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SUMMARY Mining task offloading has been attracting users of de-
centralized applications (DApps) because they have only devices with the
limited resource, which make it difficult to execute resource-intensive min-
ing tasks. This allows the DApp users to offload the mining tasks to a cloud
and/or a mobile edge computing server managed by a cloud service provider
(CSP). To ensure the sustainable cloud/edge services and the integrity of
blockchain, a CSP selection problem arises, which is a problem to assign
the offloading requests to an appropriate CSP. In this paper, we propose
a mining task offloading strategy for the CSP selection problem to maxi-
mize the miner’s expected utility. More specifically, we formulate the CSP
selection problem as a repeated stochastic game such that the coarse corre-
lated equilibrium is achieved among miners (DApp users). In addition, we
develop an online algorithm for efficiently solving the repeated stochastic
game using the Lyapunov optimization and the drift-plus-penalty algorithm.
Through the numerical experiments, we demonstrate the characteristics of
the proposed strategy in terms of parameter sensitivity, utility, fairness, and
execution time.
key words: decentralized application (DApp), mining task offloading,
coarse correlated equilibrium (CCE), repeated stochastic game, Lyapunov
optimization, drift-plus-penalty algorithm

1. Introduction

A decentralized application (DApp) is an application
through smart contracts autonomously operating on a per-
missionless blockchain technology [2]. With increasing the
demand for DApps, mining, which is one of consensus-
building processes in a blockchain network, grows in impor-
tance from the viewpoint of the secure operation of DApps.
The proof-of-work (PoW) based blockchain network moti-
vates DApp users to become a consensus node (i.e., a miner)
because they have an opportunity to acquire the mining re-
ward. However, the DApp users become reluctant to solve
a PoW puzzle because most of them have only devices with
the limited resource such as mobile devices and internet of
things (IoT) devices. In other words, their device makes it
difficult to execute the resource-intensive mining task. To
compensate for the limited resource, mining task offloading
has been attracting such DApp users [3], [4]. This allows
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the DApp user to offload the computational task required for
mining to a cloud and/or a mobile edge computing (MEC)
server, managed by a cloud service provider (CSP).

There have been many studies for mining task offload-
ing [3], [4]. Toward realizing sustainable mining task of-
floading, these studies have tackled a resource allocation
problem by taking into account the interaction between min-
ers and CSPs. If a lot of offloading requests by DApp users
are concentrated on a particular CSP, the services provided
by the CSP will become congested, resulting in high op-
erational costs. On the other hand, if there exist only few
requests by DApp users, the integrity of blockchain network
may be compromised. Therefore, a CSP selection prob-
lem, which is a problem to assign the offloading request to
the appropriate CSP, arises from the viewpoint of the ser-
vice stability and the integrity of blockchain network. The
offloading strategies for the CSP selection can mainly be
categorized into three types of strategies: (1) the maximiza-
tion of social welfare [5]–[7], (2) the maximization of CSP’s
utility [8]–[10], and (3) the maximization of miner’s util-
ity [11]–[14].

In this paper, we formulate theCSP selection problem as
a repeated stochastic game [15] in order to maximizeminer’s
utility, inspired by [16], [17]. The repeated stochastic game
aims at realizing the CSP selection such that a coarse corre-
lated equilibrium (CCE) [18] is achieved among the DApp
users. Since the repeated stochastic game cannot be directly
solved in terms of computational complexity, we propose
an online algorithm to solve the repeated stochastic game,
with the assistance of Lyapunov optimization and drift-plus-
penalty algorithm. Through the numerical experiments, we
demonstrate the characteristics of the proposed algorithm in
terms of parameter sensitivity, utility, fairness, and execution
time.

The rest of the paper is organized as follows. Section 2
gives the related work. Section 3 provides the system model
assumed in this paper. In Sect. 4, we propose a repeated
stochastic game and Lyapunov optimization for mining task
offloading in decentralized applications. Section 5 shows the
fundamental characteristics of the proposal. Finally, Sect. 6
gives the conclusion and future work.

2. Related Work

Mining task offloading related surveys can be found in
[3], [4]. Table 1 presents the summary of representative
related work on mining task offloading. The social welfare
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Table 1 Summary of representative related work on mining task offloading.

maximization strategy aims at maximizing the total utility of
both miners and CSPs combined [5]–[7]. Jiao et al. devel-
oped the auction mechanism, consisting of two-round val-
uation, in resource allocation and pricing [5]. In the first
round, since miners could not know the total amount of re-
sources and the number of winners, they bid according to
the expected reward. In the next round, miners derive the
post-valuation consisting of the expected reward and the net-
work effect by considering the auction result. Zhang et al.
formulated a CSP selection problem as a Stackelberg game
to select the appropriate offloading strategy by taking into
account the different preference toward the tradeoff between
risk and reward [6]. Focusing on the interaction between
miners and CSPs, Liu et al. formulated a double-sided auc-
tion game to determine the offloading strategy [7].

The CSP’s utility maximization strategy is a strategy
for energy and cost saving and its profit maximization [8]–
[10]. In order to efficiently offload resource-intensive tasks
to MEC and mobile cloud computing (MCC) servers, Wu
et al. proposed the Lyapunov optimization to determine an
appropriate offloading server such that the energy consump-
tion and task response time are minimized [8]. Yang et al.
proposed the distributed matching algorithm that allocates
mining tasks to fog servers in order to maximize the fog
servers’ profit [9]. Luong et al. developed the single-sided
auction between CSPs and miners using deep learning to
maximize the CSPs’ profit [10]. Different from these stud-
ies, we explore an offloading strategy that aims to maximize
the miner’s utility.

The miner’s utility maximization strategy aims at max-

imizing the miner’s profit indicating the difference between
the mining reward obtained by solving a PoW puzzle and
the payment cost to the CSP [11]–[14]. In [11], Mai et
al. proposed a centralized mining pool selection algorithm
using an evolutionary game to maximize the profit of each
miner. In this work, they, however, assumed that each miner
offloads a mining task to a nearby MEC server or a cloud.
In addition, they proposed a distributed mining pool selec-
tion algorithm using a win or learn fast policy hill climbing
(WoLF-PHC) algorithm [19], which is one of the distributed
reinforcement learning (RL) algorithms, by considering the
non-cooperative relationship among miners. In order to
maximize the miner’s profit, Jiang et al. formulated a prob-
lem of determining the ratio of hash power to allocate to self
mining and cloud mining as the non-cooperative game in
a proof-of-capacity (PoC) consensus mechanism [12]. Liu
et al. proposed an offloading and caching strategy using an
alternating direction method of multiplier (ADMM) algo-
rithm [20] in the wireless blockchain network using MEC
servers [13]. This algorithm selects where to offload mining
tasks and caches both requested content and computation
result to handle ever-increasing network traffic. In [14], the
authors proposed amethod for offloading tasks of IoT devices
toMEC servers tominimize their power consumption and la-
tency and adopts a double deep q-network (DDQN) [21] and
a technique for order of preference by similarity to ideal solu-
tion (TOPSIS) algorithm [22] to optimize themulti-objective
decisionmaking. Note that this method is not directly related
to mining task offloading.

The existing studies [5], [10], [12] assume only the ex-
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istence of single CSP but the CSP may set excessive service
costs in this situation. On the contrary, the studies [11], [14]
to aim at the maximization of miner’s (user’s) utility take
the existence of multiple CSPs into account but not mining
task offloading. In [12], [13], the interaction between min-
ers and CSPs over time is not considered. In other words,
these studies do not sufficiently consider both the existence
of multiple CSPs and the interaction between miners and
CSPs over discrete time from the aspect of mining task of-
floading. To tackle these issues, we aim to formulate a CSP
selection problem as a repeated stochastic game to maximize
the miner’s profit and develop an online algorithm using the
Lyapunov optimization for mining task offloading by taking
into account the existence of multiple CSPs and the interac-
tion betweenminers and CSPs over discrete time, inspired by
[16], [17]. In [16], the author formulated a repeated stochas-
tic game that attains the CCE among users and developed
an online algorithm for efficiently solving this game. Li et
al. applied a repeated stochastic game to a network selection
problem in a wireless network [17]. In this paper, we also
apply a repeated stochastic game to a CSP selection problem
for mining task offloading.

In the conference version [1], we cannot provide de-
tailed explanation and numerical results of the proposed
method due to the page limitation. In this paper, we elabo-
rate on a system model, formulation of repeated stochastic
game, and an online algorithm in Sects. 3 and 4. In Sect. 5,
we provide the evaluation results from the viewpoint of util-
ity, queue stability, and execution time by reconsidering the
evaluation settings by using the actual data obtained from
[23]–[25].

3. System Model

In this section, we elaborate on the system model. Table 2
presents the notations used in this paper.

3.1 Repeated Stochastic Game

A repeated stochastic game models interactions in which
the environment changes according to the N users’ ac-
tions over an infinite time slot t ∈ {0,1,2, . . .} [15]. Let
N = {1, . . . ,N} be a set of users (i.e., miners). Note
that terms user and miner will be used interchangeably.
Each user i ∈ N chooses an action αi(t) ∈ Ai under the
whole history states including the current state on time slot
t. Given the action combinations among all users and the
current state, the probability distribution of action vector
α(t) = (α1(t), . . . , αN (t)) and the utility ui(α(t)) of each user
on time slot t are determined. Note that symbols α and α(t)
will be used interchangeably.

The definition of Nash equilibrium assumes that every
user i ∈ N independently chooses an action. The probability
mass function Pr[α] is a (mixed) Nash equilibrium (MNE)
if it satisfies:∑

α∈A

Pr[α]ûi(α) ≥
∑
α∈A

Pr[α]ûi((βi,α−i)),

Table 2 Notations.

∀i ∈ N,∀βi ∈ Ai, (1)

Pr[α] =
∏
k∈N

Pr[αk(t) = αk], (2)

where α−i = (α1, . . . , αi−1, αi+1, . . . , αN ) (α−i ∈ A−i) stands
for an action vector except user i. Note that A = A1 ×
. . . × AN and Ω = Ω1 × . . . × ΩN . Equation (1) indicates
that every user i ∈ N cannot improve his/her utility when
deviating from the action αi . Equation (2) represents that
every user i ∈ N independently takes an action. It is well-
known that there exists at least one MNE in every game but
the high computational complexity is imposed to derive the
MNE.

Different from an MNE, the definition of CCE assumes
that a game manager who provides the suggestion Si to each
user i ∈ N exists and non-participating users do not re-
ceive any suggestions from the game manager [18]. In other
words, the CCE is an equilibrium where every user i ∈ N
cannot improve his/her utility when deviating from the sug-
gestion Si , assuming that all users follow the suggestions
from the game manager. Therefore, the probability mass
function Pr[α] is a CCE if it satisfies Eq. (1). Let EMNE and
ECCE be the solution spaces of MNE and CCE, respectively.
Since EMNE ⊆ ECCE is established, the CCE may reduce the
solution optimality compared with the MNE but can derive
solutions faster [16].

3.2 CSP Selection Problem

In this section, we formulate theCSP selection problemas the
repeated stochastic game. We assume that each user i ∈ N
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Fig. 1 System model.

first observes a random event (i.e., a current state) ωi ∈ Ωi

and then chooses a CSP j ∈ M from a setM = {1, . . . ,M}
of M CSPs for the mining task offloading at each time slot
t. Let Ωi be a set of states that can be observed by the user
i. The current states observed by all users on time slot t is
defined as a matrix ω(t) = [ω1(t), . . . ,ωN (t)]. We assume
that ω is independent and identically distributed (i.i.d.) over
time slots. Let ω0(t) be the current state observed by the
game manager. In what follows, we assume that each user
i ∈ N receives the current stateω0(t) from the gamemanager
(i.e., ωi(t) = ω0(t)).

Figure 1 illustrates the system model assumed in this
paper. For each time slot t, each CSP j ∈ M notifies
its congested state c j(t) and the unit service price pj(t)
to the game manager (i.e., a DApp developer) (Step 1 in
Fig. 1). Each user i ∈ N receives the congested states
ωi(t) = (c1(t), . . . , cM (t)) of M CSPs from the game man-
ager and subsequently notifies the computing demand (i.e.,
hash power) di(t) required for the mining task to the game
manager (Step 2 in Fig. 1). Here, c j(t) ∈ {0,1}. c j(t) = 0
(resp. c j(t) = 1) means that the computing resource of CSP
j is available (resp. congested). The congestion probability
q j(t) of CSP j is given by

q j(t) =

{
d j (t)

C j (t)
, if d j(t) ≤ C j(t),

1, otherwise,

where d j(t) =
∑

i∈{k∈N |αk (t)=j } di(t). d j(t) denotes the total
sum of the computing demands required to the CSP j on time
slot t. C j denotes the available computing capacity of CSP
j. On time slot t, the CSP j is available (resp. congested)
with the probability 1 − q j(t) (resp. q j(t)).

The game manager derives the suggestion Si(t) ∈ Ai

of user i ∈ N such that the CCE is achieved among the users
and then notifies it to the user i (Step 3 in Fig. 1). Here,
Ai(= {0} ∪ M) denotes a set of actions (a set of available
CSPs) for user i and 0 means no selection. Each user i ∈ N
takes an action αi(t) = Si(t) according to the suggestion from
the game manager (Step 4 in Fig. 1) and offloads the mining
task to the CSP j = αi(t) (Step 5 in Fig. 1). If the user
succeeds in mining, he/she can obtain the mining reward R
and the transaction fee r (Step 6 in Fig. 1). We assume that
each user can choose a single CSP.

4. Proposed Method

4.1 Formulation of CSP Selection Problem

In this section, we formulate the CSP selection problem as an
optimization problem. On time slot t, the utility û(α(t),ω(t))
of user i who chooses the CSP j is defined as follows:

ûi(α(t),ω(t)) =


di (t)
dN (t)
(R + r) − di(t)pj(t),
with probability 1 − q j(t),

0, with probability q j(t),

where dN(t) =
∑

j∈N dj(t) denotes the total sum of the com-
puting demands of all users. di(t)/dN(t) means the proba-
bility of successfully mining a block, which is represented
by the ratio of the total computing demand to the computing
demand of user i. di(t)pj(t) means the payment cost to CSP
j.

For each time slot t, since the utility ui(t) of user i
depends on both actions α(t) and congested statesω(t), ui(t)
is defined as a real-value function of α(t) and ω(t) (i.e.,
ui(t) = ûi(α(t),ω(t))):

ui(t) =


di (t)
dN (t)
(R + r) − di(t)pj(t),

if αi(t) = j, j , 0, c j(t) = 0,
0, if αi(t) = j, j , 0, c j(t) = 1,
0, if αi(t) = j, j = 0.

The conditional probability mass function Pr[α | ω] is
defined as follows:

Pr[α | ω] ≥ 0, ∀α ∈ A,∀ω ∈ Ω, (3)∑
α∈A

Pr[α | ω] = 1, ∀ω ∈ Ω. (4)

We assume that the action vector α is selected independently
over time slots according to the i.i.d. ω and the same con-
ditional probability mass function Pr[α | ω]. Thanks to the
large sample approximation, the time average utility ui of
user i is given by

ui =
∑
ω∈Ω

∑
α∈A

π[ω]Pr[α | ω]ûi(α,ω), ∀i ∈ N, (5)

where π[ω] = Pr[ω(t) = ω].
Each user aims at maximizing his/her time average util-

ity over time slots while the game manager aims at providing
fair opportunities for mining task offloading among users.
Considering these points, we introduce the α-proportional
fairness function φ(·) (α = 1).

φ(u1, . . . ,uN ) =
∑
i∈N

log ui . (6)

The CSP selection problem can be formulated as the follow-
ing optimization problem P1.

max
Pr[α |ω]

(6),
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s.t. (3), (4), (5),∑
ω∈Ω

∑
α∈A

π[ω]Pr[α | ω]ûi(α,ω)

≥
∑
ω∈Ω

∑
α∈A

π[ω]Pr[α | ω]ûi((b(β)i ,α−i),ω),

∀i ∈ N,∀β ∈ Bi, (7)

Constraint (7) represents the CCE constraint. Bi denotes the
pure strategies for user i and b(β)i = b(β)i (ωi) represents the
pure strategy function for user i.

4.2 Online CSP Selection Algorithm

It is difficult to directly solve the optimization problem P1 in
terms of computational complexity because (1) P1 includes
the unknown conditional probability mass function Pr[α |
ω] and (2) the objective function is a non-linear function of
time average utility among users. In this section, we propose
an online algorithm to solve P1 with the help of Lyapunov
optimization, inspired by [16].

4.2.1 Reformulation of CSP Selection Problem

Since Eq. (5) includes the unknown Pr[α | ω], we redefine
the time average utility ui of user i until time slot t as follows:

ui(t) =
1
t

t−1∑
τ=0

E[ui(τ)]. (8)

If only the user i switches the action from αi(t) to the
available action b(β)i (t), the utility u(β)i (t) is defined as
ûi((b

(β)
i (ωi),α−i),ω).
A stationary and randomized algorithm observes the

congested state ω(t) and independently selects suggested
actions S(t) = α(t) according to the same conditional prob-
ability mass function Pr[α | ω]. If P1 can be solved by some
conditional probability mass function Pr[α | ω], the follow-
ing optimization problem P2 can also be solved. In addition,
any solution of P2 has time average expectations that are
arbitrarily close to conditional probability mass functions
Pr[α | ω] that solve P1 [16]. Therefore, the optimization
problem P1 can be transformed into the following optimiza-
tion problem P2.

max
Pr[α |ω]

lim inf
t→∞

φ(u1(t), . . . ,uN (t)), (9)

s.t. lim inf
t→∞

[ui(t) − u(β)i (t)] ≥ 0,

∀i ∈ N,∀β ∈ Bi, (10)
α(t) ∈ A,∀t ∈ {0,1, . . .}. (11)

The objective function (9) aims tomaximize the inferior limit
of the proportional fairness function of time average utility.
Constraint (10) represents the CCE constraint satisfying that
the time average utility based on the suggestion is greater
than or equal to that based on deviating behavior.

4.2.2 Jensen’s Inequality

It is difficult to directly maximize Eq. (9) because Eq. (9)
is represented as a non-linear function of time average util-
ity among users. With the assistance of the Jensen’s in-
equality and the auxiliary variable technique [26], the max-
imization of the non-linear function of time average can be
transformed into the maximization of the time average of
non-linear function. Let γ(t) = (γ1(t), . . . , γN (t)) be an aux-
iliary vector tuned by the game manager on time slot t. Note
that 0 ≤ γi(t) ≤ umax

i and umax
i is maximum utility of user

i. Applying the auxiliary vector to Eq. (6), we can define
g(t) = φ(γ1(t), . . . , γN (t)). From the Jensen’s inequality, we
have

g(t) ≤ φ(γ1(t), . . . , γN (t)). (12)

As a result, the optimization problem P2 can be transformed
into the optimization problem P3 that the game manager
observes ω(t) and chooses α(t) and γ(t) over time slots.
The optimization problem P3 is defined as follows:

max lim inf
t→∞

g(t),

s.t. (10), (11),
lim
t→∞
|γi(t) − ui(t)| = 0,∀i ∈ N, (13)

0 ≤ γi(t) ≤ umax
i ,∀i ∈ N,∀t ∈ {0,1, . . .}. (14)

Constraint (14) represents the domain of auxiliary variables.
Suppose that all limits exist in P3 so that the constraint (13)
guarantees γi(t) = ui(t). The objective value of P3 is less
than or equal to that of P2 according to Eq. (12).

4.2.3 Lyapunov Optimization

The optimization problem P3 can be solved by using a drift-
plus-penalty algorithm [26]. In order to meet the con-
straints (10) and (13), we define virtual queues Q(β)i (t) and
Zi(t) with the following update rules.

Q(β)i (t + 1) = max[Q(β)i (t) + u(β)i (t) − ui(t),0], (15)
Zi(t + 1) = Zi(t) + γi(t) − ui(t). (16)

Equation (15) (resp. Eq. (16)) represents a queueing process
with arrival rate u(β)i (t) and service rate ui(t) (resp. arrival
rate γi(t) and service rate ui(t)). Therefore, the constraints
(10) and (13) are satisfied if these queues aremean rate stable
as follows:

lim
t→∞

E[Q(β)i (t)]
t

= 0, (17)

lim
t→∞

E[|Zi(t)|]
t

= 0. (18)

The Lyapunov function L(t) can be defined as the sum
of the squared virtual queue lengths on time slot t.
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L(t) =
1
2

N∑
i=1

Zi(t)2 +
1
2

N∑
i=1

∑
β∈Bi

Q(β)i (t)
2.

The Lyapunov drift is given by ∆(t) = L(t + 1) − L(t). The
drift-plus-penalty algorithm runs by greedily choosing ac-
tions every time slot t so that the upper bound of ∆(t)−Vg(t)
is minimized. In general, V indicating a non-negative con-
trollable parameter controls the convergence time and the
solution optimality. −g(t) means a penalty.

Every time slot t, the drift-plus-penalty expression
∆(t) − Vg(t) satisfies the following property.

∆(t) − Vg(t) ≤ B − Vg(t)

+
1
2

∑
i∈N

∑
β∈Bi

Q(β)i (t)(u
(β)
i (t) − ui(t))

+
1
2

∑
i∈N

Zi(t)(γi(t) − ui(t)), (19)

where B = 1
2
∑

i∈N (umax
i )

2 + 1
2
∑

i∈N

∑
β∈Bi
(umax

i )
2.

The drift-plus-penalty algorithm can greedily solve the
optimization problemP3. This algorithmfirst splits the right-
hand side of Eq. (19) into the term relating to γ and the term
relating to α and greedily optimizes each of the terms. As a
result, the algorithm can maximize the inferior limit of time
average while holding Eqs. (15) and (16).

More precisely, the algorithm initializes the virtual
queues {Q(β)i (0)}∀i∈N,∀β∈B and {Zi(0)}∀i∈N with zeros on
time slot t = 0. Every time slot t, the algorithm first observes
ω(t) on time slot t − 1. The algorithm then derives γ(t) by
solving the following the optimization problem.

max Vg(t) −
∑
i∈N

Zi(t)γi(t),

s.t. 0 ≤ γi ≤ umax
i , ∀i ∈ N .

Similarity, the algorithm derives suggested actions S(t) =
α(t) such that

min −
∑
i∈N

Zi(t)ui(t)

+
∑
i∈N

∑
β∈B

Q(β)i (t)[u
(β)
i (t) − ui(t)].

The algorithm provides each user i ∈ N with the suggestion
αi(t) and subsequently updates the virtual queues accord-
ing to Eqs. (15) and (16). The algorithm does not require
knowledge of the probabilities π[ω].

5. Numerical Results

5.1 Evaluation Scenario

Table 3 presents the parameters used in the numerical exper-
iments. There exist N = 100 DApp users and M = 10 CSPs.
We assume that the total hash power over the blockchain
network is equivalent to the total computing demands of N

Table 3 Parameters used in the numerical experiments.

users. The computing demand of each user i is calculated by
the total hash power over the blockchain network on 25 Apr.
2024 [23]. The service price (i.e., the payment cost) pj per
hash power is calculated by multiplying the service fee per
power consumption and the maximum and minimum energy
efficiency (i.e., the power consumption per hash power) of
the top-10 application-specific integrated circuits (ASICs)
in the expected daily profit, released until Mar. 2024 [24].
The service fee per power consumption is defined as the
household average of electricity charge in the United States
(i.e., 0.06USD/kWh) plus the cloud service fee per power
consumption (i.e., 0.12USD/kWh). The mining reward R
is set to 6.25BTC as of Apr. 2024 [25]. The transaction
fee r is the average of the transaction fees in 5000 blocks
generated between 23 Mar. 2024 at 5:11:32 a.m and 26 Apr.
2024 at 12:03:58 a.m. [25]. It is assumed that the BTC to
US dollar exchange rate is 1 BTC = 67259USD, which is
the average value between 23 Mar. 2024 and 25 Apr. 2024.
We run each evaluation for T = 1000 time slots. We assume
that the duration of a single time slot t is 10 minutes.

It is difficult to directly compare the performance of
the proposed method with those of the existing methods, as
shown in Sect. 2. To confirm the effectiveness of the pro-
posed method, we prepare two simple methods (i.e., a ran-
dom method and a TOPSIS method [22] adopted in [14]).
In the random method, each user randomly chooses a CSP
from the available CSPs without any strategy. Recall that the
existing method [14] does not support mining task offload-
ing. Therefore, we slightly modify the TOPSIS method as
follows: Each user first sets the relative importance (i.e., the
weighted value) of each attribute, where the attributes are the
computing resource capacity and the payment cost, provided
by each CSP. Next, each user chooses the CSP with the high-
est weighted sum of the evaluations for each attribute from
the available CSPs. It is assumed that the relative importance
is given randomly for each user.

For the evaluation, we use the server with Intel(R)
Xeon(R) Gold 6326 CPU (32 cores) and 256GB memory.
We use the two solvers: (1) an interior point optimizer
(IPOPT) solver [27] for the non-linear problem and (2) a
COIN-OR branch-and-cut (CBC) solver [28] for the lin-
ear problem. As for performance metrics, we use virtual
queue lengths (i.e., |Zi(t)| and |Q(β)i (t)|), time average utility
(Eq. (8)), proportional fairness (Eq. (6)), and execution time,
respectively. The execution time is defined as the average of
the time it takes to derive the actions of miners for each time
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Fig. 2 Impact ofV on time average utility and virtual queue lengths.

Fig. 3 Execution time.

slot. In what follows, we show the results in the average of
10 independent experiments.

5.2 Impact of Controllable Parameter V

Recall that the controllable parameter V affects the time av-
erage utility and the convergence speed of the virtual queue.
To find the appropriate V that stabilizes the virtual queues
fast while enhancing the time average utility, we first focus
on the impact of V on the time average utility and the vir-
tual queue lengths, as illustrated in Fig. 2. We observe from
Fig. 2(a) that the time average utility rises with increase of
V and subsequently stabilizes at V ≥ 105. Focusing on
the queue stability, we also observe from Fig. 2(b) that the
lengths of virtual queues for all V except V = 107 stabilize
until t = 1000. This result indicates that the virtual queue
Zi(t) is mean rate stable (i.e., Eq. (16) is established) and
thus the constraint (13) is satisfied. On the other hand, we
confirm from Fig. 2(c) that V = 106 and V = 107 exhibit
rapid convergence to zero, compared with the others. In
other words, the virtual queue Q(β)i (t) is mean rate stable
(i.e., Eq. (15) is established) when V = 106 and V = 107.
This indicates that the constraint (10) is satisfied. In what
follows, we adopt V = 106 to balance both time average
utility and queue stability.

5.3 Time Average Utility and Proportional Fairness

Table 4 presents the time average utility and the proportional

Table 4 Time average utility and proportional fairness.

fairness among threemethods. We observe that the proposed
method exhibits the highest time average utility of all meth-
ods. More precisely, the proposed scheme exhibits 1.46 and
5.08 times higher time average utilities compared with the
TOPSIS and random methods, respectively. The proposed
method has 6.5% and 35.2% higher proportional fairness
than the TOPSIS and random methods. This indicates that
the proposed method more fairly gives an opportunity for
mining to miners than the others. The 6.5% difference in
the proportional fairness may be negligible in the short term,
but not in the long term. This indicates that the proposed
method is a sophisticated strategy for mining task offload-
ing that aims to maximize the proportional fairness of the
long-term utility of each miner.

5.4 Scalability

Finally, we turn attention to the scalability. Figure 3(a) (resp.
Fig. 3(b)) illustrates the relationship between the number N
of miners (resp. the number M of CSPs) and the execution
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time. We confirm that the proposed and TOPSIS methods
experience an increase in the execution time with N and
M , respectively. In particular, the proposed method has
a higher increase ratio of execution time than the others.
However, we also confirm from Fig. 3(a) that the execution
time of the proposed method is 1254ms in case of N =
1000 and M = 10. In the mature PoW-based blockchain
network (i.e., Bitcoin), there are 18589 nodes distributed
across the world as of 28 Apr. 2024†. In particular, the top-3
countries (Germany, United States, and France) with their
respective number of reachable nodes have 1926, 1835, and
421 nodes, respectively. The proposed method can support
51.9% of reachable nodes in Germany (i.e., 1000 nodes)
within 1254ms.

6. Conclusion

In this paper, we have proposed the mining task offload-
ing strategy for the cloud service provider (CSP) selection
problem in decentralized applications (DApps) to maximize
the miner’s expected utility. More specifically, we have for-
mulated the CSP selection problem as the repeated stochas-
tic game such that coarse correlated equilibrium (CCE) is
achieved among miners. We have additionally developed the
online algorithm to efficiently solve the repeated stochastic
game with the assistance of the Lyapunov optimization and
drift-plus-penalty algorithm. Through the numerical exper-
iments, we have first confirmed how the controllable param-
eter of the drift-plus-penalty algorithm affects the time aver-
age utility and queue stability. Next, we have observed that
the proposed algorithm exhibits higher time average utility
and proportional fairness than the other methods. Finally,
we have demonstrated that the proposed algorithm works
well in an online fashion even when the number of miners
increases to a thousand.

Acknowledgments

This work was supported in part by the Japan Society for the
Promotion of Science (JSPS) Grant-in-Aid for Challenging
Research (Exploratory) under Grant 22K19776, the JSPS
KAKENHI (B) under Grant 24K02931, and the JSPS Grant-
in-Aid for Young Scientists under Grant 23K16869, Japan.

References

[1] K. Yamada, T. Hara, and S. Kasahara, “A repeated stochastic game
approach for offload mining in distributed applications in a permis-
sionless blockchain network,” Proc. International ConferenceEmerg-
ing Technologies for Communications, Nov. 2023.

[2] K. Yue, Y. Zhang, Y. Chen, Y. Li, L. Zhao, C. Rong, and L. Chen,
“A survey of decentralizing applications via blockchain: The 5G and
beyond perspective,” IEEE Commun. Surveys Tuts., vol.23, no.4,
pp.2191–2217, 2021.

[3] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When mobile
blockchain meets edge computing,” IEEE Commun. Mag., vol.56,
no.8, pp.33–39, Aug. 2018.

†https://bitnodes.io/

[4] K. Gai, J. Guo, L. Zhu, and S. Yu, “Blockchain meets cloud comput-
ing: A survey,” IEEECommun. Surveys Tuts., vol.22, no.3, pp.2009–
2030, 2020.

[5] Y. Jiao, P. Wang, D. Niyato, and K. Suankaewmanee, “Auction
mechanisms in cloud/fog computing resource allocation for pub-
lic blockchain networks,” IEEE Trans. Parallel Distrib. Syst., vol.30,
no.9, pp.1975–1989, Sept. 2019.

[6] K. Zhang, J. Cao, S. Leng, C. Shao, and Y. Zhang, “Mining task
offloading in mobile edge computing empowered blockchain,” Proc.
IEEE International Conference on Smart Internet of Things (Smar-
tIoT), pp.234–239, Aug. 2019.

[7] X. Liu, J. Wu, L. Chen, and C. Xia, “Efficient auction mecha-
nism for edge computing resource allocation in mobile blockchain,”
Proc. International Conference on High Performance Computing
and Communications; IEEE International Conference on Smart
City; IEEE International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp.871–876, Aug. 2019.

[8] H.Wu, K.Wolter, P. Jiao, Y.Deng, Y. Zhao, andM.Xu, “EEDTO:An
energy-efficient dynamic task offloading algorithm for blockchain-
enabled IoT-edge-cloud orchestrated computing,” IEEE Internet
Things J., vol.8, no.4, pp.2163–2176, Feb. 2021.

[9] L. Yang, M. Li, H. Zhang, H. Ji, M. Xiao, and X. Li, “Distributed
resource management for blockchain in fog-enabled IoT networks,”
IEEE Internet Things J., vol.8, no.4, pp.2330–2341, Feb. 2021.

[10] N.C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction
for edge computing resource management in mobile blockchain net-
works: A deep learning approach,” Proc. IEEE International Confer-
ence on Communications (ICC), pp.1–6, May 2018.

[11] T. Mai, H. Yao, N. Zhang, L. Xu, M. Guizani, and S. Guo, “Cloud
mining pool aided blockchain-enabled Internet of Things: An evolu-
tionary game approach,” IEEE Trans. Cloud Comput., vol.11, no.1,
pp.692–703, Jan. 2023.

[12] S. Jiang and J. Wu, “A game-theoretic approach to storage offloading
in PoC-based mobile blockchain mining,” Proc. International Sym-
posium on Theory, Algorithmic Foundations, and Protocol Design
for Mobile Networks and Mobile Computing, MOBIHOC’20, New
York, NY,USA, pp.171–180, Association for ComputingMachinery,
2020.

[13] M. Liu, F.R. Yu, Y. Teng, V.C.M. Leung, and M. Song, “Joint
computation offloading and content caching for wireless blockchain
networks,” Proc. IEEE Conference on Computer Communications
Workshops (INFOCOMWKSHPS), pp.517–522, April 2018.

[14] K. Moghaddasi and M. Masdari, “Blockchain-driven optimization
of IoT in mobile edge computing environment with deep reinforce-
ment learning and multi-criteria decision-making techniques,” Clus-
ter Comput., vol.27, pp.4385–4413, 2024.

[15] L.S. Shapley, “Stochastic games,” Proc. National Academy of Sci-
ences, vol.39, no.10, pp.1095–1100, Oct. 1953.

[16] M.J. Neely, “A Lyapunov optimization approach to repeated stochas-
tic games,” Proc. Annual Allerton Conference on Communication,
Control, and Computing, pp.1082–1089, Oct. 2013.

[17] X. Li, Q. Huang, and D. Wu, “A repeated stochastic game approach
for strategic network selection in heterogeneous networks,” Proc.
IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), Honolulu, HI, USA, pp.88–93, IEEE, April
2018.

[18] H. Moulin and J.P. Vial, “Strategically zero-sum games: The class
of games whose completely mixed equilibria cannot be improved
upon,” Int. J. Game Theory, vol.7, no.3-4, pp.201–221, Sept. 1978.

[19] M. Bowling and M. Veloso, “Multiagent learning using a variable
learning rate,” Artificial Intelligence, vol.136, no.2, pp.215–250,
April 2002.

[20] E. Wei and A. Ozdaglar, “Distributed alternating direction method
of multipliers,” Proc. IEEE Conference on Decision and Control
(CDC), pp.5445–5450, Feb. 2012.

[21] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learn-
ing with double Q-learning,” Proc. AAAI Conference on Artificial

https://doi.org/10.34385/proc.79.P1-6
https://doi.org/10.34385/proc.79.P1-6
https://doi.org/10.34385/proc.79.P1-6
https://doi.org/10.34385/proc.79.P1-6
http://dx.doi.org/10.1109/comst.2021.3115797
http://dx.doi.org/10.1109/comst.2021.3115797
http://dx.doi.org/10.1109/comst.2021.3115797
http://dx.doi.org/10.1109/comst.2021.3115797
http://dx.doi.org/10.1109/mcom.2018.1701095
http://dx.doi.org/10.1109/mcom.2018.1701095
http://dx.doi.org/10.1109/mcom.2018.1701095
https://bitnodes.io/
http://dx.doi.org/10.1109/comst.2020.2989392
http://dx.doi.org/10.1109/comst.2020.2989392
http://dx.doi.org/10.1109/comst.2020.2989392
http://dx.doi.org/10.1109/tpds.2019.2900238
http://dx.doi.org/10.1109/tpds.2019.2900238
http://dx.doi.org/10.1109/tpds.2019.2900238
http://dx.doi.org/10.1109/tpds.2019.2900238
http://dx.doi.org/10.1109/smartiot.2019.00043
http://dx.doi.org/10.1109/smartiot.2019.00043
http://dx.doi.org/10.1109/smartiot.2019.00043
http://dx.doi.org/10.1109/smartiot.2019.00043
http://dx.doi.org/10.1109/hpcc/smartcity/dss.2019.00127
http://dx.doi.org/10.1109/hpcc/smartcity/dss.2019.00127
http://dx.doi.org/10.1109/hpcc/smartcity/dss.2019.00127
http://dx.doi.org/10.1109/hpcc/smartcity/dss.2019.00127
http://dx.doi.org/10.1109/hpcc/smartcity/dss.2019.00127
http://dx.doi.org/10.1109/hpcc/smartcity/dss.2019.00127
http://dx.doi.org/10.1109/jiot.2020.3033521
http://dx.doi.org/10.1109/jiot.2020.3033521
http://dx.doi.org/10.1109/jiot.2020.3033521
http://dx.doi.org/10.1109/jiot.2020.3033521
http://dx.doi.org/10.1109/jiot.2020.3028071
http://dx.doi.org/10.1109/jiot.2020.3028071
http://dx.doi.org/10.1109/jiot.2020.3028071
http://dx.doi.org/10.1109/icc.2018.8422743
http://dx.doi.org/10.1109/icc.2018.8422743
http://dx.doi.org/10.1109/icc.2018.8422743
http://dx.doi.org/10.1109/icc.2018.8422743
http://dx.doi.org/10.1109/tcc.2021.3110965
http://dx.doi.org/10.1109/tcc.2021.3110965
http://dx.doi.org/10.1109/tcc.2021.3110965
http://dx.doi.org/10.1109/tcc.2021.3110965
http://dx.doi.org/10.1145/3397166.3409136
http://dx.doi.org/10.1145/3397166.3409136
http://dx.doi.org/10.1145/3397166.3409136
http://dx.doi.org/10.1145/3397166.3409136
http://dx.doi.org/10.1145/3397166.3409136
http://dx.doi.org/10.1145/3397166.3409136
http://dx.doi.org/10.1109/infcomw.2018.8406929
http://dx.doi.org/10.1109/infcomw.2018.8406929
http://dx.doi.org/10.1109/infcomw.2018.8406929
http://dx.doi.org/10.1109/infcomw.2018.8406929
https://doi.org/10.1007/s10586-023-04195-4
https://doi.org/10.1007/s10586-023-04195-4
https://doi.org/10.1007/s10586-023-04195-4
https://doi.org/10.1007/s10586-023-04195-4
http://dx.doi.org/10.1073/pnas.39.10.1953
http://dx.doi.org/10.1073/pnas.39.10.1953
http://dx.doi.org/10.1109/infcomw.2018.8406886
http://dx.doi.org/10.1109/infcomw.2018.8406886
http://dx.doi.org/10.1109/infcomw.2018.8406886
http://dx.doi.org/10.1109/infcomw.2018.8406886
http://dx.doi.org/10.1109/infcomw.2018.8406886
http://dx.doi.org/10.1007/bf01769190
http://dx.doi.org/10.1007/bf01769190
http://dx.doi.org/10.1007/bf01769190
http://dx.doi.org/10.1016/s0004-3702(02)00121-2
http://dx.doi.org/10.1016/s0004-3702(02)00121-2
http://dx.doi.org/10.1016/s0004-3702(02)00121-2
https://doi.org/10.1109/CDC.2012.6425904
https://doi.org/10.1109/CDC.2012.6425904
https://doi.org/10.1109/CDC.2012.6425904
http://dx.doi.org/10.1609/aaai.v30i1.10295
http://dx.doi.org/10.1609/aaai.v30i1.10295


944
IEICE TRANS. COMMUN., VOL.E107–B, NO.12 DECEMBER 2024

Intelligence, vol.30, no.1, March 2016.
[22] B. Uzun, M. Taiwo, A. Syidanova, and D. Uzun Ozsahin, “The tech-

nique for order of preference by similarity to ideal solution (topsis),”
Application of Multi-Criteria Decision Analysis in Environmental
and Civil Engineering, D. Uzun Ozsahin, H. Gökçekuş, B. Uzun,
and J. LaMoreaux, eds., Professional Practice in Earth Sciences,
pp.25–30, Springer International Publishing, Cham, 2021.

[23] Luxor Technology, “Network hashrate,” https://data.hashrateindex.
com/chart/bitcoin-network-hashrate/, 2023. Accessed 18 Oct. 2023.

[24] Luxor Technology, “Bitcoin mining asics|hashrateindex,” https://
hashrateindex.com/rigs/, 2023. Accessed 18 Oct. 2023.

[25] blockchain.com, “Blockchain.com,” https://www.blockchain.com/
explorer/assets/btc/, 2023. Accessed 18 Oct. 2023.

[26] M.J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems, Synthesis Lectures on
Learning, Networks, and Algorithms, Springer International Pub-
lishing, Cham, 2010.

[27] COIN-OR Foundation, “Ipopt,” https://github.com/coin-or/Ipopt/,
2023. Accessed 23 Dec. 2023.

[28] COIN-OR Foundation, “Cbc,” https://github.com/coin-or/Cbc/,
2023. Accessed 23 Dec. 2023.

Kota Yamada received the B.Ec. degree
from Hokkaido University, Hokkaido, Japan, in
2022 and the M.Eng. degree from Nara Institute
of Science andTechnology, Nara, Japan, in 2024.
His research interests include game-theoretic ap-
proaches.

Takanori Hara received the M.Eng. and
Ph.D. degrees fromNara Institute of Science and
Technology, Nara, Japan, in 2018 and 2021. He
is currently an Associate Professor with the Di-
vision of Information Science, Graduate School
of Science and Technology, Nara Institute of Sci-
ence and Technology, Japan. His research inter-
ests include AI/ML empowered networking, net-
work virtualization, eBPF/XDP, pedestrian nav-
igation, and game-theoretic approaches.

Shoji Kasahara received the B.Eng.,
M.Eng., and Dr. Eng. degrees from Kyoto Uni-
versity, Kyoto, Japan, in 1989, 1991, and 1996,
respectively. Currently, he is a Professor of Di-
vision of Information Science, Nara Institute of
Science and Technology, Nara, Japan. His re-
search interests include stochastic modeling and
analytics of large-scale complex systems based
on computer/communication networks.

http://dx.doi.org/10.1609/aaai.v30i1.10295
http://dx.doi.org/10.1609/aaai.v30i1.10295
http://dx.doi.org/10.1007/978-3-030-64765-0_4
http://dx.doi.org/10.1007/978-3-030-64765-0_4
http://dx.doi.org/10.1007/978-3-030-64765-0_4
http://dx.doi.org/10.1007/978-3-030-64765-0_4
http://dx.doi.org/10.1007/978-3-030-64765-0_4
http://dx.doi.org/10.1007/978-3-030-64765-0_4
https://data.hashrateindex.com/chart/bitcoin-network-hashrate/
https://data.hashrateindex.com/chart/bitcoin-network-hashrate/
https://hashrateindex.com/rigs/
https://hashrateindex.com/rigs/
https://www.blockchain.com/explorer/assets/btc/
https://www.blockchain.com/explorer/assets/btc/
http://dx.doi.org/10.1007/978-3-031-79995-2
http://dx.doi.org/10.1007/978-3-031-79995-2
http://dx.doi.org/10.1007/978-3-031-79995-2
http://dx.doi.org/10.1007/978-3-031-79995-2
https://github.com/coin-or/Ipopt/
https://github.com/coin-or/Ipopt/
https://github.com/coin-or/Cbc/
https://github.com/coin-or/Cbc/

