; each decision does not necessarily minimize the total time
required to update the SFC routes. This paper proposes a model that jointly
determines SFCs to be updated, their routes, and an update scheduling while
guaranteeing state consistency. The proposed model considers the time re-
quired to update flow entries of SFC routes, the time required to migrate
states of VNF instances, and the delay time required to transmit, propa-
gate, and process packets. The objective function is to minimize the total
time required to update SFC routes under a constraint of processing load
balancing among VNF instances. The proposed model is formulated as an
integer linear programming problem. The proposed model is compared to
a benchmark model based on the existing studies. Numerical results show
that the proposed model can reduce the total update time compared to the
benchmark model.
key words: network function virtualization, software-defined network, ser-
vice function chain, network update

1. Introduction

Service chaining is a technology that enables traffic to pass
through a particular set of functions in sequence [1]. Service
chaining is achieved through a combination of network func-
tion virtualization (NFV) and software-defined networking
(SDN). NFV is a technology that allows functions provided
by physical network equipment to run as software in a virtual
environment. SDN is a technology that provides centralized
and flexible control by separating the control and data planes
with a software-based controller. In service chaining, VNFs
in a virtualized network are chained together on demand. The
set of concatenated VNFs is called a service function chain
(SFC). Typical examples of SFCs are voice over Internet pro-
tocol (VoIP) and online gaming [2]. VoIP is a technology
that converts voice signals into digital data and transmits it
over the Internet. Traffic of VoIP traverses network address
translation (NAT) VNFs, firewall VNFs, and a traffic moni-
tor (TM) VNF. The TMVNF performsmonitoring, tracking,
and analysis of network traffic data. Online gaming connects

Manuscript received December 5, 2023.
Manuscript revised March 6, 2024.
Manuscript publicized June 28, 2024.
†Graduate School of Informatics, Kyoto University, Kyoto-shi,

606-8501 Japan.
a) E-mail: ttakahashi@icn.cce.i.kyoto-u.ac.jp
DOI: 10.23919/transcom.2023EBP3203

dedicated servers and users’ client machines via the Internet
to play the same game at the same time. Traffic of online
gaming passes through a NAT and a firewall VNF first, then
a video optimization controller VNF that provides functions
such as on-demand video caching, then a WAN optimiza-
tion controller VNF that increases transfer speeds by data
compression, and then an intrusion detection and prevention
system VNF that detects and blocks threats. VNF instances
of the same type have the same function.

Network situation is always changing. There can be a
case where processing load is concentrated on a particular
VNF instance whereas the resources of other VNF instances
are not used. In this case, the processing delay in the VNF
instance with the concentrated load can increase compared
to usual cases, which may cause a degradation of the quality
of service. To solve this problem, it is necessary to switch an
SFC route that passes through the overloaded VNF instance
to another route so that the load of the VNF instances can be
evenly distributed.

Each VNF instance that makes up an SFC holds a state
of the processed packets [3]. For example, an intrusion de-
tection system (IDS) VNF holds information as a state such
as transmission control protocol (TCP) sequence numbers,
partially reassembled hyper text transfer protocol (HTTP)
payloads, and flow connection counters [3]. When an SFC
route is updated, the state held by the VNF instance on the
route before update and that held by the VNF instance on the
route after update need to be consistent. If the state is identi-
cal between the VNF instances on the route before and after
the SFC update, this condition is called state consistency.
When the states of the two VNF instances are consistent,
the results of packets processing in the two VNF instances
are the same. If state consistency is not guaranteed when
updating the SFC route, the accuracy of processing in the
VNF instance on the updated route may degrade.

To guarantee state consistency, the state held by the
VNF instance on the route before update needs to be mi-
grated to the VNF instance on the new route, which is called
state migration. Packets cannot be processed in the VNF
instance where the state migration is in progress. New pack-
ets arriving at the VNF instance are forwarded to a buffer
in the controller and temporarily stored. The time required
for the state migration differs for each type of VNF instance
[3]. Even among VNF instances of the same type, the size
of the migrated state may vary depending on the amount of
packets processed by the VNF instance; the state migration
time can be different for each VNF instance. If an excessive

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

966
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

number of SFC routes are updated, time required for update
may affect the quality of service or buffer overflow may oc-
cur. When SFC routes are updated for load balancing, time
required for update and buffer usage needs to be suppressed.

Existing works [3]–[7] studied SFC updating with state
consistency. Gember-Jacobson et al. [3] presented a con-
trol plane architecture called OpenNF, which updates SFC
routes. This work designed an application programming in-
terface to transfer a state of oneVNF instance to anotherVNF
instance. Existing works [4], [5] presented models that se-
lect which SFC routes to update (SFC selection) and allocate
updated routes to SFCs (routing allocation) in order to per-
form load balancing among VNF instances. Zhang et al. [4]
presented a model named Co-scaler, which performs an SFC
selection and a routing allocation so that state migrations of
VNF instances that comprise an SFC can be performed in
parallel. Sun et al. [5] presented a model that performs SFC
selection and routing allocation under VNF scale out, scale
in, and load balancing situations. Fan et al. [6] presented a
model that determines an SFC selection and a routing allo-
cation, and an update scheduling. The work in [7] presented
a scheduling model that minimizes the total time required to
update all SFCs (the total update time) while guaranteeing
state consistency. When updating an SFC composed of mul-
tiple VNF instances, this model performs state migrations in
parallel as in [4]. The model in [7] can provide a scheduling
that allows multiple SFCs to be updated at the same time.

Since the model in [7] only obtains an update schedul-
ing, an SFC selection and a routing allocation need to be
performed in advance by the models such as [4], [5]. The
model in [6] determines an SFC selection and an update
scheduling after determining a routing allocation; these de-
terminations are separated into multiple phases. When the
models in [6], [7] are used to obtain an update scheduling,
determinations of an SFC selection, a routing allocation, and
an update scheduling are performed not in a single phase but
in multiple phases. The decision obtained in a phased man-
ner does not necessarily minimize the total update time.

It is required for a network operator to update SFC
routes as soon as possible when the load concentrates on a
specificVNF instance and the service quality degrades. If the
time required for the SFC update is long, quality of service
may continue to degrade; for example, long processing delay
and packet loss caused by load imbalance are prolonged. A
question arises; how dowe obtain an SFC selection, a routing
allocation, and an update scheduling that minimize the total
update time to achieve load balancingwith state consistency?

This paper proposes a model that determines SFCs to
be updated, their routes, and an update scheduling at the
same time. The objective is to minimize the total update
time under a constraint of balancing processing load of VNF
instances. The proposed model considers simultaneous state
migrations of an SFC composed of multiple VNF instances
and simultaneous updates of multiple SFCs, as in [7]. The
proposed model is formulated as an integer linear program-
ming (ILP) problem. The proposed model is evaluated in
terms of the total update time, the number of flows to be up-

dated, the standard deviation of processing capacity for VNF
instances, the amount of used buffer capacity, the number of
rounds to be used, and the computation time. Numerical
results show that the proposed model can reduce the total
update time compared to the benchmark model. As the ca-
pacity utilization ratio increases, the standard deviation tends
to increase and the total update time and the number of up-
dated flows tend to decrease. Numerical results also show
that, as the buffer capacity increases, the total update time
and the number of used rounds tend to decrease.

The rest of this paper is organized as follows. Section 2
describes the relatedworks. Section 3 describes the overview
and the problem formulation of the proposed model. Sec-
tion 4 shows numerical results. Finally, Sect. 6 concludes
this paper.

2. Related Works

2.1 SFC Update Problem

A problem of updating routes of SFCs is called an SFC
update problem. The SFC update problem consists of an
SFC selection, a routing allocation, and an update schedul-
ing. SFCs are updated in situations such as VNF scale out,
VNF scale in, load balancing, failure recovery, and VNF
upgrading [5].

There are existing works on SFC update problem [4]–
[8], which are summarized in Table 1. Hereinafter, a VNF
on a route of SFC before update is called an original VNF. A
VNF on a route of SFC after update is called a target VNF.
Wen et al. [8] presented a slice recovery and reconfiguration
model that performs a routing allocation. This model does
not consider to guarantee state consistency when a slice is
updated. Zhang et al. [4] presented a model called Co-scaler,
which performs an SFC selection and a routing allocation.
Co-scaler considers a situation of VNF scale out; a state is
migrated to a newly deployed VNF instance. Co-scaler min-
imizes the number of packets affected by SFC updates while
balancing the load so that the standard deviation of the VNF
instance load is below a threshold value. Sun et al. [5] pre-
sented a model that performs an SFC selection and a routing
allocation. This model minimizes the difference between
penalty and benefit while balancing the load so that the load
variance of VNF instances is below a threshold value. Here,
the penalty is defined as buffer usage and update time. The
benefit is defined as saved VM cost obtained by discarding
virtual machines with low utilization. Fan et al. [6] pre-
sented a model that performs an SFC selection, a routing
allocation, and an update scheduling. This model minimizes
the usage ratio for all VNF instances so that the total delay of
the SFC update and total time required to update flow entries
for each VNF instance are below a threshold value. This
model performs an SFC update in multiple phases; routing
allocation is performed first and then SFC selection and an
update scheduling are performed. Takahashi et al. [7] pre-
sented a model that performs an update scheduling. The
model in [7] minimizes the total time required to update all

TAKAHASHI et al.: MODEL FOR JOINTLY DETERMINING SFC ROUTES AND UPDATE SCHEDULING WITH STATE CONSISTENCY
967

Table 1 Summary of existing works related to SFC update problem.

SFCs. This model considers a state migration time for each
VNF instance, whereas the model in [6] assumes that a state
migration time is constant for all VNF instances.

Compared to the models in [4]–[7], the proposed model
jointly performs an SFC selection, a routing allocation, and
an update scheduling. Similar to the models in [4], [6],
[7], the proposed model considers to perform multiple state
migrations of an SFC at the same time. Also, similar to the
model in [7], the proposed model considers simultaneous
updates of multiple SFCs and defines a state migration time
for each VNF instance.

2.2 Consistent VNF Migration Methods

Amethod tomigrate aVNF for an SFCupdatewith state con-
sistency is called a consistent VNF migration method. The
consistent VNF migration has two properties: loss-freedom
and order-preservation. Loss-freedom is the property of
not dropping packets when updating an SFC [9]. Order-
preservation is the property of processing packets in the
same order during updating an SFC as in the case of no SFC
update [9].

There are existing works on consistent VNF migration
methods [3], [10]–[15]. Gember-Jacobson et al. [3] pre-
sented a control plane architecture called OpenNF. OpenNF
forwards newly-arriving packets during a state migration to
the buffer in the controller. After the state migration is
completed, newly-arriving packets are stored in a buffer of
a target VNF. The target VNF first processes packets from
the controller and then processes packets that directly arrive
at the target VNF. Gember-Jacobson et al. [10] presented
an improved OpenNF framework that performs peer-to-peer
transfers and packet reprocessing. States and packets are
transferred directly from an original VNF to a target VNF on
a peer-to-peer basis. During the state migration, new packets
arriving at the original VNF are copied and forwarded to the
buffer in the target VNF for reprocessing. Sherry et al. [11]
presented a system called Fault-Tolerant MiddleBox that re-

covers a middlebox to its pre-failure state in the event of
the middlebox failure. A snapshot and packet logs are
stored in a stable storage and used to obtain outputs from
the backup middlebox. The packet logs are made from the
time the snapshot is stored until a middlebox failure occurs.
Clark et al. [12] presented a design for VM live migration.
The state migration is performed by iteratively transferring
snapshots. Nobach et al. [13] presented a system called slim
migration (SliM) that transfers states by using a statelet that
represents information about changes in a VNF state. SliM
transfers a snapshot and a statelet from an original VNF to
a target VNF. Packets arriving at the original VNF during
the transfer of a snapshot are processed to create statelets.
Wang et al. [14] presented a framework for protecting a VNF
in a secure operating environment based on software guard
extensions (SGX) and Click, which is a modular software
architecture for making network applications. This frame-
work provides a security-aware state synchronization proce-
dure. Wang et al. [15] presented two state update schemes,
which are called a controller-forwarding based scheme and
a tagging-based scheme. These schemes suppress migra-
tion time when updating an SFC. Similar to OpenNF [3],
the controller-forwarding based scheme uses a buffer of the
controller and a target VNF instance. In the tagging-based
scheme, newly-arriving packets during a state migration are
forwarded to the buffer in the target VNF without using the
buffer in the controller.

The proposed model guarantees state consistency by
migrating a state of an original VNF to a target VNF as the
methods in [3], [10], [12]–[15]. The proposed model uses
buffers for newly-arriving packets at the controller and VNF
instance; the proposed model adopts the method in [3] and
the method of controller-forwarding based scheme in [15].
Different from themethod in [10] and themethod of tagging-
based scheme in [15], the proposed model forwards the state
via the controller.

968
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

3. Proposed Model

3.1 Overview

The proposed model jointly determines SFCs to be updated,
their updated routes, and the update scheduling. The ob-
jective is to minimize the total time required to update the
SFCs with the constraint that a processing load of each VNF
instance is distributed. The SFCs can be simultaneously
updated with state consistency. The update scheduling is
expressed as an allocation of the SFCs to rounds. SFC up-
dates allocated to the same round are completed within the
duration time of that round. All SFC updates are completed
by the final round. The time required to update an SFC is
defined as the time from the start of its update until when a
packet arrives at the destination host via the updated route,
which will be explained precisely later. When multiple SFC
updates are allocated to a round, the duration time of that
round is determined by the time of the SFC update which is
completed last.

A system structure considered in the proposed model is
shown in Fig. 1. Note that Fig. 1 focuses on the control plane
of the system; physical links connecting physical nodes to
each other are omitted. Each physical node has a physical
machine and an SDN switch. The physical node is simply
called host hereafter. On the physical machine, a VM runs on
virtualization software. A VNF runs on the VM. The status
of each physical machine is sent to the controller, and the
controller keeps track of the entire network. The controller
decides SFCs to be updated, their updated routes, and update
scheduling of those SFCs by the proposed model. Then, the
controller performs the update operation according to the
obtained scheduling; state migrations of the VNFs and flow
entry updates of the SDN switches are performed.

Fig. 1 System structure.

The following scenarios are considered in the proposed
model. An SFC consists of one or more VNFs and provides
a service by traversing VNF instances. One or more flows
pass through an SFC. Each flow maintains its state in a
VNF instance that makes up an SFC.When a state migration
is performed for the VNF instance, the states of all flows
passing the SFC are migrated. The time it takes to push a
packet into a link is considered as a transmission delay for the
link. Traffic arrives at the SFC at a fixed rate [packets/s]. A
VNF instance immediately processes a packet in a fixed time
[s] and forwards the packet to the next host; this fixed time for
the VNF instance is considered as a processing delay. The
reasons for fixing the values of transmission rate and packet
processing time are as follows. We consider that an SFC has
a maximum transmission rate. In the proposed model, the
transmission rate is set to this maximum transmission rate to
tolerate variations in the amount of actual network traffic. We
also consider that the minimum processing capacity to run
a VNF is reserved at each host; the time required for packet
processing is guaranteed to be less than a certain value. The
time it takes for a packet to propagate on a link is considered
as a propagation delay. A controller is located on one of the
hosts on the physical network. Communications between
the controller and each host, such as flow entry updates,
state migrations, and forwarding of packets from hosts to a
buffer, are performed in a control plane. Packets pass through
an SFC in a data plane. The control plane uses the same
physical link as the data plane; for each link, a propagation
delay is the same for the control plane and the data plane.
On the other hand, for each link, a transmission capacity
is allocated separately for the control plane and the data
plane. The proposed model uses buffers of the controller and
VNF instances in the same way as the consistent migration
methods in [3], [15]. The proposed model assumes that
buffer overflow at the VNF instance does not occur. The
buffer of theVNF instance is used to temporarily store newly-
arriving packets to achieve packet order preservation. If
the buffer capacity of the VNF instance is insufficient, the
new packets can be dropped; state consistency cannot be
guaranteed. Therefore, we assume that the VNF instance
has a buffer with sufficient capacity to prevent the buffer
overflow. The proposed model considers a buffer capacity
constraint of the controller.

An example of an SFC update procedure by the pro-
posed model is shown in Fig. 2. “Ctr” represents the con-
troller and h0–h5 represent hosts. h0 and h5 are a source
and destination hosts, respectively. Instances of VNF A are
installed at h1 and h3. Instances of VNF B are installed at
h2 and h4. There is one SFC, named f , in the network. Fig-
ure 2(a) shows the routes of f before and after the update.
The route of SFC f is updated from the dotted green route
to the solid green route. Figure 2(b)–2(d) show packet flow
on the network. Figure 2(b) shows the packet flow at the
time of starting the SFC update. Before the SFC update,
packets are forwarded via the route h0-h1-h2-h5. A flow
entry is installed from the controller to host h0; it is the time
when the SFC update begins. As a result of the flow entry

TAKAHASHI et al.: MODEL FOR JOINTLY DETERMINING SFC ROUTES AND UPDATE SCHEDULING WITH STATE CONSISTENCY
969

Fig. 2 Example of SFC update procedure by proposed model.

Fig. 3 Example of determination of SFCs to be updated, their routes, and update scheduling for
multiple SFCs.

update, the route of SFC f is switched from h0-h1-h2-h5 to
h0-h3-h4-h5. Figure 2(c) shows the packet flow during state
migration of VNF A and VNF B. The states of VNFs A and
B are migrated from h1 to h3 and h2 to h4, respectively, via
the controller. During the state migration, new packets of f
arriving at host h3 on the updated route are forwarded and
stored in the buffer until the state migration of f is com-
pleted. Figure 2(d) shows the packet flow at the completion
of the SFC update. Packets of f stored in the buffer are
forwarded from the buffer to host h3, processed by hosts h3
and h4, and then forwarded to destination host h5. The time
when a buffered packet of the controller reaches destination
host h5 for the first time is the end of the SFC update; it is the
time when packet processing is resumed at destination host
h5. While the buffered packets are being processed at host
h3, new packets arrive at h3. These new packets are buffered
in the VNF instance of host h3 until the end of the process-
ing for packet order preservation. After the SFC update is
completed, the new arriving packets from host h0 are sent to
destination host h5 along the solid green route in Fig. 2(a).
Note that when updates of multiple SFCs are performed si-
multaneously, one or more SFCs are updated in a procedure
such that the flow entry update is performed after the state
migration. Instead of waiting for the completion of other
SFCs’ flow entry update, the state migration is performed in

Table 2 Time required for state migration of VNF A and VNF B for each
SFC.

advance. In this case, the time when the SFC update starts
is the time when the state migration starts.

An example of determination of SFCs to be updated,
their routes, and an update scheduling for multiple SFCs
is shown in Fig. 3. Each VNF instance has a processing
capacity of 100 [packets/s]. There are four types of SFCs:
f1, f2, f3, and f4. The transmission rate of f1, f2, f3, and
f4 are 50, 30, 45, and 30 [packets/s], respectively. Time
required for the state migration of VNF A and VNF B for
each SFC is shown in Table 2. Figure 3(a) shows the network
before update. Figure 3(a) shows that SFCs use 75, 80, 0,
95, 60, and 0 of processing capacity [packets/s] for VNF
instances A1, A2, A3, B1, B2, and B3, respectively; the
processing load is concentrated on VNF instances A2 and
B1. Figure 3(b) shows the network after update; SFC routes
to be updated and their updated routes are obtained by the
proposed model. In Fig. 3(b), SFCs use 45, 60, 50, 45, 60,
and 50 of processing capacity [packets/s] for VNF instance
A1, A2, A3, B1, B2, and B3, respectively; the processing

970
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

load is distributed among the VNF instances by updating
routes of f1 and f2. State of VNF instances A2 and B1 in
f1 and VNF instance A1 in f2 needs to be migrated to VNF
instances A3, B3, and A2, respectively. Figure 3(c) shows
the scheduling for updating SFCs f1 and f2 obtained by the
proposed model. Updates of SFCs f1 and f2 are allocated to
one round; SFC updates are performed simultaneously. The
time required to update each SFC consists of three parts:
the time required to update the flow entry in a switch to
the updated route, the time required to perform the state
migration, and the delay required to send the packets stored
in the buffer to the destination host on the updated route. The
time required to perform the state migration is the maximum
value of the state migration time among VNF instances that
are to be updated. The time to complete the update of f1 is
53ms, which is the sum of 5ms for the flow entry update,
45ms for the state migration, and 3ms for delay. 45ms for
the state migration comes from the state migration time for
VNF B. The time to complete the update of f2 is 42ms,
which is the sum of 35ms for the state migration, 5ms for
the flow entry update, and 2ms for delay. 35ms for the state
migration comes from the state migration time for VNF A.
The duration time for a round is the maximum of the SFC
update times allocated to that round. The duration time for
round 1 is 53ms, which comes from f1.

3.2 Notation

In the proposed model, sets, parameters, and variables are
defined. Notations of sets and parameters are shown in
Table 3. Notations of variables are shown in Table 4.

3.2.1 Sets

Sets are defined as follows. A set of SFCs is denoted by
F. A set of candidate paths that SFC f ∈ F can use after
the update is denoted by Pf . Pf contains a route before the
update of SFC f ∈ F. A set of VNF instances is denoted by
S. A set of hosts is denoted by H. A set of links is denoted
by E . A set of rounds is denoted by Q ∈ [0,

∑
f ∈F lf]. In this

model, SFCs which are not updated are allocated to round
zero; SFCs to be updated are allocated to round one or later.
SFC updates start from round one.

3.2.2 Parameters

Parameters for SFCs are as follows. The number of VNF
instances which make up SFC f ∈ F is denoted by lf . SFC
f is represented by a chain of VNF instances in the order of
a increasing value of i ∈ [1, lf]. A transmission rate of SFC
f ∈ F is denoted by rf .

Parameters for VNF instances are as follows. The time
required to migrate a state of SFC f ∈ F from VNF instance
s ∈ S to s′ ∈ S is denoted by τstate

f ss′
. A threshold value of

capacity utilization ratio for VNF instances is denoted by σ0,
where 0 ≤ σ0 ≤ 1. A processing capacity of VNF instance
s ∈ S is denoted by cproc

s . The time required forVNF instance

Table 3 Notations of sets and parameters.

s ∈ S to process one packet is denoted by τproc
s .

Parameters of the network related to the update time are
as follows. The time required to install a flow entry of SFC
f ∈ F to a switch on host h ∈ H is denoted by τentry

f h
. The

total propagation delay from the controller to VNF instance
s ∈ S is denoted by τprop

s . The total transmission delay from
the controller to VNF instance s ∈ S is denoted by τtrans

s .
The total propagation delay from VNF instance s ∈ S to a
destination host of path p ∈ Pf is denoted by τprop

s f p
, where

f ∈ F. The total transmission delay from VNF instance
s ∈ S to a destination host of path p ∈ Pf is denoted by
τtrans
s f p

, where f ∈ F.
Other parameters related to the network are as follows.

A capacity of the buffer is denoted by cbuffer. A transmission
capacity of link e ∈ E is denoted by ctrans

e . αe f p is a param-
eter such that αe f p = 1 if link e ∈ E belongs to path p ∈ Pf

of SFC f ∈ F and 0 otherwise. βs f p is a parameter such
that βs f p = 1 if VNF instance s ∈ S belongs to path p ∈ Pf

of SFC f ∈ F and 0 otherwise. γ f p is a parameter such that
γ f p = 1 if path p ∈ Pf of SFC f ∈ F is the same as the
path before update. ψf pis is a parameter such that ψf pis = 1
if path p ∈ Pf of SFC f ∈ F passes through VNF instance
s ∈ S as the i-th VNF instance and 0 otherwise. ηh f p is a
parameter such that ηh f p = 1 if path p ∈ Pf of SFC f ∈ F
switches at host h ∈ H from the path before update and 0

TAKAHASHI et al.: MODEL FOR JOINTLY DETERMINING SFC ROUTES AND UPDATE SCHEDULING WITH STATE CONSISTENCY
971

Table 4 Notations of variables.

otherwise.

3.2.3 Variables

Variables related to round allocation in an update scheduling
are as follows. x f q is a binary decision variable such that
x f q = 1 if SFC f ∈ F is allocated to round q ∈ Q and 0
otherwise. x ′f q is a binary decision variable such that x ′f q = 1
if the update of SFC f ∈ F is already completed at the start
of round q ∈ Q\{0} and 0 otherwise. x̂q is a binary decision
variable such that x̂q = 1 if one or more SFC updates are
performed at round q ∈ Q\{0} and 0 otherwise. a f qk is a
binary decision variable such that a f qk = 1 if a flow entry for
SFC f ∈ F is updated in the k-th order at round q ∈ Q\{0}
and 0 otherwise, where k ∈ [1, |F |]. ws f is a binary decision
variable such that ws f = 1 if VNF instance s ∈ S is the first

VNF instance (the VNF instance that forwards packets to the
buffer) when a state migration of SFC f ∈ F is performed
and 0 otherwise. u f i is a binary decision variable such that
u f i = 1 if the i-th VNF instance of SFC f ∈ F is the first
VNF instance and 0 otherwise.

Variables for the duration time of each round in an
update scheduling are as follows. The time required at round
q ∈ Q\{0} is denoted by decision variable tq . The time
when an update of SFC f ∈ F is completed, by regarding
the time at which each round starts as zero, is denoted by
t f . The time required to update a flow entry for SFC f ∈ F
is denoted by decision variable tentry

f
. The time required

to migrate all states of SFC f ∈ F is denoted by decision
variable tstate

f
. The sum of propagation delay, transmission

delay, and processing delay caused by updating SFC f ∈ F
is denoted by decision variable tdelay

f
. The time when a flow

entry update for SFC f ∈ F starts, by regarding the time
at which each round starts as zero, is denoted by decision
variable tstart

f
. The time when the k-th flow entry update for

SFC f ∈ F starts at round q ∈ Q\{0}, by regarding the time
at which each round starts as zero, is denoted by decision
variable t̂start

qk
, where k ∈ [1, |F |].

Other variables related to an update scheduling are as
follows. The total used buffer capacity by all SFCs at the
time when an update of SFC f ∈ F is completed is denoted
by decision variable cused

f
. The amount of buffer capacity

used by SFC f̂ ∈ F at the time when packets of SFC f ∈ F
start to be forwarded from the buffer is denoted by decision
variable ĉused

f f̂
. ŷorig

f pq
is a binary decision variable such that

ŷ
orig
f pq
= 1 if SFC f ∈ F uses the same path p ∈ Pf as before

an update at round q ∈ Q\{0} and 0 otherwise. ŷtarget
f pq

is a
binary decision variable such that ŷtarget

f pq
= 1 if SFC f ∈ F

uses path p ∈ Pf which is used after an update at round
q ∈ Q\{0} and 0 otherwise.

Variables related to an SFC selection are as follows.
yf p is a binary decision variable such that yf p = 1 if SFC
f ∈ F is allocated to path p ∈ Pf and 0 otherwise. y′f is is
a binary decision variable such that y′f is = 1 if an updated
route of SFC f ∈ F passes through VNF instance s ∈ S in
the i-th order and 0 otherwise, where i ∈ [1, lf]. b f i is a
binary decision variable such that b f i = 1 if a state migra-
tion of the i-th VNF instance of SFC f ∈ F is performed
and 0 otherwise, where i ∈ [1, lf]. The maximum capacity
utilization ratio among all VNF instances is denoted by de-
cision variable σ, where 0 ≤ σ ≤ 1. The used amount of
processing capacity of VNF instance s ∈ S is denoted by
decision variable Ls .

3.3 Problem Formulation

3.3.1 Formulation of Optimization Problem

The problem that determines SFCs to be updated, their
routes, and an update scheduling at the same time is for-

972
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

mulated. This problem is called SFC routing selection and
scheduling problem (SFC-RS) hereinafter.

The objective function is formulated as follows:

min
∑

q∈Q\{0}
tq + ε0

∑
f ∈F

ĉused
f f . (1)

The first term of (1) represents the total update time. The
second term of (1) represents the sum of buffer capacity
used by all SFCs. ε0 is a parameter that is set to such a small
positive value that a value of the second term is sufficiently
smaller than that of the first term; it ensures that SFCs to be
updated and their routes that use the minimum amount of
buffer capacity are determined in the case where there exists
more than one solution such that the first term is minimized.

tq = max
f ∈F

t f x f q,∀q ∈ Q\{0}, (2a)

t f =

{
tentry
f
+ tstate

f
+ tdelay

f
if tstart

f
= 0,

tstart
f
+ tentry

f
+ tdelay

f
otherwise,

∀ f ∈ F, (2b)

tentry
f
=

∑
p∈Pf

yf p
∑
h∈H

ηh f pτ
entry
f h

,∀ f ∈ F, (2c)

tdelay
f
=

∑
s∈S

ws f (τ
prop
s + ĉused

f f τtrans
s +∑

p∈Pf

yf p(τ̂
prop
s f p
+ τ̂trans

s f p))+∑
i∈[1,l f]

u f i

∑
p∈Pf

yf p
∑

j∈[i,l f]

∑
s∈S

ψf p jsτ
proc
s ,∀ f ∈ F, (2d)

tstate
f = max

i∈[1,l f]

∑
p∈Pf

∑
s∈S

γ f pψf pis∑
p′∈Pf

∑
s′∈S

yf p′ψf p′is′τ
state
f ss′ ,∀ f ∈ F, (2e)

tstart
f =

∑
k∈[1, |F |]

∑
q∈Q\{0}

t̂start
qk a f qk,∀ f ∈ F, (2f)

t̂start
q1 = 0,∀q ∈ Q\{0}, (2g)

t̂start
qk =

t̂start
q(k−1) +

∑
f ∈F a f q(k−1)t

entry
f

if t̂start
q(k−1) +

∑
f ∈F a f q(k−1)t

entry
f

>
∑

f ∈F a f qk tstate
f

,∑
f ∈F a f qk tstate

f
otherwise,

∀k ∈ [2, |F |],q ∈ Q\{0}. (2h)

The duration time of each round tq is expressed as follows.
The time at which round q starts is set to 0. Equation (2a)
shows that tq is expressed as the time when the last update is
completed among the SFCs allocated to round q ∈ Q\{0}.
Equation (2b) shows that, if the flow entry update of SFC
f ∈ F is performed at the round start time, the time when
SFC f finishes update t f is the sum of the time taken for
the flow entry update tentry

f
, the state migration tstate

f
, and the

delay tdelay
f

; otherwise, t f is the sum of the start time of the
flow entry update tstart

f
, tentry

f
, and tdelay

f
. If the flow entry

update of SFC f ∈ F is not performed at the round start
time, the state migration is completed before the start of the
flow entry update of SFC f . Equation (2c) shows that the
time required to update the flow entry for SFC f ∈ F is
represented by the time required to update the flow entry for
host h ∈ H where the path of SFC f switches to path p ∈ Pf .
Equation (2d) shows that the delay caused by updating SFC
f ∈ F is represented by the sum of the delay due to packet
forwarding and processing between the controller and the
destination host on the updated path. Equation (2e) shows
that the time required to migrate the state of SFC f ∈ F
is the maximum state migration time among VNF instances
that make up SFC f . Equation (2f) shows the time when the
flow entry update of SFC f ∈ F starts. Equation (2g) shows
that the time to start the first flow entry update is round start
time 0. The if statement in (2h) represents whether the sum
of t̂start

q(k−1) and the time taken for the (k − 1)-th flow entry
update is greater than the time taken for the state migration
of SFC that performs the k-th flow entry update. When the
if statement is true, the start of the k-th flow entry update is
waited until the time when the (k − 1)-th flow entry update
is completed. Otherwise, the k-th flow entry update starts at
the time when the state migration of the SFC that performs
the k-th flow entry update is completed.∑

k∈[1, |F |]
a f qk = x f q,∀ f ∈ F,q ∈ Q\{0}, (3a)∑

f ∈F

a f qk ≤ 1,∀k ∈ [1, |F |],q ∈ Q\{0}, (3b)∑
f ∈F

a f q(k−1) ≥
∑
f ∈F

a f qk,∀k ∈ [2, |F |],q ∈ Q\{0}.

(3c)

Equation (3a) guarantees that the flow entry update for SFC
f ∈ F is performed once at round q ∈ Q\{0}. Equation (3b)
guarantees that flow entry updates are not performed simul-
taneously, but one by one at round q ∈ Q\{0}. Equation (3c)
guarantees that the order of flow entry updates k at round
q ∈ Q\{0} is allocated starting with the smallest order of k.

b f i =

{
0 if

∑
s∈S y

′
f is

∑
p′∈Pf

γ f p′ψf p′is = 1,
1 otherwise,

∀ f ∈ F, i ∈ [1, lf], (4a)

y′f is =
∑
p∈Pf

yf pψf pis,∀ f ∈ F, i ∈ [1, lf], s ∈ S. (4b)

Equation (4a) guarantees that no state migration is required
if the path used after the update (p ∈ Pf) and that used
before the update (p′ ∈ Pf) pass through the same VNF
instance. Otherwise, a state migration is required. Equa-
tion (4b) shows that y′f is is a binary variable that is 1 if the
path used after the update of SFC f ∈ F passes through VNF
instance s ∈ S as the i-th VNF instance and 0 otherwise.

ws f =
∑

i∈[1,l f]
u f i

∑
p∈Pf

yf pψf pis,∀s ∈ S, f ∈ F, (5a)

TAKAHASHI et al.: MODEL FOR JOINTLY DETERMINING SFC ROUTES AND UPDATE SCHEDULING WITH STATE CONSISTENCY
973

u f 1 = b f 1,∀ f ∈ F, (5b)

u f i =

{
1 if

∑
j∈[2,i] b f (j−1) = 0, b f i = 1,

0 otherwise,
∀ f ∈ F, i ∈ [2, lf]. (5c)

Equations (5a), (5b), and (5c) determine the values of ws f

and u f i . Equation (5c) means that the VNF instance with the
smallest value of i among the VNF instances performing the
state migration of SFC f ∈ F is the first VNF instance.∑

q∈Q

x f q = 1,∀ f ∈ F . (6)

Equation (6) guarantees that the state migration of SFC f ∈
F is performed at only one round.

x f 0 =
∑
p∈Pf

yf pγ f p,∀ f ∈ F . (7)

Equation (7) shows that if the path used after the update of
SFC f ∈ F is identical to that used before the update, the
update of SFC f is allocated to round 0; the path of SFC f
is not updated. Note that SFC updates start from round 1.∑

p∈Pf

yf p = 1,∀ f ∈ F . (8)

Equation (8) guarantees that only one path in the set of
candidate paths Pf of SFC f ∈ F is selected as the updated
path.

Ls ≤ σcproc
s ,∀s ∈ S, (9a)

σ ≤ σ0, (9b)

Ls =
∑
f ∈F

∑
p∈Pf

βs f pyf prf ,∀s ∈ S. (9c)

Equations (9a)–(9c) guarantee that the processing load is
distributed so that the capacity utilization ratio is below the
threshold value for all VNF instances. Ls is the used pro-
cessing capacity at VNF instance s ∈ S after all SFC updates
are completed.

cused
f ≤ cbuffer,∀ f ∈ F, (10a)

cused
f =

∑̂
f ∈F

ĉused
f f̂

,∀ f ∈ F, (10b)

ĉused
f f̂
=

r f̂

∑
q∈Q\{0} x f q(t f − tdelay

f
− a f̂ q1tentry

f̂
)

if t f − tdelay
f

<
∑

q∈Q\{0} x f q x f̂ qt f̂ ,
0 otherwise,

∀ f ∈ F, f̂ ∈ F . (10c)

Equation (10a) guarantees that the used buffer capacity by
all SFCs at the time when the update of SFC f ∈ F is
completed does not exceed the maximum buffer capacity.
Equation (10b) shows that cused

f
is the sum of the used buffer

capacity by all SFCs at the time when the update of SFC
f ∈ F is completed. The if statement in (10c) is whether

SFC f̂ ∈ F completes its update after the time SFC f ∈ F
starts forwarding packets from the controller to the first VNF
instance. When the if statement is true, SFC f̂ uses the buffer
of the controller at the time when SFC f starts forwarding
packets. Otherwise, SFC f̂ does not use the buffer at the
time. The amount of buffer capacity used by SFC f̂ at the
time when SFC f starts forwarding packets is the product
of transmission rate of SFC f̂ and the amount of time SFC
f̂ uses the buffer before the time SFC f starts forwarding
packets.

ŷ
orig
f pq
= γ f p(1 − x ′f q),∀ f ∈ F, p ∈ Pf ,q ∈ Q\{0},

(11a)

ŷ
target
f pq
= yf p(x f q ∨ x ′f q),∀ f ∈ F, p ∈ Pf ,q ∈ Q\{0},

(11b)∑
f ∈F

rf
∑
p∈Pf

αe f p(ŷ
orig
f pq
∨ ŷ

target
f pq
) ≤ ctrans

e ,

∀e ∈ E,q ∈ Q\{0}, (11c)∑
f ∈F

rf
∑
p∈Pf

βs f p(ŷ
orig
f pq
∨ ŷ

target
f pq
) ≤ cproc

s ,

∀s ∈ S,q ∈ Q\{0}. (11d)

Equations (11a) and (11b) determine the values of ŷorig
f pq

and ŷtarget
f pq

, respectively. Equation (11c) guarantees that the
link capacity used in each round does not exceed the upper
bound. Equation (11d) guarantees that the amount of used
capacity of VNF instance in each round does not exceed the
upper limit. If a path of SFC is updated in a round, it is
assumed that the link capacity and VNF instance capacity
are allocated to the paths used before and after update in that
round.

x ′f 1 = 0,∀ f ∈ F, (12a)

x ′f q =
∐

q′∈[1,q−1]
x f q′,∀ f ∈ F,q ∈ Q\{0,1}. (12b)

Equations (12a) and (12b) determine the value of x ′f q . Equa-
tion (12a) guarantees that no SFCs to be updated are com-
pleted by the start of round 1. Note that

∐
q′∈[1,q−1] x f q′

represents taking all ORs of x f q′ for q′ ∈ [1,q − 1].

x̂q =
∐
f ∈F

x f q,∀q ∈ Q\{0}, (13a)

x̂(q−1) ≥ x̂q,∀q ∈ Q\{0,1}. (13b)

Equation (13a) determines the value of x̂q . Equation (13b)
guarantees that SFC updates are allocated to rounds in as-
cending order of round number. Note that

∐
f ∈F x f q repre-

sents taking all ORs of x f q for f ∈ F.

3.3.2 Formulation in ILP Form

The problem in (1)–(13b) is non-linear since it involves if

974
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

statements, a max statement, OR operators, and products
of decision variables. The non-linear equations need to be
transformed into linear equations to formulate the problem
as an ILP problem.

if and max statements are linearized by following (14)–
(20). In (15), we can replace a max statement as ≥ to get the
largest value on the left-hand side [7]. This is because tstate

f

is set to such a small value that it can satisfy the constraint
of ≥ by minimizing the objective function in (1). In (18) and
(19), since the decision variables that make up if statements
are all binary variables and their conditions contain 0 or 1,
if statements can be expressed using OR operations. An OR
operation can be linearized by an existing method [16]. In
(14), (16), and (20), in order to linearize if statements, we
introduce a sufficiently large value, B1, that is larger than
or equal to the upper bound of the duration time of a single
round and binary variables. Using such a sufficiently large
value and binary variables to linearize mathematical state-
ments is a typical approach, which existing studies [16]–[19]
adopted, for example. How to express linear formulation de-
pends on eachmathematical statement. We use this approach
to fit our specific situation with customization.

t f = (1 − θ f)tstate
f + θ f tstart

f + tentry
f
+ tdelay

f
,∀ f ∈ F,

(14a)
tstart
f > −(1 − θ f),∀ f ∈ F, (14b)

tstart
f ≤ B1θ f ,∀ f ∈ F . (14c)

Equations (14a)–(14c) correspond to (2b). θ f is a binary
decision variable such that θ f = 1 if a condition tstart

f
> 0 is

satisfied and 0 otherwise.

tstate
f ≥

∑
p∈Pf

∑
s∈S

γ f pψf pis

∑
p′∈Pf

∑
s′∈S

yf p′ψf p′is′τ
state
f ss′ ,

∀ f ∈ F, i ∈ [1, lf]. (15)

Equation (15) corresponds to (2e).

t̂start
qk = µqk(t̂

start
q(k−1) +

∑
f ∈F

a f q(k−1)t
entry
f
) + (1 − µqk)∑

f ∈F

a f qk tstate
f ,∀k ∈ [2, |F |],q ∈ Q\{0}, (16a)

ζqk = t̂start
q(k−1) +

∑
f ∈F

(a f q(k−1)t
entry
f
− a f qk tstate

f),

∀k ∈ [2, |F |],q ∈ Q\{0}, (16b)
ζqk ≥ −B1(1 − µqk),∀k ∈ [2, |F |],q ∈ Q\{0}, (16c)
ζqk ≤ B1µqk,∀k ∈ [2, |F |],q ∈ Q\{0}. (16d)

Equations (16a)–(16d) correspond to (2h). µqk is a binary
decision variable such that µqk = 1 if ζqk > 0 and 0 if
ζqk < 0; the value of µqk is ‘don’t care’ if ζqk = 0. Let
tupper denote the upper bound. The duration time of a single
round does not exceed tupper. tupper is obtained by following
(17a)–(17d):

tupper =
∑
f ∈F

(t ′entry
f
+ t ′state

f + t ′delay
f
), (17a)

t ′entry
f
= max

h∈H
τ

entry
f h

,∀ f ∈ F, (17b)

t ′state
f = max

s,s′∈S
τstate
f ss′ ,∀ f ∈ F, (17c)

t ′delay
f
= max

s∈S,p∈Pf

(τ
prop
s + cbufferτtrans

s + τ̂
prop
s f p
+

τ̂trans
s f p + τ

proc
s),∀ f ∈ F . (17d)

Equation (17a) shows that tupper is set to the time required
in the case where all SFC updates are performed in serial.
Equations (17b), (17c), and (17d) determine the maximum
values of t ′entry

f
, t ′state

f , and t ′delay
f

for the time required for
the flow entry update, the state migration, and the delay,
respectively.

b f i = 1 −
∐
s∈S

y′f is

∑
p′∈Pf

γ f p′ψf p′is,∀ f ∈ F, i ∈ [1, lf].

(18)

Equation (18) corresponds to (4a).

u f i = (1 − φ f i)b f i,∀ f ∈ F, i ∈ [2, lf], (19a)

φ f i =
∐
j∈[2,i]

b f (j−1),∀ f ∈ F, i ∈ [2, lf]. (19b)

Equations (19a)–(19b) correspond to (5c). φ f i is a binary
decision variable represented by φ f i =

∐
j∈[2,i] b f (j−1).

ĉused
f f̂
= r f̂

∑
q∈Q\{0}

x f qtused
f f̂ q

νf f̂ q,

∀ f ∈ F, f̂ ∈ F,q ∈ Q\{0}, (20a)

tused
f f̂ q
= t f − tdelay

f
− a f̂ q1tentry

f̂
,

∀ f ∈ F, f̂ ∈ F,q ∈ Q\{0}, (20b)∑
q∈Q\{0}

x f q x f̂ qt f̂ − t f + tdelay
f

> −B1(1 − νf f̂ q),

∀ f ∈ F, f̂ ∈ F,q ∈ Q\{0}, (20c)∑
q∈Q\{0}

x f q x f̂ qt f̂ − t f + tdelay
f
≤ B1νf f̂ q,

∀ f ∈ F, f̂ ∈ F,q ∈ Q\{0}. (20d)

Equations (20a)–(20d) correspond to (10c). νf f̂ q is a bi-
nary decision variable such that νf f̂ q = 1 if a condition∑

q∈Q\{0} x f q x f̂ qt f̂ − t f + tdelay
f

> 0 is satisfied and 0 other-
wise.

The product of binary variablesws f yf p , u f iyf p , b f iφ f i ,
x f qνf f̂ q , yf px f q , and yf px ′f q can be linearized. TheOR op-
erations of (11b), (11c), (12b), (13a), (18), and (19b) can
be linearized. The product of a non-negative real vari-
able and a binary variable can be linearized by using a
constant value. ws f ĉused

f f
can be linearized by using B2,

which is a sufficiently large value that satisfies B2 ≥ cbuffer.
t f x f q , θ f tstate

f
, θ f tstart

f
, t̂start

qk
a f qk , a f q(k−1)t

entry
f

, a f qk tstate
f

,
t̂start
q(k−1)µqk , a f q(k−1)t

entry
f

µqk , a f qk tstate
f

µqk , a f̂ q1tentry
f̂

,
x f q x f̂ qt f̂ , x f q x f̂ q , and tused

f f̂ q
x f qνf f̂ q can be linearized by

TAKAHASHI et al.: MODEL FOR JOINTLY DETERMINING SFC ROUTES AND UPDATE SCHEDULING WITH STATE CONSISTENCY
975

using B1. For example, let ι, κ, and λ be binary variables
and ρ and ω be non-negative real variables. λ = ικ is lin-
earized by: λ ≤ ι, λ ≤ κ, and λ ≥ ι + κ − 1. λ = ι ∨ κ
is linearized by: λ ≤ ι + κ and λ ≥ 1

2 (ι + κ) [16]. ω = ρι
is linearized by: ω ≥ ρ + BL(ι − 1), ω ≤ ρ, and ω ≤ BLι,
where BL is a sufficiently large value to ensure that its value
is not lower than ρ [17].

4. Numerical Results

4.1 Evaluation Environment

This section evaluates the proposed model in terms of the
total update time, the number of rounds to be used, the
amount of used buffer capacity, the standard deviation of
processing load for VNF instances, and the computation
time required to obtain the optimal solution. As a benchmark
model, we use a strategy that determines SFCs to be updated,
their routes, and an update scheduling in two separate phases.

Results are obtained by changing the number of SFCs
deployed on a network. The number of VNF types that make
up an SFC is set to two: IDS VNF and firewall VNF. The
time required for IDS VNF and firewall VNF to process one
packet is set to 40 and 71 µs, respectively [20]. IDS and
firewall VNF instances have a processing capacity of 25000
and 14000 [packets/s], respectively [20]. The transmission
rate for each SFC is randomly set in the range of 2000 to
4000 [packets/s] [7]. The capacity of each link is set to
5 Gbps [21] in both of the data plane and the control plane.

In this evaluation, we assume that the packets flowing
on each link follow the distribution in Table 5 [22]. Let cband

e

[bit/s] denote the capacity of link e ∈ E . The capacity of
link e ∈ E can be converted to ctrans

e [packets/s] using the
following (21):

ctrans
e =

cband
e∑

m∈M gm
vm
100

,∀e ∈ E, (21)

where M is a set of packet size ranges shown in Table 5,
gm is the average of the minimum and maximum values of
packet size range m ∈ M , and vm is the percentage of packet
size range m ∈ M .

The state migration time of the i-th VNF instance of
SFC f ∈ F is obtained by:

τstate
f ss′ =

{
0 if s = s′,
n f (δ

state
s + δtrans

ss′) + δ
prop
ss′ otherwise,

∀ f ∈ F, s ∈ S, s′ ∈ S, (22)

where n f is the number of flows passing through SFC f ∈ F,
δstate
s is the time required to migrate the state of one flow in
VNF instance s ∈ S, δtrans

ss′ is the transmission delay required

Table 5 Packet size distribution [22].

to migrate a state of one flow from VNF instance s ∈ S to
s′ ∈ S, and δprop

ss′ is the propagation delay required to migrate
a state fromVNF instance s ∈ S to s′ ∈ S. n f is randomly set
in the range of 10–100 [5]. We set the state migration time
of one flow in the IDS and the firewall VNFs based on that
of PRADS, which is considered in [3] for an asset monitor
VNF. The time required to perform a state migration of one
flow in PRADS is 0.4ms. Bro IDS and iptables which are
different types of VNFs considered in [3] take 5 and 0.5
times longer than PRADS, respectively; we set the value of
δstate
s assuming that the time required tomigrate a state of one
flow in IDS and firewall VNFs is 2 and 0.2ms, respectively.
δtrans
ss′ is obtained by dividing the size of a state for one flow
by the link capacity. The size of the state in IDS and firewall
VNFs is set as follows. The size of the state for one flow
in the firewall VNF is 2KB [23]. We assume that the time
required to migrate a state of one flow is proportional to the
size of the migrated state; that of the state of one flow in the
IDS VNF is set to 2KB × 5 × 1

0.5 = 20KB.
The time it takes to install a flow entry from the con-

troller to each host is obtained by:

τ
entry
f h
= n f (δ̂

entry + δ̂trans
h) + δ̂

prop
h

,∀ f ∈ F, h ∈ H, (23)

where δ̂entry is the time required to install one flow entry
on a switch, δ̂trans

h
is the transmission delay required to send

a packet from the controller to host h ∈ H for one flow
entry update, and δ̂prop

h
is the propagation delay required for

a packet to propagate from the controller to host h ∈ H.
δ̂entry is set to 0.7ms [24]. δ̂trans

h
is obtained by dividing the

packet size for a flow entry update by the link capacity. The
packet size for a flow entry update is assumed to be equal to
the size of one flow entry in a switch; the packet size is set
to 356 bits [25].

Since the proposed model considers scenarios where
processing load is concentrated on a particular VNF instance
and load balancing is required, SFC routes before an update,
given as a parameter, are determined to satisfy following
(24a)–(24b):

σ0 < max
s∈S

Lbefore
s

cproc
s

≤ 1, (24a)

Lbefore
s =

∑
f ∈F

∑
p∈Pf

βs f pγ f prf ,∀s ∈ S. (24b)

Equation (24a) guarantees that the maximum capacity uti-
lization ratio ofVNF instances is greater than threshold value
σ0. Equation (24b) represents that Lbefore

s is the processing
load of VNF instance s ∈ S before the update. In addition,
the SFC routes before the update are determined so that an
used link capacity does not exceed the upper limit.

The number of flows to be updated, the stan-
dard deviation of processing capacity for VNF in-
stances, and the amount of used buffer capacity are ob-
tained by

∑
f ∈F n f

∑
q∈Q\{0} x f q ,

√
1
|S |

∑
s∈S(Ls − L̄s)

2, and∑
f ∈F ĉused

f f
, respectively. Note that L̄s is the average value

of Ls .

976
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

The results in this section are obtained with a 95% con-
fidence interval that is less than 15% of the mean in terms
of the total update time. Trials that obtain an infeasible
solution are omitted. The ILP problems of the proposed
model and benchmark model are solved with CPLEX In-
teractive Optimizer 20.1.0.0 [26] on the computer equipped
with AMD EPYC 7502P and 128GB RAM. The upper limit
of the computation time is set to 20000 s.

4.2 Benchmark Model

The benchmark model is developed based on [4], [7]. The
benchmark model finds a solution of SFC-RS in two phases
by dividing it into two problems. In the first phase, the
benchmark model solves a problem that determines SFCs
to be updated and their routes. This problem is called the
SFC routing selection problem (SFC-R) hereinafter. In the
second phase, the benchmark model solves a problem that
determines an update scheduling with the solution obtained
by SFC-R as input. This problem is called the SFC schedul-
ing problem (SFC-S) hereinafter. Both SFC-R and SFC-S
are formulated as ILP problems. The computation time for
the benchmark model is the sum of the time to solve SFC-R
and SFC-S.

4.2.1 SFC-R

SFC-R is based on the model presented in [4]. In the pre-
sented model, the objective function to be minimized is the
number of packets affected by SFC updates. In SFC-R, the
objective function is changed to the total update time it takes
to update the SFCs one by one, which is the sum of the flow
entry update time, the state migration time, and the delay
time. The delay time consists of transmission, propagation,
and processing delays for SFCs to be updated. With this
change in the objective function, constraints that represent
the state migration time and the delay time are considered in
SFC-R.

The formulation of SFC-R is given by:

min
∑
f ∈F

x f (tstate
f + tentry

f
+ tdelay

f
), (25a)

subject to (2c), (2e), (4a)–(4b), (5a)–(5c), (8),
(9a)–(9c), (25b)

x f = 1 −
∑
p∈Pf

yf pγ f p,∀ f ∈ F, (25c)

tdelay
f
=

∑
s∈S

ws f (τ
prop
s + cused

f τtrans
s +∑

p∈Pf

yf p(τ̂
prop
s f p
+ τ̂trans

s f p)) +
∑

i∈[1,l f]
u f i

∑
p∈Pf

yf p∑
j∈[i,l f]

∑
s∈S

ψf p jsτ
proc
s ,∀ f ∈ F, (25d)

cused
f = rf tstate

f ,∀ f ∈ F, (25e)

∑
f ∈F

∑
p∈Pf

αe f pyf prf ≤ ctrans
e ,∀e ∈ E, (25f)

cused
f ≤ cbuffer,∀ f ∈ F . (25g)

Equation (25c) represents that x f is a binary decision variable
such that x f = 1 if the path of SFC f ∈ F is to be updated and
0 otherwise. Themodel presented in [4] has a constraint that,
when a state migration is performed, states must be migrated
to a newly-installed VNF instance. To compare the proposed
and benchmark models under the same condition, SFC-R
omits this constraint. Equation (25d) corresponds to (2d) of
SFC-RS. Equation (25e) represents that cused

f
is the amount

of packets that are stored in the buffer when the update of
SFC f ∈ F is completed. Equation (25f) guarantees that
the link capacity used after SFC update does not exceed the
upper limit. Equation (25g) guarantees that the SFC route
is not updated to a route that uses more capacity than the
available buffer capacity.

4.2.2 SFC-S

SFC-S is based on themodel presented in [7]. Since SFC-RS
does not consider split buffers and the number of simulta-
neous buffer reads and writes, which are considered in the
model in [7], these constraints are omitted in SFC-S. The
scheduling of SFC-S is performed in the same way as the
scheduling of SFC-RS; an SFC update is completed in one
round and the duration time of a round consists of the time
required to update flow entries, the time required to migrate
states, and the delay required to send packets to the desti-
nation host. The solution obtained by SFC-R is used as the
parameter of SFC-S.

The formulation of SFC-S is given by:

min (1), (26a)
subject to (2a)–(3c), (6), (7), (10a)–(13b). (26b)

Note that yf p , ws f , and u f i , which are variables in SFC-
RS, are given in SFC-S as parameters obtained by solving
SFC-R.

4.3 Evaluation in 8-Node Network

In this evaluation, we use a network topology called 8-node
network shown in Fig. 4 with eight nodes and 15 links. h0 is
a source host and h7 is a destination host in each SFC route;
the 8-node network has nine routes. A propagation delay for
each link is set to 5ms [21]. The controller is deployed on

Fig. 4 8-node network.

TAKAHASHI et al.: MODEL FOR JOINTLY DETERMINING SFC ROUTES AND UPDATE SCHEDULING WITH STATE CONSISTENCY
977

host h0.

4.3.1 Dependency on Threshold of Capacity Utilization
Ratio σ0

We evaluate the proposed and benchmark models in terms
of the dependency on the threshold of capacity utilization
ratio, σ0. Figure 5 shows the results when buffer capacity is
cbuffer = 10000 [packets] in the 8-node network.

Figures 5(a), 5(b), and 5(c) show the total update time,
the number of flows to be updated, and the standard deviation,
respectively. As the value of the capacity utilization ratio σ0
increases, the standard deviation tends to increase and the
total update time tends to decrease. The reason for these re-
sults is that, the larger the value ofσ0, the lower the degree of
load balancing demanded; the necessity of updating SFCs is
smaller. The number of updated flows has the same tendency
as the total update time. This indicates that the flow entry up-
date time and the statemigration time increase corresponding
to the number of updated flows. Compared to the benchmark
model, the proposed model reduces the total update time by
at most 4.25%. In this case, the number of updated flows
increases by 2.05%. This is because the proposed and bench-

Fig. 5 Resultswhen buffer capacity is cbuffer = 10000 [packets] in 8-node
network.

mark models use different route selections. The proposed
model performs route selection considering simultaneous
update scheduling of multiple SFCs (parallel scheduling).
On the other hand, when the benchmark model performs
route selection, the benchmark model assumes scheduling
of updating SFCs one by one (serial scheduling). The route
selection thatminimizes the total update timewhen assuming
serial scheduling can differ from that of parallel scheduling.
For example, consider that there are two route selections A
and B. Route selection A takes 20ms and 40ms for updating
SFCs 1 and 2, respectively. Route selection B takes 35ms
each for updating SFCs 1 and 2. With serial scheduling, the
total update time is 20 + 40 = 60ms for route selection A
and 35 + 35 = 70ms for route selection B; the total update
time of route selection A is smaller than that of route se-
lection B. On the other hand, with parallel scheduling, the
total update time is max(20,40) = 40ms for route selection
A and max(35,35) = 35ms for route selection B; the total
update time of route selection A is larger than that of route
selection B. In this example, the proposed model performs
route selection B, but the benchmark model performs route
selection A.

Figure 5(d) shows the amount of used buffer capacity.
In comparison to the benchmark model, the proposed model
increases the amount of used buffer capacity at most 15.92%.
This indicates that the number of updated SFCs is larger in
the proposed model than in the benchmark model.

Figure 5(e) shows the number of rounds to be used.
When the number of SFCs is between three and six, the
number of rounds to be used is one. In these cases, all
SFC updates can be done at once, since sufficient buffer
capacity cbuffer is available. In the case where the number of
SFCs is larger than seven, multiple rounds are used due to
link capacity constraint (11c) and constraint of processing
capacity for VNF instance (11d).

Figure 5(f) shows the computation time. Note that the
computation times to solve SFC-R and SFC-S of the bench-
mark model are plotted in a stacked bar chart. The compu-
tation time increases as the number of SFCs increases. The
proposed model requires more computation time compared
to the benchmark model.

4.3.2 Dependency on Buffer Capacity cbuffer

We evaluate the proposed and benchmark models in terms of
the dependency on the buffer capacity, cbuffer. Fig. 6 shows
the results when the threshold of capacity utilization ratio is
σ0 = 0.6 in the 8-node network.

Figure 6(a) and Fig. 6(b) show the total update time and
the number of flows to be updated, respectively. When the
number of SFCs is between four and eight, as the buffer
capacity cbuffer increases, the total update time decreases.
This is because a large buffer capacity allows more packets
to be buffered within a round and more SFCs to be updated
simultaneously. The relationship of the total update time
and the number of updated flows is different from that in
Fig. 5. This is because the number of used rounds becomes

978
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

Fig. 6 Results when threshold of capacity utilization ratio is σ0 = 0.6 in
8-node network.

larger than in Fig. 5 due to buffer capacity constraint (10);
the total update time increases according to the number of
used rounds. When cbuffer = 200,300 and the number of
SFCs is between four and eight, the total update time of
the proposed model is smaller than that of the benchmark
model. On the other hand, when cbuffer = 100 and the
number of SFCs is between three and seven, the total update
time and the number of updated flows of the proposed model
and those of the benchmark model are the same. The reason
for this is that the buffer capacity constraint (10a) makes a
solution infeasible when a large value of n f is generated; an
optimal solution is only obtained when a small value of n f

is generated. A small value of n f results in no difference of
the number of flows and the total update time between the
proposed and benchmark models.

Figure 6(c) and Fig. 6(d) show the amount of used buffer
capacity and the number of rounds to be used, respectively.
When the number of SFCs is between four and eight, as the
buffer capacity cbuffer increases, the amount of used buffer
capacity increases and the number of used rounds decreases.
This reason is the same as that for the total update time. Sim-
ilar to the dependency onσ0 shown in Fig. 5(d), the proposed
model uses more buffer capacity than the benchmark model
when cbuffer = 200,300 and the number of SFCs is between
four and eight.

4.4 Evaluation in NSFNET

In this evaluation, we use NSFNET [27] which consists of
14 nodes and 21 links. NSFNET is shown in Fig. 7. The
controller is deployed on node 5. Three firewalls and three
IDSs are randomly deployed in the network nodes except
for node 5. The source and destination hosts are randomly
selected from among the nodes for each SFC except for node
5. Pf consists of up to ten paths, which are sorted in the

Fig. 7 NSFNET (distances in km) [28].

Fig. 8 Results when buffer capacity is cbuffer = 10000 [packets] in
NSFNET.

order of path length, for each SFC f ∈ F. A propagation
delay for each link is obtained by its distance [28]. Figure 8
shows the results when the buffer capacity is cbuffer = 10000
[packets] in NSFNET.

Figures 8(a), 8(b), and 8(c) show the total update time,
the number of flows to be updated, and the amount of used
buffer capacity, respectively. The proposed model reduces
the total update time by at most 13.77% from the benchmark
model. Compared to the results of the 8-node network in
Fig. 5, the total update time, the number of flows, and the
amount of used buffer capacity tend to be increased. This is
because the values of propagation delays are larger than in the
8-node network. The larger the propagation delays, the larger
the flow entry update time, the state migration time, and the
delay time; the total update time becomes larger. When the
total update time becomes larger, the time to accumulate
packets in the buffer becomes larger; the amount of used
buffer capacity becomes larger. Large propagation delays
result in the second term in (22) to be dominant in NSFNET;
the number of updated flows becomes larger.

Figure 8(d) shows the number of rounds to be used.
The number of used rounds of the proposed model is smaller
than that of the benchmark model. This reason is the same

TAKAHASHI et al.: MODEL FOR JOINTLY DETERMINING SFC ROUTES AND UPDATE SCHEDULING WITH STATE CONSISTENCY
979

as that in the 8-node network; the proposed model considers
link capacity constraint (11c) and constraint of processing
capacity for VNF instance (11d) when SFCs to be updated
and their routes are determined.

5. Discussions

The state migration can be challenging in some types of
states, such as those with a large data size or those having
special characteristics. For example, an automated driving
application has vehicle trajectory information as a state [29].
Integrated log management software [30] has information as
a state such as trained parameters for log analysis by machine
learning and standard output results when some programs are
executed. Such a large state size results in large state mi-
gration time compared to that for other VNF instances. If
the state migration time is large, a large buffer capacity is
required and the controller’s buffer may overflow. It may be
possible to address this problem by extending the proposed
model so that buffers on the network are used in a flexible
manner. For instance, by utilizing not only the controller’s
buffer but also the buffers of VNF instances cooperatively,
the packets arriving during statemigration can be distributed.
If the buffer capacity is still insufficient even with such an
extension, the system itself needs to be changed, such as by
duplicating the VNF instances to avoid the need for the state
migration, and this is a future work. For another example, an
application that manages a login system holds user session
information as a state. An application that performs a pay-
ment management system maintains information about the
amount of money and credit card related to the transaction
as a state. There is a case where it is necessary to encrypt
such a state that contains sensitive information. To deal with
this case, an extension to the state migration procedure is
necessary to add complex procedures such as key generation
and key sharing among hosts to encrypt the state migration.
In addition, extensions that account for delays associated
with the encryption are required to be added to the proposed
model.

The performance degradation of the proposed model is
acceptable in the scenarios we evaluated in Sect. 4 compared
to its effectiveness. While the proposed model can reduce
the total update time compared to the benchmark model,
there are some cases where the used buffer capacity and the
computation time increase. When the total update time is
reduced by 4.25% in the 8-node network, the used buffer
capacity is increased by 15.92% (46.85 packets). When
the proposed model in NSFNET reduces the total update
time by 13.77%, the used buffer capacity is increased by
5.75% (28.90 packets). In these cases, the increase of used
buffer capacity is 0.47% and 0.29%, respectively, of the
total buffer capacity of 10000 packets. For the range of
values and networks we examined, the computation time of
the benchmark model is at most a few seconds, while that
of the proposed model is at most several thousand seconds.
The proposed model is tolerable for purposes where the SFC
routes are reconfigured several times in a day. If the proposed

model is applied to a larger number of SFCs or a larger
network size, it may not be possible to obtain a solution in
a required time. It is necessary to reduce the computation
time by using a heuristic method. The development of the
heuristic method in the proposed model is a future work.

6. Conclusion

This paper proposed a model that determines SFCs to be
updated, their routes, and an update scheduling at the same
time. The objective function is to minimize the total time
required to update SFC routes under a constraint of process-
ing load balancing for VNF instances. The proposed model
is formulated as an ILP problem. The proposed model is
compared to the benchmark model which finds a solution of
SFC-RS in two phases. The following results are obtained by
numerical evaluations. Compared to the benchmark model,
the proposed model reduces the total update time by at most
4.25% in the 8-node network. As the value of the capacity
utilization ratio σ0 increases, the total update time, the num-
ber of updated flows, and the amount of used buffer capacity
tend to decrease. As the buffer capacity cbuffer increases,
the total update time tends to decrease and the amount of
used buffer capacity tends to increase. In NSFNET, the pro-
posedmodel reduces the total update time by at most 13.77%
compared to the benchmark model. The total update time,
the number of updated flows, and the amount of used buffer
capacity become larger than in the 8-node network.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant
Numbers 21H03426 and 23H03382, and JST, PRESTO
Grant Number JPMJPR23P4, Japan.

References

[1] S. Wang, H. Cao, and L. Yang, “A survey of service function chains
orchestration in data center networks,” 2020 IEEE Globecom Work-
shops (GC Wkshps), Dec. 2020.

[2] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs
on service chain placement in network functions virtualization,” 2015
IEEE Conf. Netw. Function Virtualization and Softw. Defined Netw
(NFV-SDN), pp.191–197, Nov. 2015.

[3] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella, “OpenNF: Enabling innovation
in network function control,” ACM SIGCOMM Comput. Commun.
Rev., vol.44, no.4, pp.163–174, Oct. 2014.

[4] B. Zhang, P. Zhang, Y. Zhao, Y. Wang, X. Luo, and Y. Jin, “Co-
scaler: Cooperative scaling of software-defined NFV service func-
tion chain,” 2016 IEEE Conf. Netw. Function Virtualization and
Softw. Defined Netw. (NFV-SDN), pp.33–38, Nov. 2016.

[5] C. Sun, J. Bi, Z. Meng, T. Yang, X. Zhang, and H. Hu, “Enabling
NFV elasticity control with optimized flow migration,” IEEE J. Sel.
Areas Commun., vol.36, no.10, pp.2288–2303, Oct. 2018.

[6] X. Fan, H. Xu, H. Huang, and X. Yang, “Real-time update of joint
SFC and routing in software defined networks,” IEEE/ACM Trans.
Netw., vol.29, pp.2664–2677, Dec. 2021.

[7] T. Takahashi, T. Sato, and E. Oki, “Scheduling model for simultane-
ous update ofmultiple service function chainswith state consistency,”
Computer Netw., vol.221, p.109520, Feb. 2023.

http://dx.doi.org/10.1109/gcwkshps50303.2020.9367463
http://dx.doi.org/10.1109/gcwkshps50303.2020.9367463
http://dx.doi.org/10.1109/gcwkshps50303.2020.9367463
http://dx.doi.org/10.1109/nfv-sdn.2015.7387426
http://dx.doi.org/10.1109/nfv-sdn.2015.7387426
http://dx.doi.org/10.1109/nfv-sdn.2015.7387426
http://dx.doi.org/10.1109/nfv-sdn.2015.7387426
https://doi.org/10.1145/2740070.2626313
https://doi.org/10.1145/2740070.2626313
https://doi.org/10.1145/2740070.2626313
https://doi.org/10.1145/2740070.2626313
http://dx.doi.org/10.1109/nfv-sdn.2016.7919472
http://dx.doi.org/10.1109/nfv-sdn.2016.7919472
http://dx.doi.org/10.1109/nfv-sdn.2016.7919472
http://dx.doi.org/10.1109/nfv-sdn.2016.7919472
https://doi.org/10.1109/JSAC.2018.2869953
https://doi.org/10.1109/JSAC.2018.2869953
https://doi.org/10.1109/JSAC.2018.2869953
http://dx.doi.org/10.1109/tnet.2021.3095935
http://dx.doi.org/10.1109/tnet.2021.3095935
http://dx.doi.org/10.1109/tnet.2021.3095935
http://dx.doi.org/10.1016/j.comnet.2022.109520
http://dx.doi.org/10.1016/j.comnet.2022.109520
http://dx.doi.org/10.1016/j.comnet.2022.109520

980
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

[8] R. Wen, G. Feng, J. Tang, T.Q.S. Quek, G. Wang, W. Tan, and
S. Qin, “On robustness of network slicing for next-generation mobile
networks,” IEEE Trans. Commun., vol.67, no.1, pp.430–444, Jan.
2019.

[9] R. Sukapuram, R. Patowary, and G. Barua, “Loss-freedom, order-
preservation and no-buffering: Pick any two during flow migration
in network functions,” 2021 IEEE 29th Int. Conf. Netw. Protocols
(ICNP), pp.1–11, Nov. 2021.

[10] A. Gember-Jacobson and A. Akella, “Improving the safety scalabil-
ity and efficiency of network function state transfers,” Proc. 2015
ACM SIGCOMM Workshop Hot Topics in Middleboxes and Netw.
Function Virtualization, pp.43–48, Aug. 2015.

[11] J. Sherry, P.X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C.
Maciocco, M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, and
S. Shenker, “Rollback-recovery for middleboxes,” Proc. 2015 ACM
Conf. Special Interest Group Data Commun., vol.45, no.4, pp.227–
240, Oct. 2015.

[12] C. Clark, K. Fraser, S. Hand, J.G. Hansenf, E. Julf, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” Proc.
2nd Conf. Symp. Netw. Syst. Des. and Implementation, pp.273–286,
May 2005.

[13] L. Nobach, I. Rimac, V. Hilt, and D. Hausheer, “Statelet-based effi-
cient and seamless NFV state transfer,” IEEE Trans. Netw. Service
Manage., vol.14, no.4, pp.964–977, Dec. 2017.

[14] J. Wang, S. Hao, Y. Li, C. Fan, J. Wang, L. Han, Z. Hong, and H. Hu,
“Challenges towards protecting VNF With SGX,” Proc. 2018 ACM
Int. Workshop Secur. in Softw. Defined Netw. and Netw. Function
Virtualization, pp.39–42, March 2018.

[15] W. Wang, Y. Liu, J. Liu, Y. Li, H. Song, Y. Wang, and J. Yuan,
“Consistent state updates for virtualized network functionmigration,”
IEEE Trans. Services Comput., vol.13, no.6, pp.999–1006, Nov.-
Dec. 2020.

[16] R. Kang, F. He, and E. Oki, “Robust virtual network function alloca-
tion in service function chains with uncertain availability schedule,”
IEEE Trans. Netw. Service Manage., vol.18, no.3, pp.2987–3005,
Sept. 2021.

[17] F. He, T. Sato, B.C. Chatterjee, T. Kurimoto, S. Urushidani, and
E. Oki, “Robust optimization model for primary and backup resource
allocation in cloud providers,” IEEE Trans. Cloud Comput., vol.10,
pp.2920–2935, Oct.-Dec. 2022.

[18] K. Yokouchi, F. He, and E. Oki, “Backup resource allocation of vir-
tual machines with two-stage probabilistic protection,” IEEE Trans.
Netw. Service Manage., vol.20, no.4, pp.5085–5102, Dec. 2023.

[19] M. Johnston, H. Lee, and E. Modiano, “A robust optimization ap-
proach to backup network design with random failures,” IEEE/ACM
Trans. Netw., vol.23, no.4, pp.1216–1228, Aug. 2015.

[20] T. Moufakir, M.F. Zhani, A. Gherbi, M. Aloqaily, and N. Ghrada,
“SFCaaS: Service function chains as a service in NFV environ-
ments,” ITU J. Future and Evolving Technol., vol.3, no.3, pp.679–
692, Dec. 2022.

[21] S. Agarwal, V.R. Chintapalli, and B.R. Tamma, “FlexSFC: Flexible
resource allocation and VNF parallelism for improved SFC place-
ment,” 2022 IEEE 8th Int. Conf. Netw. Softw. (NetSoft), pp.302–306,
June-July 2022.

[22] M.A. Kourtis, G. Xilouris, V. Riccobene, M.J. McGrath, G. Petralia,
H. Koumaras, G. Gardikis, and F. Liberal, “Enhancing VNF perfor-
mance by exploiting SR-IOV and DPDK packet processing acceler-
ation,” 2015 IEEE Conf. Netw. Function Virtualization and Softw.
Defined Netw. (NFV-SDN), pp.74–78, Nov. 2015.

[23] “Firewalling fundamentals,” https://docs.netgate.com/pfsense/en/
latest/firewall/fundamentals.html, (accessed 1 Dec. 2023).

[24] K. Qiu, J. Yuan, J. Zhao, X. Wang, S. Secci, and X. Fu, “FastRule:
Efficient flow entry updates for TCAM-based OpenFlow switches,”
IEEE J. Sel. Areas Commun., vol.37, no.3, pp.484–498, March 2019.

[25] S. Banerjee and K. Kannan, “Tag-In-Tag: Efficient flow table man-
agement in SDN switches,” 10th Int. Conf. Netw. and Service Man-
age. (CNSM) and Workshop, pp.109–117, Nov. 2014.

[26] IBM ILOG CPLEX optimization studio, IBM, 2023. https://www.
ibm.com/products/ilog-cplex-optimization-studio, (accessed 1 Dec.
2023).

[27] NSFNET, “A partnership for high-speed networking: Final report,”
https://www.merit.edu/wp-content/uploads/2019/06/NSFNET_final-
1.pdf, (accessed 17 Nov. 2023).

[28] A.K. Horota, R.A. Costa, S. Rahman, O. Ayoub, G.B. Figueiredo,
M. Tornalore, and B. Mukherjee, “Deferred protection of deadline-
driven requests in inter-datacenter elastic optical networks,” 2020
Int. Conf. Opt. Netw. Des. and Model. (ONDM), May 2020.

[29] T.V. Doan, G.T. Nguyen, M. Reisslein, and F.H.P. Fitzek, “FAST:
Flexible and low-latency state transfer in mobile edge computing,”
IEEE Access, vol.9, pp.115315–115334, Aug. 2021.

[30] F. Gurcan andM. Berigel, “Real-time processing of big data streams:
Lifecycle, tools, tasks, and challenges,” 2018 2nd Int. Symp. Multi-
discip. Stud. and Innov. Technol. (ISMSIT), Oct. 2018.

Tomoki Takahashi is pursuing the M.E.
degree at Graduate School of Informatics, Kyoto
University, Kyoto, Japan. He received the B.E.
degree from Undergraduate School of Electrical
and Electronic Engineering, Kyoto University,
Japan, in 2022. His research interests include
optimization, software-defined network, and net-
work update.

Takehiro Sato received his B.E., M.E.,
and Ph.D. in engineering from Keio University
in 2010, 2011, and 2016, respectively. He is
currently an associate professor in the Gradu-
ate School of Informatics at Kyoto University.
His research interests include design and control
methods for optical and virtualized networks.

Eiji Oki is a Professor at Kyoto University,
Kyoto, Japan. He was with Nippon Telegraph
and Telephone Corporation (NTT) Laboratories,
Tokyo, from 1993 to 2008, and The University
of Electro-Communications, Tokyo, from 2008
to 2017. From 2000 to 2001, he was a Vis-
iting Scholar at Polytechnic University, Brook-
lyn, New York. His research interests include
routing, switching, protocols, optimization, and
traffic engineering in communication and infor-
mation networks.

http://dx.doi.org/10.1109/tcomm.2018.2868652
http://dx.doi.org/10.1109/tcomm.2018.2868652
http://dx.doi.org/10.1109/tcomm.2018.2868652
http://dx.doi.org/10.1109/tcomm.2018.2868652
http://dx.doi.org/10.1109/icnp52444.2021.9651954
http://dx.doi.org/10.1109/icnp52444.2021.9651954
http://dx.doi.org/10.1109/icnp52444.2021.9651954
http://dx.doi.org/10.1109/icnp52444.2021.9651954
http://dx.doi.org/10.1145/2785989.2785997
http://dx.doi.org/10.1145/2785989.2785997
http://dx.doi.org/10.1145/2785989.2785997
http://dx.doi.org/10.1145/2785989.2785997
http://dx.doi.org/10.1145/2785956.2787501
http://dx.doi.org/10.1145/2785956.2787501
http://dx.doi.org/10.1145/2785956.2787501
http://dx.doi.org/10.1145/2785956.2787501
http://dx.doi.org/10.1145/2785956.2787501
http://dx.doi.org/10.1109/tnsm.2017.2760107
http://dx.doi.org/10.1109/tnsm.2017.2760107
http://dx.doi.org/10.1109/tnsm.2017.2760107
http://dx.doi.org/10.1145/3180465.3180476
http://dx.doi.org/10.1145/3180465.3180476
http://dx.doi.org/10.1145/3180465.3180476
http://dx.doi.org/10.1145/3180465.3180476
https://doi.org/10.1109/TSC.2017.2765636
https://doi.org/10.1109/TSC.2017.2765636
https://doi.org/10.1109/TSC.2017.2765636
https://doi.org/10.1109/TSC.2017.2765636
http://dx.doi.org/10.1109/tnsm.2021.3076511
http://dx.doi.org/10.1109/tnsm.2021.3076511
http://dx.doi.org/10.1109/tnsm.2021.3076511
http://dx.doi.org/10.1109/tnsm.2021.3076511
http://dx.doi.org/10.1109/tcc.2021.3051018
http://dx.doi.org/10.1109/tcc.2021.3051018
http://dx.doi.org/10.1109/tcc.2021.3051018
http://dx.doi.org/10.1109/tcc.2021.3051018
http://dx.doi.org/10.1109/tnsm.2023.3273522
http://dx.doi.org/10.1109/tnsm.2023.3273522
http://dx.doi.org/10.1109/tnsm.2023.3273522
https://doi.org/10.1109/TNET.2014.2320829
https://doi.org/10.1109/TNET.2014.2320829
https://doi.org/10.1109/TNET.2014.2320829
http://dx.doi.org/10.52953/zpdb8065
http://dx.doi.org/10.52953/zpdb8065
http://dx.doi.org/10.52953/zpdb8065
http://dx.doi.org/10.52953/zpdb8065
http://dx.doi.org/10.1109/netsoft54395.2022.9844084
http://dx.doi.org/10.1109/netsoft54395.2022.9844084
http://dx.doi.org/10.1109/netsoft54395.2022.9844084
http://dx.doi.org/10.1109/netsoft54395.2022.9844084
http://dx.doi.org/10.1109/nfv-sdn.2015.7387409
http://dx.doi.org/10.1109/nfv-sdn.2015.7387409
http://dx.doi.org/10.1109/nfv-sdn.2015.7387409
http://dx.doi.org/10.1109/nfv-sdn.2015.7387409
http://dx.doi.org/10.1109/nfv-sdn.2015.7387409
https://docs.netgate.com/pfsense/en/latest/firewall/fundamentals.html
https://docs.netgate.com/pfsense/en/latest/firewall/fundamentals.html
http://dx.doi.org/10.1109/jsac.2019.2894235
http://dx.doi.org/10.1109/jsac.2019.2894235
http://dx.doi.org/10.1109/jsac.2019.2894235
http://dx.doi.org/10.1109/cnsm.2014.7014147
http://dx.doi.org/10.1109/cnsm.2014.7014147
http://dx.doi.org/10.1109/cnsm.2014.7014147
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.merit.edu/wp-content/uploads/2019/06/NSFNET_final-1.pdf
https://www.merit.edu/wp-content/uploads/2019/06/NSFNET_final-1.pdf
https://www.merit.edu/wp-content/uploads/2019/06/NSFNET_final-1.pdf
http://dx.doi.org/10.23919/ondm48393.2020.9133035
http://dx.doi.org/10.23919/ondm48393.2020.9133035
http://dx.doi.org/10.23919/ondm48393.2020.9133035
http://dx.doi.org/10.23919/ondm48393.2020.9133035
http://dx.doi.org/10.1109/access.2021.3105583
http://dx.doi.org/10.1109/access.2021.3105583
http://dx.doi.org/10.1109/access.2021.3105583
http://dx.doi.org/10.1109/ismsit.2018.8567061
http://dx.doi.org/10.1109/ismsit.2018.8567061
http://dx.doi.org/10.1109/ismsit.2018.8567061

