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PAPER
Strategies for DOA-DNN Estimation Accuracy Improvement
at Low and High SNRs∗

Daniel Akira ANDO†a), Student Member, Toshihiko NISHIMURA†, Senior Member, Takanori SATO†, Member,
Takeo OHGANE†b), Yasutaka OGAWA†, Fellows, and Junichiro HAGIWARA††, Member

SUMMARY Implementation of several wireless applications such as
radar systems and source localization is possible with direction of arrival
(DOA) estimation, an array signal processing technique. In the past, we
proposed a DOA estimation method using deep neural networks (DNNs),
which presented very good performance compared to the traditional root
multiple signal classification (root-MUSIC) algorithm when the number of
radio wave sources is two. However, once three radio wave sources are
considered, the performance of that proposed DNN decays especially at
low and high signal-to-noise ratios (SNRs). In this paper, mainly focusing
on the case of three sources, we present two additional strategies based on
our previous method and capable of dealing with each SNR region. The
first, which supports DOA estimation at low SNRs, is a scheme that makes
use of principal component analysis (PCA). By representing the DNN input
data in a lower dimension with PCA, it is believed that the noise corrupting
the data is greatly reduced, which leads to improved performance at such
SNRs. The second, which supports DOA estimation at high SNRs, is a
scheme where several DNNs specialized in radio waves with close DOA are
accordingly selected to produce a more reliable angular spectrum grid in
such circumstances. Finally, in order to merge both ideas together, we use
our previously proposed SNR estimation technique, with which appropriate
selection between the two schemes mentioned above is performed. We have
verified the superiority of our methods over root-MUSIC and our previous
technique through computer simulationwhen the number of sources is three.
In addition, brief discussion on the performance of these proposed methods
for the case of higher number of sources is also given.
key words: antenna array, DOA estimation, deep neural network, principal
component analysis

1. Introduction

Direction of arrival (DOA) estimation is a very known array
signal processing that is extremely important for many wire-
less applications. One of the most traditional techniques for
DOA estimation is the super-resolution multiple signal clas-
sificationMUSIC/root-MUSIC algorithm [1], [2]. However,
this algorithm being classified as spectral-based, it requires
the spectral decomposition of the correlation matrix of the
antenna array received signal, which makes its online use
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prohibitive as the array dimension increases. Therefore, in-
vestigation of new approaches for DOA estimation, such as
deep learning, is a trending research topic.

Deep learning applied to wireless communication prob-
lems is receiving much attention from the industry and
academia, since performance of such data-driven techniques
can greatly surpass traditional model-based techniques [3].
Although offline training of deep neural networks (DNNs)
can be computationally costly, once training is finalized,
DNNs can be easily deployed online to the specific situation
for which they were trained. The complexity of such online
implementation of DNNs is also thought to be comparatively
light due to the fact that most of this computation relies on
matrix multiplication. In fact, several studies, such as [4]–
[7], have reported great results from the implementation of
deep learning in DOA estimation. In [4], a framework for
end-to-end channel and DOA estimation in the context of
massive multiple-input multiple-output (massive MIMO) is
proposed. In [5], a combination of a detection and DOA
estimation network, which reduces the training-set size and
makes it possible to train several DNNs corresponding to dif-
ferent position sectors, is presented. In [6], a low-complexity
DOA estimation technique for hybrid MIMO systems with
uniform circular array at a base station is presented. In
[7], a DOA estimation system which is robust to array im-
perfections is explained. Our research group also tackled
this problem in [8]–[11], where we have demonstrated great
DOA estimation performance.

Principle component analysis (PCA) is an algorithm
used to represent the information contained in a higher di-
mensional data in a lower dimensional space while keeping
intact as much of this information as possible. It is heavily
used in areas such as data compression, image analysis, vi-
sualization, pattern recognition, regressions, etc. It has been
verified that PCA is a very effective technique in order to
enhance the performance of machine learning models at the
same time that it reduces the number of features in the data,
which simplifies these models greatly [12]–[15]. Yet, most
studies take advantage of PCA in areas such as image classi-
fication, such as [13]. In the DOA estimation field, PCA was
also used in [14], [15]. In [14], a PCA-like unsupervised
neural network is used to reduce the dimensionality of the
training dataset generated from a broadband acoustic signal
emitted by a low-altitude and high-subsonic flight target. The
authors verified that the performance of their 2-dimensional
DOA estimation technique surpasses that of root-MUSIC at
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lower SNRs. In [15], a 1-dimensional narrowband DOA
estimation with K-nearest neighbors algorithm is proposed,
where PCA is applied to the training dataset in order to re-
duce the computational complexity of this machine learning
algorithm and to remove noise from the signal data. The
authors also verified that the performance of their method
greatly surpasses root-MUSIC at lower SNRs.

The aim of this paper is to improve the DNN’s DOA
estimation accuracy, and our contributions are:

• Proposing a method to improve DOA estimation per-
formance at low SNR, which consists of application of
PCA to the DNN training, validation and test datasets;

• Proposing a method to improve DOA estimation per-
formance at high SNR, which consists of several sep-
arately trained DNNs specialized in radio waves with
close DOA;

• Realizing a system binding together the two methods
above in order to develop a full technique for DOA
estimation at any SNR.

In terms of the first method with PCA, previous studies
[14], [15] have not thoroughly evaluated the effects of apply-
ing PCA specifically to a DNN input dataset. Therefore, we
also give here an extensive and detailed explanation on the ef-
fects of PCA at different simulation settings, such as varying
a) sizes of the antenna array, b) number of principal compo-
nents chosen as the new dimension of the input dataset, and
c) test SNRs. Note that, in this study, we consider Probabilis-
tic PCA. This is a consequence of the Scikit-learn framework
[16], implemented during our numerical simulations, which
is based on it. In addition, use of the abbreviation “PCA”
will be maintained to keep the notation uncluttered. The sec-
ond method is based on the observation that, when 3 radio
sources are considered, many incorrect estimation cases at
higher SNRs are due to radio waves closely impinging onto
the antenna array within 20◦. Consequently, we offline train
different DNNs that are each specialized in close waves im-
pinging at specific regions of the angular spectrum. These
new DNNs are then used instead of the conventional DNN,
which are expected to produce a more reliable narrow DOA
spectrum grid for subsequent DOA detection. Lastly, we
use one of our previous strategies for SNR estimation [11] to
merge these two proposedmethods into a full system capable
of operating online while greatly surpassing the performance
of our previous technique [9] and root-MUSIC.

Our main study goal in this paper is when there are 3
radio wave sources. As stated in [17], 3 flying objects in
the field of view of an antenna array is a possible scenario in
air-to-air emitter location or radar systems. Moreover, as ver-
ified in [18], at sub-terahertz and line-of-sight indoor office
environments of 140 GHz, the average number of subpaths
(or multipaths) is significantly small, e.g. mostly ranging be-
tween 2 and 5. Therefore, our 3 sources consideration is not
only realistic in airborne radar applications based on [17],
but also it is a first step towards the goal of radio propagation
measurements at sub-terahertz bands [18]. Moreover, it was
concluded in [11] that we needed to solve the above men-

tioned issues (i.e. poor estimation performance at lower and
higher SNRs), which arise when the number of sources is
simply raised from 2 to 3. However, we also give here a brief
discussion on the performance of the proposed methods for
the case of 4 and 5 number of sources.

The remainder of this paper is organized as follows.
The antenna array model is explained in Sect. 2. Our pre-
vious works [9], [19] are detailed in Sect. 3. Our proposed
techniques based on these works are presented in Sect. 4.
Then, in Sect. 5, we validate our proposed methods though
computer simulations while using our past technique and
root-MUSIC as benchmark. Lastly, in Sect. 6 our work is
concluded.

2. Antenna Array Model

Let there be K radio wave sources located in the far-field
region of a uniform linear array (ULA) consisting of L om-
nidirectional antennas with no mutual coupling and spaced
at half-wavelength. These sources are emitting narrowband
waves whose planar wavefronts impinge onto the ULA at
angles θ[degrees] = [θ1, . . . , θK ]

T at least 1◦ apart, where
[·]T indicates the transpose operator. Then, the baseband
received signal x(t) ∈ CL×1 can be modeled by

x(t) = A(θ)s(t) + z(t), (1)

where s(t) ∈ CK×1 is the vector containing the incident ra-
dio waves’ complex amplitudes, z(t) ∈ CL×1 is the additive
white Gaussian noise vector following a circular complex
Gaussian distribution z(t) ∼ CN(0, σ2IL) with zero mean
and varianceσ2, where IL represents an L-dimensional iden-
tity matrix, and A(θ) is the mode matrix, which accounts for
the relative phase delay corresponding to path length dif-
ference of the incident waves on each ULA element and is
described as

A(θ) =



1 · · · 1
e−jπ sin θ1 · · · e−jπ sin θK

e−jπ2 sin θ1 · · · e−jπ2 sin θK

...
. . .

...

e−jπ(L−1) sin θ1 · · · e−jπ(L−1) sin θK


. (2)

Furthermore, the radio waves are assumed to be uncorrelated
and received with equal power normalized to one.

For many DOA estimation techniques, the estimated
correlation matrix R̂xx of the received signal is usually used,
where this can be calculated by the equation bellow:

R̂xx =
1

Nsnap

Nsnap∑
n=1

x(tn)x(tn)H , (3)

where Nsnap is the total number of snapshots, x(tn) represents
the nth snapshot taken from the received signal, and (·)H is
the conjugate transpose operator.
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3. Authors’ Previous Work

3.1 Input and Output Definitions of DNN

The generation procedure of the DNN datasets is described
here. Note that these are the original datasets prior to dimen-
sionality reduction through PCA, where they consist of input
u = {u1, . . . ,uN } and target vectors t = {t1, . . . , tN }. Here,
N is the number of samples, ui ∈ R

Din×1 and ti ∈ RDout×1

for i = 1, . . . ,N are the ith samples of the input and target
vectors with Din and Dout features, respectively.

(a) Input Layer

Due to its Hermitian nature, the estimated correlation matrix
R̂xx can be written as in (4). Then, a vector ui proper for
being fed as input to the DNN can be generated as follows:
first, we arrange the diagonal elements of (4) in the first
entries of the input vector; next, we take the real <(·) and
imaginary=(·) parts of each lower triangular element column
by column and from left to right, subsequently arranging
these in the remaining space of the input vector (See (5)).
The upper triangular elements can be ignored due to the
fact that they are simply the complex conjugate of the lower
triangular elements.

R̂xx =


r11 r∗21 · · · r∗

L1
r21 r22 · · · r∗

L2
...

...
. . .

...
rL1 rL2 · · · rLL


(4)

ui = [r11, . . . ,rLL,<(r21),=(r21), . . . ,<(rL1),

=(rL1), . . . ,<(rL(L−1)),=(rL(L−1))
]T
. (5)

The resultant input vector ui ∈ R
Din×1 has Din = L2 features,

where each of them corresponds to each unit of the DNN
input layer.

(b) Output Layer

We design the DNN output layer in such a way that the DNN
should produce an angular spectrum discretized in angle
bins, where each of these covers a portion of the spectrum.
Therefore, each unit of the DNN output layer corresponds
to each angle bin. In this study, an angle spectrum ranging
from −60◦ to +60◦ is considered. When this spectrum is
discretized in steps of 1◦, the total number of angle bins (and
thus the number of features Dout) becomes 121.

Since the DNN output units represent the probability
of incident radio wave onto the corresponding angle bins,
the target vector ti = [t1, . . . , tj, . . . , tDout ] can be generated
following (6) below.

tj =

{
1 if wave is incident onto the jth bin
0 otherwise

, (6)

Fig. 1 DNN structure with input, hidden, and output layers. Reprinted
from [19] (©2023 IEEE).

where the jth angle bin covers the spectrum region from
j − 61.5◦ to j − 60.5◦.

3.2 DNN for DOA Estimation

A traditional feed-forward neural network, whose structure
consists of an input layer, an output layer and an arbitrary
number of hidden layers, is used (Fig. 1). In addition, we in-
sert the batch normalization regularizer [20] in all layers of
the DNN in order to improve the overall stability of the learn-
ing process. The activation functions for the hidden layers
and for the output layer are the rectified linear unit (ReLU)
and Sigmoid, respectively. By using Sigmoid as an activa-
tion function, we guarantee that the DNN produces output
values that can be regarded as probabilities ranging from 0.0
to 1.0. During the learning phase, the DNN weights are
updated in accordance to the Adam optimization algorithm
[21].

In this work, we investigate mainly two performance
metrics: the probability of correct DOA estimation and the
root mean squared error (RMSE), where the former is veri-
fied during the validation and test phases, and the latter only
during the test phase. The probability of correct DOA es-
timation is calculated as the ratio of the number of correct
DOA estimation samples over the total number of evalu-
ated samples, where DOA estimation is only counted as
correct when the absolute error of all the DOA estimates
θ̂ = [θ̂1, . . . , θ̂K ]

T within a sample is below a certain estima-
tion tolerance error:

Correct DOA ⇐⇒ |θ j− θ̂ j | ≤ µ,∀ j ∈ {1, . . . ,K}, (7)

where µ is the estimation tolerance, considered to be 0.5◦
here (verification whether the estimated DOA is within the
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Fig. 2 An example of the Staggered-DNN output, where the radio wave is
incident near the right border of the j angle bin of DNN-A. In this example,
the j + 1 bin is mistakenly detected. Cases such as this are one of the
verified causes generally leading to incorrect DOA estimation. However,
after combining both DNN-A and DNN-B grids, correct DOA detection
becomes possible. Reprinted from [19] (©2023 IEEE).

1◦-width angle bin). The RMSE is defined as:

RMSE =

√√√
1

KNt

K∑
k=1

Nt∑
n=1

(
θ̂
(n)
k
− θ
(n)
k

)2
, (8)

where Nt is the total number of test samples. During the
validation phase, the DNN weights corresponding to the
highest probability of correct DOA estimation are saved for
subsequent use at the test phase, where this is done in an
effort to avoid overfitting. However, note that the saved
weights are not necessarily optimal in terms of RMSE.

Previously we verified that incidence of radio waves
onto the vicinity of the angle bin border generally results
in incorrect DOA detection due to wrongful excitement of
neighboring bins (Fig. 2), thus causing significant decline in
overall performance. In [9] we proposed a strategy to cope
with such cases. This relies on the training of one additional
support DNN (calledDNN-B)whose angle grid is stacked up
on top of that of the main DNN (DNN-A), where the DNN-B
angle grid is shifted by 0.5◦ with respect to that of DNN-A,
thus ranging from−60.5◦ to+60.5◦ (totaling 122 angle bins).
This strategy was then named Staggered DNN, and we have
demonstrated that the spectrum contribution provided with
DNN-B enhances the estimation accuracy around the bin
borders of the DNN-A bins. Both DNNs are offline trained
separately with the same input dataset, but with accordingly
modified target datasets reflecting the corresponding angle
bin grid. Then, during the test phase, the spectrum grid
producedwith both DNNs aremerged as it is shown in Fig. 2,
resulting in a combined angular spectrum grid. Lastly, a
DOA detection algorithm is applied on this resultant grid so
as to extract the DOA estimates.

Fig. 3 Illustration of the usage of “Neighbors Weighted Average” on a
sample of tested DNNoutput, assuming only oneDOA. For the computation
of the DOA estimate, all bins whose probability of incident radio wave is
below a certain threshold are ignored (e.g. bin b4). Reprinted from [19]
(©2023 IEEE).

3.3 DOA Detection Algorithm

After calculating the DNN output, or equivalently the angu-
lar grid spectrum, it is still necessary to recover the DOA
information contained in it. A detection algorithm called
“NeighborsWeighted Average” was presented in [19]. Here,
we briefly explain it again, and detail the full algorithm in
Appendix A.

Various DNN outputs are normally contaminated by
spurious bins in the vicinity of those corresponding to true
DOA bins. However, by taking advantage of such bins, we
managed to develop an algorithm capable of detecting more
accurate DOAs than if we had simply chosen the most likely
bin by means of, for instance, peak search.

Figure 3 illustrates a DNN output example for the case
of only one radio wave. Although no proper optimization
procedure has been performed, we have verified that very ac-
curate DOA estimation is possible when the threshold value
(straight red line in Fig. 3) is 0.1. Then, the DOA estimate θ̂
can be calculated as:

θ̂ =

3∑
i=1

pibi

/ 3∑
i=1

pi (9)

Thismethod has proven to be powerfulwhen there areK
clearly distinguished hills of angle bins (for instance, there is
only one hill in Fig. 3). On the other hand, the full algorithm
described in Appendix is capable of dealing with other cases
of less ideal angular spectrum grid.

4. Proposed Strategies for Accuracy Enhancement

4.1 Lower SNRs: Staggered DNN-PCA

The flow chart of the proposed technique for accuracy
enhancement at lower SNRs can be seen in Fig. 4. At
the training phase, we generate N input samples ui for
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Fig. 4 Flow chart of the proposed Staggered DNN-PCA for lower SNRs,
where dimensionality reduction of the DNN input vector is performed with
PCA.

i = 1, . . . ,N at 30 dB. Then, these are standardized, re-
sulting in ūi = Σ

−1(ui − µ). Here, µ ∈ RDin×1 and
Σ = diag (σ) ∈ RDin×Din are the vector and diagonal matrix
containing the means and standard deviations, respectively,
of each feature of the training dataset, whereσ ∈ RDin×1 cor-
responds to the standard deviation vector. By applying PCA
to this standardized input dataset we achieve a dimensional-
ity reduction from Din to an arbitrary Dpca. In order to derive
the PCA parameters (for a more thorough explanation refer
to [12]), first the covariance matrix S of the standardized
input dataset must be calculated:

S =
1
N

N∑
i=1

ūiūT
i . (10)

Then, the eigendecomposition of S is performed:

S = UΛU−1, (11)

whereU ∈ RDin×Din andΛ ∈ RDin×Din are thematrix contain-
ing the eigenvectors of S and the diagonal matrix containing
the corresponding eigenvalues, respectively. After choosing
the desired number of dimensions Dpca to remain in the new
dataset, the parameters M and W necessary for dimension-
ality reduction with PCA can be calculated:

σ2
pca =

1
Din − Dpca

Din∑
j=Dpca+1

λj, (12)

W = Upca(Λpca − σ
2
pcaI)1/2R, (13)

M = σ2
pcaI +WTW, (14)

where σ2
pca can be interpreted as the average variance lost

per discarded dimension, Λpca ∈ R
Dpca×Dpca is the diagonal

matrix of the largest Dpca eigenvalues λj ( j = 1, . . . ,Dpca),
Upca ∈ R

Din×Dpca is the matrix with the corresponding eigen-
vectors (or principal components), I is the Dpca×Dpca identity
matrix and R is an arbitrary orthogonal rotation matrix con-
sidered to be equal to I in this study. Finally, the dimension
of a sample of the standardized input dataset can be reduced
from Din to the chosen Dpca by:

upca,i =M−1WT ūi, (15)

where upca,i ∈ R
Dpca×1 is the representation of ūi in a lower

dimension, i.e. the projection points of ūi onto the Dpca prin-
cipal components. This new input dataset is then fed to
DNN-A and DNN-B for offline training, while the parame-
ters µ, σ, M and W are then saved for later use during the
test phase, where new data must go through the same dimen-
sionality reduction process before being fed to the trained
Staggered DNN.

Finally, during the test phase, after feeding both DNN-
A and DNN-B with a test input sample that went through the
PCA process described above, their outputs are combined
in order to produce the resultant staggered angular spec-
trum grid (Sect. 3.2), on which the DOA detection algorithm
(Sect. 3.3) is applied.

As it will be shown later in Sect. 5, this strategy pro-
vides outstanding accuracy improvement at lower SNRs and
number of sources K = 3 even when Staggered DNN is
trained with a dataset generated at 30 dB. The effectiveness
of PCA when K is 4 and 5 is also briefly discussed in Ap-
pendix B. As opposed to the noise, which is distributed
along all principal components of S, the bulk of the signal
information is believed to be mainly distributed along the
first Dpca principal components. Therefore, improvement in
the data SNR is achieved when the Din − Dpca dimensions
are discarded, which ultimately results in more precise DOA
estimation. On the other hand, accuracy at higher SNRs is
deteriorated due to dimensionality reduction due to loss of
signal information, which is only lightly corrupted by noise
at such SNRs. Quantitative analysis on the effect of PCA on
the input vector SNR, which is believed to be related with
estimation performance, is left as our future work.

4.2 Higher SNRs: Staggered Narrow Range DNN

After a preliminary assessment, we observed that waves with
close DOA are mostly responsible for incorrect DOA esti-
mation especially at higher SNRs. For instance, when K = 3
and the SNR is 30 dB, roughly 80% of all cases of unsuccess-
ful estimation (following (7)) are due to waves lying within
a range of 20◦. Consequently, in order to overcome this is-
sue especially for the case K = 3†, we have designed a new
strategy called “Staggered Narrow Range DNN” (Staggered
NRDNN) as shown in Fig. 5.

First, DOA estimation is performed in the exact same
way that has been described so far (Fig. 5(a)). Af-
ter applying Neighbors Weighted Average to the Stag-
gered DNN output (Sect. 3.3), the initial DOA estimates
θ̂ = {θ̂1, . . . , θ̂i, . . . , θ̂K } sorted in ascending order are ob-
tained. If these K estimated DOAs are within the range
∆θ̂ = θ̂K − θ̂1 ≤ 20◦, then it is very likely that ei-
ther one was incorrectly detected. At this point a new
and more reliable angular spectrum should be produced.
To this end, we train 7 different Staggered NRDNNs (7
NRDNN-As and 7 NRDNN-Bs) offline, each covering a

†In Appendix B, we discuss the validity of this technique for
higher number of sources K .
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Fig. 5 (a) Flow chart of the proposed Staggered NRDNN strategy for higher SNRs. (b) Visualization
of the spectrum grid ranges for which each NRDNN is trained.

predetermined portion of the angle grid (Fig. 5(b)). For in-
stance, there is a Staggered NRDNN covering the angle bins
{29.5◦,30.0◦,30.5◦, . . . ,60.0◦,60.5◦}. As it will be shown in
Sect. 5, this allows us to create Staggered DNNs specialized
in different grid regions, thus making it possible to produce
more precise angular spectrum for DOA detection. Next,
according to the initial DOA estimates, the appropriate Stag-
gered NRDNN covering them is chosen to produce a new
spectrum grid, to which again Neighbors Weighted Average
is applied to detect the final DOA estimate θ̂narrow. On the
other hand, if the initial DOA estimates do not lie within the
20◦ range, then they are kept as the final estimates.

Now we describe the training process for these new
NRDNNs. The input and target vector remain the same as in
(5) and (6), respectively, where no PCA is involved. In con-
trast to the main DNN-As and DNN-Bs, where the data was
generated by randomly selecting the DOAs θ from a uniform
distribution between −60.5◦ and +60.5◦, the training and
validation data of the NRDNNs are generated in such a way
that all K DOAs θ lie within a range of ∆θ = θK − θ1 ≤ 30◦,
which in turn is uniformly sampled from [−60.5◦,+60.5◦].
This dataset is then used in all 14 NRDNNs for training and
validation. As it will be seen from the simulation results in
Sect. 5, good accuracy improvement is achieved even when
all NRDNNs are trained with this same dataset. Therefore,
there is no need to generate 7 different training datasets cor-
responding to each specific grid region.

In addition, the precision metric is used during valida-
tion in contrast to the probability of correct DOA estimation
(Sect. 3.2). The precision of a DNN output is calculated
as nTP/(nTP + nFP), where nTP and nFP correspond to the
number of true positives (DNN angle bin corresponding to
a true DOA was excited) and false positives (DNN angle bin
where there is no true DOA was excited), respectively. The
choice on this metric is due to the impossibility of prop-
erly calculating the probability of correct DOA estimation in
the considered data generation procedure, where at least 1

Fig. 6 Flow chart of the proposed full system implemented with Stag-
gered DNN-PCA and Staggered NRDNN with the aid of regression-based
SNR estimation [11].

DOA might not lie within the range covered by an NRDNN.
Finally, the weights corresponding to the highest precision
obtained during the validation of each NRDNN are saved for
the test phase.

4.3 Implementation of Full System with the Above Strate-
gies

We have developed two separate strategies for improving the
DOA estimation with Staggered DNN at two regions: lower
SNRs and higher SNRs. Now it is necessary to bind them
together. For this, we use a technique proposed in [11]:
Regression-based SNR estimation. The idea is to estimate
the SNR γ̂ from the correlation matrix R̂xx . If γ̂ ≤ 5 dB,
then Staggered DNN-PCA is applied; otherwise, Staggered
NRDNN is used (Fig. 6).

In order to estimate the SNR γ̂, we observed that this
in dB and − log(λs) are linearly correlated, where λs repre-
sents the smallest eigenvalue of the correlation matrix R̂xx .
Therefore, we obtain a prediction function for γ̂ with respect
to− log(λs) by training a regressionmodel based on the ordi-
nary least squares method. Since both our input (− log(λs))
and output (γ̂) data are one-dimensional, the linear function
that approximates the desired prediction function has only
two coefficients: the y-intercept and the slope. These can
be calculated by minimizing the residual sum of squares be-
tween the observed and the predicted SNRs. After fitting the
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training dataset to this model, the following SNR prediction
function when L = 10 and K = 3 is obtained:

γ̂ (dB) = −2.1452 + 9.9923(− log(λs)). (16)

5. Simulation Results

The performance evaluation of Staggered DNN-PCA
(Sect. 4.1), Staggered NRDNN (Sect. 4.2) and the system
combining both (Sect. 4.3) is now described here. Train-
ing, validation and test datasets must be generated for each
Staggered DNN technique and for the regression-based SNR
estimation. The parameters for the previously proposed
Staggered DNN [9] are shown in Tables 1 and 2. The pa-
rameters for the techniques proposed in this paper will be
presented in their respective sections. Furthermore, as pre-
viously mentioned in Sect. 3, two metrics are used here for
performance evaluation: probability of correct DOA estima-
tion and RMSE (the former is calculated in the same fashion
as in (7) for root-MUSIC). Their results must be interpreted
depending on the type of application. The probability of
correct DOA estimation should be of more relevance in such

Table 1 Parameters for Staggered DNN [9] data generation.

Table 2 Parameters for Staggered DNN [9] training.

cases where correct DOA estimation of all incoming waves
at a time is vital. On the other hand, in such cases where av-
erage precision is more important than occasional detection
error, RMSE should be mostly considered. Nevertheless, as
the RMSE is very sensitive to outliers, other metrics should
be regarded concurrently, such as the absolute error median.
As mentioned in Sect. 1, we turn our focus in this section
on the simulation results for the case of K = 3 radio wave
sources. For the cases of 4 and 5 sources, a brief discus-
sion on the simulation results is given in Appendix B as a
preliminary evaluation.

5.1 Staggered DNN-PCA

All parameters for Staggered DNN-PCA are kept the same
as in Tables 1 and 2, except the number of input layer units,
which is equivalent to the number of principal components
Dpca chosen during the dimensionality reduction process
described in Sect. 4.1.

First, in Figs. 7 and 8 we show the probability of cor-
rect DOA estimation and RMSE of the proposed Staggered
DNN-PCA, respectively, with respect to the number of prin-
cipal components when the number of antenna elements L
is varied from 10 to 15 and when the test dataset was gener-
ated at 0, 5, 10 and 20 dB. We compare the performance of
the proposed technique with that of root-MUSIC, which is
shown as horizontal black straight lines in the said figures.

In Fig. 7, we can promptly see that there is an opti-
mal number of principal components especially with respect
to 0 dB, and that this optimal value is different for each
L. Moreover, when the SNR is 0 dB and L ≥ 11, the
performance of Staggered DNN-PCA surpasses that of root-
MUSIC for certain numbers of principal components; in fact,
when L ≥ 12, an improvement of roughly 10% is achieved
in terms of the optimal number of principal components.
From the blue and orange curves corresponding to 0 and
5 dB, respectively, we can conclude that estimation preci-
sion improvement is possible by reducing the size of the
DNN input vector with PCA. We believe that, by applying
PCA and only selecting the dimensions corresponding to the
largest Dpca eigenvalues of the covariance matrix S (refer to
(11)), we manage to strongly reduce the noise corrupting the
input vector. On the other hand, when the SNR is 20 dB,
not only no visible effect from PCA can be seen, but also
the proposed method does not surpass root-MUSIC perfor-
mance. It is believed that information on the signal only
lightly corrupted by noise is lost by applying PCA. There-
fore, Staggered DNN-PCA appears to be inefficient at higher
SNRs (fact that will be verified later in this section).

In Fig. 8, we can see that the choice on the number of
principal components mainly affects the RMSE when the
SNR is 0 and 5 dB. It is also visible that too small values
of principal components (i.e. Dpca ≤ 6) impacts the per-
formance at any SNR and L significantly; likewise for too
large values (Dpca ≈ 30) at 0 and 5 dB when L is 10 or
11. This suggests that the new size of the DNN input vector
must be chosen after careful analysis as shown in this figure.
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Fig. 7 Comparison of the probability of correct DOA estimation performance of root-MUSIC (solid
black lines) and Staggered DNN-PCA for varying number of principal components, or new dimension
of input vector after PCA, when the number of antenna elements L ∈ [10, 15]. These methods were
tested at 0, 5, 10 and 20 dB.

Fig. 8 Comparison of the RMSE performance of root-MUSIC (solid black lines) and Staggered DNN-
PCA for varying number of principal components, or new dimension of input vector after PCA, when
the number of antenna elements L ∈ [10, 15]. These methods were tested at 0, 5, 10 and 20 dB.

With respect to the RMSE at 0 dB, the optimal number of
principal components appears to be slightly different from
that corresponding to the probability of correct DOA esti-
mation at each L. This is possibly because the structure of
the DNNs (number of hidden layers and units thereof) was
optimized in terms of the probability of correct DOA esti-

mation [11], [19], not RMSE. For this reason, we use the
optimal value of Dpca in terms of the probability of correct
DOA estimation (Fig. 7) in the subsequent simulations.

The comparison of the probability of correct DOA es-
timation and RMSE of Staggered DNN-PCA with those of
Staggered DNN and root-MUSIC for varying number of an-
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Fig. 9 Performance comparison of 3 DOA techniques while varying the number of antenna elements
L: root-MUSIC (dotted black lines), Staggered DNN (dashed blue lines) and Staggered DNN-PCA
(solid green lines). These methods were tested at 0, 5 and 20 dB (lower triangle, circle, and square
markers, respectively). (a) Probability of correct DOA estimation. (b) RMSE.

Fig. 10 Comparison of the probability of correct DOA estimation performance of root-MUSIC, Stag-
gered DNN and Staggered DNN-PCAx for varying test SNRs when the number of antenna elements
L ∈ [10, 15]. The notation PCAx denotes the number of principal components x chosen.

tenna elements L when the test SNR is 0, 5 and 20 dB is
shown in Fig. 9. The number of principal components Dpca
chosen for each L was the optimal number verified in a graph
such as those portrayed in Fig. 7. These values can be found
in Table 3, where the dimension reduction (Din − Dpca)/Din
in percentage is also shown. From both figures, the proposed
StaggeredDNN-PCA is very superior compared to Staggered

DNN when the SNR is 0 and 5 dB. Taking as an example
the point where L = 9, when the input vector dimension has
been reduced by approximately 84% (input vector features
from 81 to 13), we managed to improve the probability of
correct DOA estimation at 0 dB by 12.5 times (raise from
0.04 to 0.5), and the RMSE by −18 dB (reduction from 20
to 2.5 degrees). On the other hand, again we can see that,
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Table 3 Dimension reduction (Din − Dpca)/Din by PCA.

when the SNR is 20 dB, Staggered DNN clearly provides
the best performance at any number of antenna elements L.
This result indicates once more that PCA does not provide
fruitful results at higher SNRs.

Finally, in Fig. 10, we show the probability of correct
DOAestimationwith respect to the test SNRwhen L is varied
from 10 to 15. When L ≥ 11, once more it can be seen that
not only the proposed Staggered DNN-PCA presents the
best performance in all the three methods when the SNR is
0 and 5 dB, but also an input vector dimension reduction of
85% on average (Table 3) is accomplished. In particular the
great difference in performance between applying PCA or
not should be noted. Even if PCA proves to be ineffective
at 10 dB or higher, as the number of antenna elements L
increases towards 15, the performance of both Staggered
DNNs with and without PCA becomes fairly equal. This
could suggest that Staggered DNN-PCA at higher SNRs is
more attractive under the condition that L is large. In any
case, root-MUSIC still proves to be a stronger algorithm
at higher SNRs, given its super-resolution characteristics at
high SNR and sufficient large number of snapshots.

5.2 Staggered NRDNN

All parameters for the training of Staggered NRDNN are
kept the same as in Tables 1 and 2, except the following:

• Here we only consider L = 10;
• The K = 3 training and validation DOAs θ =
{θ1, θ2, θ3} are generated in a way that they are uni-
formly distributed within [θmin, θmax], where (a) θmax −
θmin = 30◦ and (b) this range is randomly sampled from
[−60.5◦,+60.5◦];

• The number of output layer units of NRDNN-A and
NRDNN-B are 31 and 32, respectively.

In Fig. 11, an example of one test spectrum grid when
the SNR is 20 dB by using Staggered NRDNN is shown. If
the spectrum grid from Staggered DNN alone was used (up-
per plot in Fig. 11), the DOA detection would be incorrect,
where the absolute error of θ2 would be |θ2− θ̂2 | = 0.93◦. As
explained in Sect. 4.2, where it is very likely that either DOA

Fig. 11 Example of spectrum grid generation with Staggered DNN (up-
per figure) and Staggered NRDNN (lower figure) when the SNR is 20 dB
and the true DOAs are close within the range of 20◦. The green circles
and the red X’s represent the true DOAs and the estimated DOAs with
Neighbors Weighted Average (Sect. 3.3), respectively.

is incorrectly detected when they lie within a range of 20◦,
and noting that the range of estimated DOAs is less than 20◦
(−48.50◦ − (−58.50◦) = 10.00◦ < 20◦), it can be said that
the spectrum grid produced by the appropriate Staggered
NRDNN could be more reliable. The selected Staggered
NRDNN to produce such spectrum is the one covering the
angle bins that fully includes the estimated DOAs, that is, the
one that covers the range [−60◦,−30◦] (first one from the left
in Fig. 5(b)). As a result, we obtain the spectrum grid shown
in the lower part of Fig. 11. Not only it is a cleaner spectrum,
but also it manages to detect all 3 DOAs more precisely, as it
can be seen from the considerable drop in the absolute error
in the same figure. Therefore, as it will be shown in the next
section, this strategy can indeed increase the performance of
Staggered DNN at higher SNRs.

5.3 Full System

In Fig. 12, for different test SNRs, the probability of correct
DOA estimation and RMSE of the proposed combination of
Staggered DNN-PCA and Staggered NRDNN is presented.
We compare it again with Staggered DNN and root-MUSIC.
The regression-based SNR estimation has been trained and
used in the same way as explained in [11]. Here we only
consider the case where L = 10. The test DOAs were
generated as in Table 1.

In terms of probability of correct DOA estimation
(Fig. 12(a)), our Staggered NRDNN strategy proposed to
cope with close waves shows very good results, especially
when the SNR is 20 and 25 dB, where the proposed tech-
nique surpasses root-MUSIC performance, while Staggered
DNN alone cannot do the same. When the SNR is 30 dB, in-
deed root-MUSIC still shows better estimation performance;
however, our proposed method still manages to perform
well. We believe that its use is more attractive than root-
MUSIC due to lesser online computational cost, once all
necessary DNNs have been offline trained. From the RMSE
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Fig. 12 Performance comparison of root-MUSIC, Staggered DNN and full system (Staggered DNN-
PCA + Staggered NRDNN) for varying test SNRs when L = 10. The number of principal components
chosen for Staggered DNN-PCA was the corresponding optimal value of 13. (a) Probability of correct
DOA estimation. (b) RMSE.

in Fig. 12(b), no considerable change is visible when using
Staggered NRDNN at 10 dB and over, but this was expected,
since the RMSE is an averaging metric and close waves are
statistically less common in accordance to our simulation
settings.

6. Final Remarks

In this study, we have developed strategies for improving the
DOA estimation performance of our previously proposed
DNN-based method. Very good results overall surpassing
root-MUSIC were achieved in the past when only two ra-
dio wave sources were considered. However, as reported in
[11], in addition to the fact that accuracy at low SNRs is over-
whelmingly poor unless multiple DNNs trained under these
conditions are provided, in the event of three radio waves,
estimation performance also drops considerably, especially
at high SNRs. Consequently, the need to develop schemes
that handle these deficiencies was apparent.

Therefore, in this paper we have proposed two separate
strategies, each of which tackles these issues at low and high
SNRs independently. At low SNRs, we have demonstrated
that estimation accuracy is tremendously improved by repre-
senting theDNN input vector in a lower dimension (reduction
of approximately 85%) by means of PCA, even though this
data is generated at a much higher SNR. Additionally, by
reducing the size of the input layer, we concurrently manage
to reduce the computational cost of DNN. At high SNRs,
after noticing that the majority of incorrect estimation cases
are due to close waves, we have developed a method where
different DNNs specialized in close waves are used instead
of the conventional DNN, resulting in a more reliable narrow
DOA spectrum grid for subsequent DOA detection. Finally,
in order to combine both strategies in a way that such DNN
could potentially be deployed in a real scenario, we have used
a previously proposed idea [11] of estimating the SNR of the

incoming radio waves, so that the appropriate strategy can
be switched depending on this SNR. We have obtained great
results with this proposed system for the case of three sources
with the promise that it could be used instead of root-MUSIC
in a bid to acquire better DOA estimation performance while
reducing computational cost.

However, further investigation is still necessary before
implementation in real scenarios. Despite the brief discus-
sion of the applicability of the proposed methods for higher
number of radio wave sources given in the Appendix, more
detailed results are still needed. Moreover, study on a less
complex SNR estimation module and performance compar-
ison at a) different number of snapshots, b) coherent radio
waves, c) uneven power among the incoming waves is nec-
essary.
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Appendix A: Detailed Description of Neighbors
Weighted Average

The fully detailed algorithm of “Neighbors Weighted Av-
erage” (Sect. 3.3) is presented in Algorithm 1. Its goal is
to detect the DOA information from the Staggered DNN

output, i.e. the angular spectrum grid estimated by the Stag-
gered DNN, for as many output situations as possible, since
spurious bins can hinder proper detection.

The algorithm takes as parameters:

• The number of radio wave sources K , which is consid-
ered to be known;

• The output of Staggered DNN t̂ (or estimated spectrum
grid);

• The probability threshold ε with starting value of 0.1;
• The limit on the number of bins ζ for computation of
the weighted average of close DOAs, with starting value
of 3.

As previously explained in Sect. 3.3, the ε and ζ values
are not necessarily optimized; yet, we have achieved great
results.

Not always a clean spectrum grid is estimated, with K
clearly formed hills. For this reason, the first step (line 4) is
to count the number of hills K̂ present within the estimated
spectrum t̂. The probability threshold ε is necessary in this
moment. The next step relies on K̂:

1. Is K̂ = K? (lines 5–7)
2. Is K̂ > K? (lines 8–13)
3. Is K̂ < K? (lines 14–23)

If case 1, then the weighted average in (9) is simply ap-
plied, where all nbin bins within a hill are included in this
computation, as shown below:

θ̂ =

nbin∑
i=1

pibi

/
nbin∑
i=1

pi . (A· 1)
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Fig. A· 1 Comparison of the performance in terms of probability of correct DOA estimation of 3
DOA techniques while varying the number of antenna elements L: root-MUSIC (dotted black lines),
Staggered DNN (dashed blue lines) and Staggered DNN-PCA (solid green lines). These methods were
tested at 0, 5 and 20 dB (lower triangle, circle, and square markers, respectively). (a) K = 4. (b) K = 5.

Case 2 occurs when there are spurious bins higher than
the probability threshold ε , resulting in spurious hills that
should not be included in the DOA detection. A solution for
this problem is to increment the value of ε step by step (line
9) until such spurious hills are damped and K clear hills are
present for DOA detection. Yet, we set 0.4 as a limit to ε . If
such a limit is reached and still there are no exact K hills, then
we apply a traditional peak search algorithm to the Staggered
DNN output t̂ (line 11), where the bins corresponding to the
K largest peaks are chosen as the DOA estimates θ̂.

Case 3 most probable occurrence is in the event of close
radio waves, which results in overlapping hills. In this case,
we need to set a bin limit ζ in order to calculate the weighted
average (line 16):

θ̂ =

ζ∑
i=1

pibi

/
ζ∑
i=1

pi . (A· 2)

We have verified that ζ = 3 is a good choice. Neverthe-
less, there are some situations where the number of bins ζ
corresponding to one or more DOAs is less than 3. For this
reason, we gradually decrement the value of ζ . If this value
reaches 0, then again we apply peak search to the Staggered
DNN output t̂ (line 22), where the bins corresponding to the
K largest peaks are chosen as the DOA estimates θ̂.

Appendix B: Performance of Proposed Methods for
Higher Number of Sources

The scope of this study includes primarily the performance
analysis of the proposed methods Staggered DNN-PCA in
Sect. 4.1 and Staggered NRDNN in Sect. 4.2 for the case of
only 3 radio wave sources (i.e. K = 3). However, verifi-
cation of their applicability for higher values of K is also
necessary as a fundamental step for future deployment in
real-scenario applications. Therefore, in this appendix, we

give a brief analysis of the DOA estimation performance of
both proposed methods when K is 4 or 5. In practical sce-
narios with alternating numbers of sources, we envision a
dynamic system which consists of several Staggered DNN-
PCAs and NRDNNs, each corresponding to each K , that are
concurrently deployed according to this K .

B.1 Staggered DNN-PCA

Figure A· 1 shows the extension of the results in Fig. 9(a)
when the number of sources K is 4 (Fig. A· 1(a)) and 5
(Fig. A· 1(b)). Here, the optimal number of principal compo-
nents for each L was found in the samemanner as it was done
for Fig. 7. All other parameters were kept unchanged. Com-
paring Fig. A· 1 with Fig. 9(a), the performance of Staggered
DNN-PCA appears to be the best at any value of L at 0 and
5 dB; especially when K = 5 at 0 dB (see the straight green
line with triangle marker in Fig. A· 1(b)), Staggered DNN-
PCA excels over root-MUSIC at all L, which contrasts with
the case K = 3 in Fig. 9(a), where the probability of correct
DOA estimation of Staggered DNN-PCA only surpasses that
of root-MUSIC when L ≥ 10.

Figure A· 2 shows the performance of Staggered DNN-
PCA at different test SNRs. This is the extension of the
results in Fig. 10 for the case L = 10. Although the per-
formance of all DOA estimation methods, including root-
MUSIC, is degraded as K increases, Staggered DNN-PCA
still shows the best probability of correct DOA estimation at
0 and 5 dB. On the other hand, comparing with the perfor-
mance of Staggered DNN at SNRs of 10 dB or greater, the
performance of Staggered DNN-PCA worsens considerably
as K increases. We stated in Sect. 5.1 that information on
the signal, which is only lightly corrupted by noise at higher
SNRs, is lost by applying PCA. Moreover, as K increases,
inaccurate DNN outputs are more often produced due to ra-
dio waves with close DOA (more to be discussed in the next
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Fig. A· 2 Comparison of the probability of correct DOA estimation performance of root-MUSIC,
Staggered DNN and Staggered DNN-PCAx for varying test SNRs when the number of antenna elements
L = 10. The notation PCAx denotes the number of principal components x chosen. (a) K = 4. (b)
K = 5.

Fig. A· 3 Examples of Staggered DNN output when DOA was incorrectly detected at 20 dB for the
case K = 4. The green circles and the red X’s represent the true DOAs and the estimated DOAs,
respectively.

Fig. A· 4 Examples of Staggered DNN output when DOA was incorrectly detected at 20 dB for the
case K = 5. The green circles and the red X’s represent the true DOAs and the estimated DOAs,
respectively.

section). The combination of both factors are believed to be
the reason for significant degradation at higher SNRs as K
increases.

In conclusion, applying PCA is still very effective for
DOA estimation improvement at lower SNRs when the num-
ber of radio wave sources K is 4 and 5.

B.2 Staggered NRDNN

It was explained in Sect. 4.2 and verified in Sect. 5.2 that the

proposed Staggered NRDNN is effective in producing more
accurate angular spectra; thus, improving DOA estimation
performance. However, this approach was designed based
on the observation that K = 3 radio waves with DOA range
of 20◦ are the main cause of incorrect DOA estimation at
higher SNRs with Staggered DNN. Observing the results
presented in Figs. A· 3 and A· 4, which show examples of
the output (i.e. angular spectrum) of Staggered DNN when
DOA estimation was incorrect at 20 dB for the case K = 4
and K = 5, respectively, we concluded that, as K increases,
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the possible patterns of angular spectrum corresponding to
incorrect DOA also increases. For instance, as opposed to
the case K = 3, we can observe from Figs. A· 3 and A· 4 such
patterns of angular spectrum where not only all K peaks, but
also K −K ′ peaks are in close range. Here, K ′ is the number
of radio waves apart from the close range of 20◦. In fact, we
verified that, by applying Staggered NRDNN as described
in Sect. 4.2 to the cases K = 4 and K = 5, no significant
improvement in DOA performance was achieved. However
this was an expected result, since this method was designed
for K = 3. We believe that the redesign and retrain of this
method based on different K can result in more accurate
DOA estimation. Since this investigation is out of the scope
of this paper, we leave it as future work.
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