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SUMMARY Remote video monitoring over networks inevitably intro-
duces a certain degree of communication latency. Although numerous
studies have been conducted to reduce latency in network systems, achiev-
ing “zero-latency” is fundamentally impossible for video monitoring. To
address this issue, we investigate a practical method to compensate for la-
tency in video monitoring using video prediction techniques. We apply
the lightweight PredNet to predict future frames, and their image quali-
ties are evaluated through quantitative image quality metrics and subjective
assessment. The evaluation results suggest that for simple movements of
the robot arm, the prediction time to generate future frames can tolerate
up to 333 ms. The video prediction method is integrated into a remote
monitoring system, and its processing time is also evaluated. We define the
object-to-display latency for video monitoring and explore the potential for
realizing a zero-latency remote video monitoring system. The evaluation,
involving simultaneous capture of the robot arm’s movement and the display
of the remote monitoring system, confirms the feasibility of compensating
for the object-to-display latency of several hundred milliseconds by using
video prediction. Experimental results demonstrate that our approach can
function as a new compensation method for communication latency.

key words: video prediction, zero-latency, remote video monitoring, Pred-
Net, image quality, object-to-display latency

1. Introduction

Video surveillance and remote monitoring over networks
inevitably introduce a certain degree of latency in the trans-
mission of images. Use cases where transmission latency is
a problem, such as remote operation [2] and remote driving
control [3], are increasing, and reducing latency in video
monitoring has become a major issue.

Video monitoring over a network is influenced by sev-
eral latency factors, including camera acquisition, encoding,
network, decoding, and rendering [4]. Various studies have
proposed methods to reduce this “end-to-end” latency in dif-
ferent areas, such as efficient coding [5], packet management
of video data [6], and URLCC communications [7]. Al-
though combining these methods can achieve “low-latency”
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communication, it is not possible to achieve “zero-latency”.

In recent years, video prediction techniques have been
studied to predict future video frames [8], [9]. Although
there are still many challenges in predicting future frames
for complex video content, relatively accurate predictions
have been achieved under constant motion conditions, such
as in-vehicle camera videos [9].

In [10], frame extrapolation towards zero-latency video
transmission is evaluated. While this study reports that
100 ms of latency can be compensated, it does not provide in-
formation on the prediction processing time. A video predic-
tion method, MChnet, evaluated in [10], has a computational
efficiency of 500 GFLOPs, as analyzed in [11], which is sig-
nificantly larger than 65 GFLOPs of PredNet. In general, the
computational cost required for video prediction is high and
becomes impractical when the processing time exceeds the
prediction time. Zero-latency has also been discussed for
cloud gaming platforms [12]. The process handles complex
objects in high-resolution images, but it is not straightfor-
ward video prediction involving 3D block caching to reduce
artifacts and LSTM prediction for foreground objects. This
study suggests that 23 ms of latency can be compensated, but
processing takes 252.6 ms (n = 1) using a GPU, resulting in
processing time exceeding prediction time. In contrast to
these studies, we will implement real-time video prediction
to compensate for latency, including processing time.

Furthermore, these studies primarily evaluate image
quality using quantitative metrics, such as PSNR for predic-
tion frames, and did not confirm validity through subjective
assessment methods like the Mean Opinion Score [13].

Remote video monitoring involves additional latency
factors introduced by cameras and display devices [14]. Most
previous studies have focused on transmission latency in net-
works but did not consider latency of these devices [12]. We
extend the concept of communication latency to “object-
to-display latency,” which includes the latency of both the
camera and the display device. In [10], devices are con-
sidered as factors of latency, but it is not evaluated that the
actual latency can be compensated for by video prediction.
We verify that this total latency can be compensated using
video prediction through a prototype system.

In this paper, we identified video monitoring of remote
robot operations [15] as our initial target to investigate a
compensation method for the object-to-display latency using
video prediction. The contributions of this study can be
summarized as follows:

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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The concept of compensating for latency in video monitor-
ing is described in Sect. 2. The quality of prediction frames
is evaluated by quantitative image quality metrics and sub-
jective assessment to validate its effectiveness in Sect. 3. In
Sect. 4, we outline the prototype design of the remote mon-
itoring system utilizing real-time video prediction. Section
5 explains the processing time of the prototype system and
provides results for the compensation of the object-to-display
latency through video prediction.

2. Zero-Latency for Video Monitoring

2.1 Latency of Video Monitoring over Networks

Figure 1 shows an example of a configuration for video moni-
toring captured by a camera via a network. There are various
factors that contribute to transmission latency, including the
camera, capturing, encoding, the network, decoding, render-
ing display images, and the display device. As described
in Sect. 5, remote video monitoring systems have object-to-
display latency of several hundred milliseconds.

2.2 Compensation of Latency Using Video Prediction

To compensate the latency, we introduce a new approach
that involves adding video prediction to the video moni-
toring system, as shown in Fig.2. In this approach, video
prediction introduces additional latency (L8) due to pro-
cessing, but compensates for all latency by generating and

Input

(a) Configuration of one unit (b) Total configuration

Fig.3 Configuration of PredNet [9].

Future
frame

Current
frame

Past frames

Generating a future frame using a current frame and
past Nt frames

Fig.4  Process of PredNet to generate prediction frames.

displaying future frames. To predict future frames, machine-
learning techniques are applied. Numerous studies have pro-
posed video prediction methods [8], including the Predictive
Coding Network (PredNet) [9], which comprises multiple
interconnected stacked convolutional LSTM units, enabling
future frame prediction with a relatively simple configura-
tion as shown in Fig. 3. According to comparison results for
computational costs [11], PredNet is one of the lightweight
video prediction models with lower GFLOPs requirements,
making it suitable for real-time processing. In this study, we
employ PredNet as the video prediction method in the video
monitoring system to compensate communication latency.

As shown in Fig.4 and Eq. (1), PredNet utilizes the
current frame and the past N, frames, represented as
Inces INc-1,"+ s INc-Nt» tO generate a prediction frame for
the future frame number N, denoted as Inyc41:

€]

INes1 = fUNesIne=15  INe-N1)
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where, f(-) represents the function of PredNet.

As shown in Fig. 4, the prediction frame Ines) can be
compared to the ground truth frame /. for evaluation of
image quality.

3. Evaluation of Image Quality for Prediction Frames
3.1 Video Datasets for Evaluation

As shown in Fig. 5, two types of video datasets containing
simple periodic movements of a robot arm and a human arm
are prepared. These datasets consist of sequential images
captured at a rate of 30 frames per second (fps). The “CG”
dataset contains 74 video sequences, each comprising 1800
frames. Similarly, the “Real” dataset contains 41 video se-
quences, each comprising 1800 frames. Each frame is a
160x128 pixel RGB image. The video data in the “Real”
dataset are captured by using a USB video camera. The
“CG” dataset consists of a virtual robot arm operated by a
haptic device (Haption Virtuose 6D), as seen in the “Real”
dataset.

The moving and pause times of the arm vary depending
on the operator’s actions. The arm’s reciprocating movement
takes 5to 10 s, with a one-way movement time of about 1.5 s,
followed by a few seconds of pause at each end. The 1800
frames in one video sequence contain 9 to 10 reciprocating
motions. For the 3 fps data shown in Fig. 5, the movement
corresponds to 15 to 30 frames for a round trip and 4 to 5
frames for moving (as indicated by red squares).

To evaluate at various prediction intervals, the captured
30 fps video data are selected and converted to 6 fps, 3 fps,
2 fps, 1 fps video data that corresponds to prediction times of
167 ms, 333 ms, 500 ms, and 1 s, respectively. This conver-
sion creates ten evaluation datasets from two types of video
datasets, as shown in Table 1.

Using these datasets, future frames are predicted by
PredNet and compared to the corresponding ground truth
frames. We set the number of past frames, Nt = 8§, in
Eq.(1). For the training of PredNet, we select 72 video
sequences from the “CG” dataset and 39 sequences from the
“Real” dataset. The remaining video data from both datasets
are reserved for validation and evaluation purposes.

3.2 Evaluation of Quality by PSNR Metrics

Examples of prediction results are shown in Figs. 6 and 7.
The positions of the robot arm and the human arm in the pre-
diction frames, .41, closely approximate the correspond-
ing ground truth frame, In.+1. In contrast, the positions in
Iy differ from the ground truth frames. The comparison
between the prediction frame, Ines1, and the ground truth,
Inc+1, is based on the Peak Signal-to-Noise Ratio (PSNR)
metric using the OpenCV functions:

{MAX}?

PSNR=10"1
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(b) Dataset “Real”

Fig.5 Examples of sequences in datasets (converted to 3 fps from the
original 30-fps dataset). The frame transitions from upper left to lower
right. Frames with red rectangles indicate arm movements.

Table 1  Sequences and frames in datasets.
Sequence Sequence Sequence Number of frames
Datasets for training  for validation  for evaluation in one sequence
CG 1-fps 72 1 1 60
CG 2-fps 72 1 1 120
CG 3-fps 72 1 1 180
CG 6-fps 72 1 1 360
CG 30-fps 72 1 1 1800
Real 1-fps 39 1 1 60
Real 2-fps 39 1 1 120
Real 3-fps 39 1 1 180
Real 6-fps 39 1 1 360
Real 30-fps 39 1 1 1800
1 2 m-=1n-1
.. - 2
MSE = DD UGy - Ky (3)
3-mn £
h=0 i=0 j=

where M AX; is the maximum pixel value among the ground
truth I(i, j, h), K(i, j, h) represents a prediction frame, m and
n are the dimensions of images, and /4 is for three color RGB
channels.

Figure 8 illustrates average PSNR values of prediction
frames for one evaluation sequence across ten datasets. In
the case of the 3-fps dataset, the average PSNR is calcu-
lated by comparing the ground truth data to 171 prediction
frames. This is obtained by subtracting the number of previ-
ous frames needed for video prediction (N¢ = 8) and the last
frame without the next ground truth frame from the total 180
frames in one evaluation sequence. According to studies on
JPEG2000 [16], [17], the PSNR threshold for the minimum
quality requirement is established at 25 to 30 dB. The results
show that the PSNR is above 25dB for the 3-fps dataset
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Fig.6  Example of prediction frame (CG, 3-fps).
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Fig.7  Example of prediction frame (Real, 3-fps).
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Fig.8 PSNR values of prediction frames.

and above 30 dB for the 6-fps dataset that correspond to the
future prediction of 333 ms and 167 ms, respectively.

3.3 Evaluation of Quality by Subjective Assessment

We also evaluate prediction frames using subjective assess-
ment based on Mean Opinion Score (MOS) [13]. The eval-
uators rate the degree of “(a) total qualities”, “(b) position of
arms”, and “(c) blur of arms” on a five-point scale compris-
ing “5 (excellent)”, “4 (good)”, “3 (fair)”, “2 (poor)”, and “1
(bad)”. Sixteen individuals are selected as evaluators, and
their average MOS values are calculated. The evaluators
compare the ground truth data and prediction frames by sub-
sampling every 10 frames from the original prediction result
that is used for PSNR evaluation in Sect. 3.2. Sub-sampling
every 10 frames is employed because the total number of
frames in the sequence is too large for visual inspection.

Figures 9(a), (b), and (c) show results of three categories
for various datasets. In the case of setting a threshold of “4
(good)” in the MOS evaluation, the 3-fps datasets surpass
the threshold level in the “position” category and become
the borderline range in the “total” category. However, in the
“blur” category, the 3-fps datasets receive lower scores than
the threshold. These characteristics regarding positions and
blurs can be also observed in Figs. 6(c) and 7(c), where arm
positions are improved compared to the current frame, but
regions of the arms exhibit blurs.

Comparing the results with Fig. 8, we find that the value
of “4 (good)” is associated with PSNR values ranging from
25dB (by comparison with Fig.9(b)) to 35dB (by com-
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Fig.9 MOS assessment for prediction.

parison with Fig.9(c)). For the overall evaluation, we will
consider a PSNR of 30dB or higher to represent accept-
able image quality in subsequent sections, as indicated by
comparing Fig. 8 with Fig.9(a). Considered the evaluation
results are reasonable based on two different metrics, we will
continue to primarily use PSNR metrics in Sect. 4.

4. Real-Time Prediction for Video Monitoring Systems
4.1 System Configuration

We have integrated the video prediction function into the
video monitoring system, comprising a server equipped with
a USB camera and a client with a display device, as illustrated
in Fig. 10. The server program is developed using Python
3.9 on a PC (CPU: Intel Xeon E-2124, memory: 16 GB, OS:
Ubuntu 20.04). The USB camera captures images at 30 fps,
and the server selectively skips frames to convert frame rates
between 3 fps and 10 fps. The captured images are encoded
as JPEG data with a resolution of 640x512 pixels. The JPEG
image quality parameter in the OpenCV function is set to
80, resulting to an approximate 5% compression. A packet,
consisting of header data and a JPEG image, is transmitted
to the client PC through a TCP/IP socket connection. Clock
data for T1 and T2 in Fig. 10 are stored in the header data.
The client system is implemented on a PC (CPU: Intel
Core i7-9700, memory: 16 GB, OS: Ubuntu 20.04) equipped
with a GPU unit (NVIDIA GeForce RTX 2060, memory:
6 GB). The program is written in Python 3.9 to receive pack-
ets, decode JPEG images, generate future frames through
video prediction, and display the results. In PredNet, each
frame is converted into a 160x128 pixel RGB image and
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Fig.11  Detailed description of real-time prediction process.

accumulated through past frames, as shown in Fig.4. The
PredNet is implemented using Python with PyTorch 1.8.1
and CUDA 11.4 utilizing the GPU. Time data from T3 to T6
described in Fig. 10, are recorded to measure the processing
time of the client. The clocks of the two PCs are synchro-
nized via an NTP server, allowing the measurement of the
entire process time from T1 to T6.

Figures 11(a) and (b) illustrate the detailed operation of
the real-time prediction process. In Fig. 11(a), the predic-
tion buffer captures nine sequential frames and generates a
prediction frame labeled “10”, representing the future time
t, from the last frame labeled “09”.

After inputting the next frame, No.10, the prediction
buffer shifts by one frame and adds the newer frame to gen-
erate a prediction frame labeled “11”, as shown in Fig. 11(b).
The most straightforward setup involves setting the predic-
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Fig.12  Example of video dataset to capture the robot arm (3-fps).

Frame_Current frame __GT of future frame Prediction

Fig.13  Example results of video prediction (3-fps dataset).

tion time 1,,, to be the same as the frame interval #¢. In this
study, we examine this simple setup condition to explore the
possibilities of achieving zero-latency remote monitoring in
real-time.

4.2 Construction of Video Prediction Model

To construct a prediction model, training datasets are ob-
tained through the video monitoring system. We acquire 12
video sequences, which include simple periodic movements
of a robot arm (approximately two seconds for one swing),
as shown in Fig. 12. Each sequence consists of 1500 frames
of a 640x512 pixel RGB image captured at 30 fps. The 12
video sequences are divided into 10 data for training data,
one for validation, and one for evaluation.

The captured 30 fps video data is converted to 10 fps,
6 fps, Sfps, 3.75fps, 3 fps video data that corresponds to
prediction times of 100ms, 167 ms, 200 ms, 267 ms, and
333 ms, respectively, to build models for various predic-
tion times #,. The image quality of predictions using these
databases is assessed using the same methods explained in
Sect. 3.

Examples of predictions for 3-fps datasets are illustrated
in Fig. 13. In the ground truth (GT) frames, the arm moves to
the right in frames 0005 and 0006, comes to a stop and turns
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Table 2  Performances of prediction for moving robot arm.
Prediction PSNR for PSNR for
Datasets  time (ms)  current frames(dB)  prediction frames (dB)
3-fps 333 23.7 33.5
3.75-fps 267 24.5 345
5-fps 200 25.1 35.9
6-fps 167 25.7 36.1
10-fps 100 27.3 36.7
50
—— Current frame
45 Prediction
40
535 I : hdadndint o
e ' |
= 1
£ 25
20
15
10
20 40 60 80 100
frames
Fig.14  PSNR for current and prediction frames (3-fps dataset).

back in the frame 0007, and then moves to the left in frames
0008 and 0009. Red arrows indicate the positions of the arm,
and the ground truth data of future frames are almost one
frame ahead of the current frames. The prediction frames
exhibit some blurs, but its position is close to the ground
truth.

The average PSNRs compared with the ground truth are
shown in Table 2. The PSNRs for the prediction frames are
above 33.5dB, indicating an improvement of almost 10dB
compared to the current frames, which exceeds the quality
criterion of 30dB considered in Sect.3.3. Although the
objects and movements differ from those in the datasets of
Sect. 3, the image quality is considered satisfactory. Based
on these results, it is possible to apply the 333 ms video
prediction with a PSNR of more than 30 dB for this subject.
The PSNR decreases as the frame rate decreases and this
trend is the same as results in in Sect. 3.

Figure 14 illustrates the PSNR transition for each frame
in the 3-fps data set. The orange line in Fig. 14 represents
PSNR values for the prediction frames compared with the
ground truth. Conversely, the blue line indicates the PSNR
values for the current frames compared with the ground
truth. The prediction frames achieve higher PSNR (average
33.5dB) compared to the current frames (average 23.7 dB).
Notably, the higher PSNR values in the blue line correspond
to situations when the arm has come to a stop position in the
swing motion (see frames 0007 and 0010 in Fig. 13).

5. Evaluation of Remote Monitoring System with Video
Prediction

5.1 Processing Time of Video Monitoring System

The remote monitoring system with video prediction in
Fig. 10 is evaluated by using live input from USB camera is
to assess the object-to-display latency. The object-to-display
latency corresponds to the latency from TO to T7 in Fig. 10.
We also use the robot arm shown in Fig. 12 as the object for
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Table 3  Processing times for (T1-T2), (T2-T3) and (T4-T5).
Processing Input video rate
time 3fps  3.75fps Sfps 6fps 10fps

T1-T2 Mean (ms)  47.8 16.3 54.7 54.1 53.5

. SD (ms) 7.0 7.1 2.6 1.9 1.3
T2-T3 Mean (ms) 6.5 12.5 7.9 22.6 26.5

g SD (ms) 12.9 17.0 145 228 17.8
T4-T5 Mean (ms)  66.8 93.0 774 713 63.6

SD (ms) 17.5 35.0 303 36.2 37.2

measuring the object-to-display latency. The USB camera
is installed in the same arrangement as during the capture of
training datasets. The frame rates of the input are controlled
at 3 fps, 3.75 fps, 5 fps, 6 fps, and 10 fps. Prediction models
trained by 3-fps, 3.75-fps, 5-fps, 6-fps, and 10-fps datasets
are selected to match the respective input frame rates.

Average process times from T1 to T6 are illustrated in
Fig. 15. The time data from T1 to T6 corresponds to Fig. 10
and represent the average of 100 samples from the log file
of the client program. T1 and T2 values are embedded in
packet data from the server and transferred to the client. The
total process times, including both the server and the client,
are less than 160 ms for each input video rate. The major
portions of the processing time correspond to video capture
and encoding (T1-T2) of the server and prediction (T4-T5)
of the client. The process time for packet transfer (T2-
T3) increases with the frame rate. The client’s processing
time, measured from T2 to T6 for the 10 fps video input, is
calculated as an average of 99.0 ms that is shorter than the
frame interval of 10fps videos. Based on these results, it
can be concluded that this prototype system is capable of
real-time processing for video inputs up to 10 fps.

In Fig. 15, some intervals exhibit variation across the
five input video rates. The mean and standard deviation
(SD) of the processing times for (T1-T2), (T2-T3), and (T4-
TS) are shown in Table 3. The (T1-T2) interval represents
the time from reading data from the USB camera to the end
of encoding. It has been observed that the (T1-T2) varies
over multiple trials, irrespective of the video rate. These
variations are considered to be due to asynchronous time
control between the camera and processing in the server.
The (T2-T3) interval is thought to be affected by frame rates
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and fluctuations in network latency, which range up to 30 ms
as observed using the ping command in Linux, between
the server and the client. The (T4-T5) interval corresponds
to video prediction processes, which exhibit large standard
deviations as shown in Table 3, and the mean time may
also vary. The variation in latency is caused by different
conditions and needs to be adapted to in practical systems.

5.2 Measurement of Object-to-Display Latency

To measure the total latency of remote video monitoring,
analyzing data from T1 to T6 in Fig. 15 is not sufficient. The
actual latency for an operator should be defined as object-to-
display latency, corresponding to from TO to T7 in Fig. 10,
where the latencies of the camera (TO to T1) and the display
device (T6 to T7) are always unknown.

We employ an observation camera (GoPro HERO11,
30 fps) to measure the object-to-display latency. The client’s
display device is positioned on the desk next to the object
(robot arm), and the observation camera captures both areas,
as depicted in Fig. 16(a). The object-to-display latency is
determined by analyzing 30 fps frames from the observation
camera and counting the frame numbers at the right turning
point of the robot arm movement.

An example of images captured by the observation cam-
era is shown in Fig. 16(b). Figure 16(b) illustrates three
targets: (i) the object, (ii) the received frame with latency,
and (iii) the prediction frame. The frames reaching the right
turning point are measured through the operator’s visual in-
spection for ten samples. The difference in frame numbers
from (i) to (ii) corresponds to the actual object-to-display
latency (L), and the difference in frame numbers from (i) to
(iii) indicates the compensated latency by video prediction
(Lp)-

Table 4 shows the measurement results of the object-to-
display latency for five different capture rates in the server.
The object-to-display latency is calculated by averaging ten
measurements of the difference in frame numbers (D) and
then multiplying by the frame interval of the observation
camera (1/30s). The object movement is consistent with the
training data conditions, which were selected as the predic-
tion model for the given capture rate. The prediction time
t,, is defined by the frame rates of the database, as shown in
Fig. 11.

The object-to-display latency of received frames with-
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Table 4  Object-to-display latency for moving robot arm. Dy means
difference of frame numbers. L, also includes prediction process times.
Input Prediction Model Average Object-to-display latency Compen-
video Train- Predict- (i) to (i) (1) to (iii) sation
rate ing iontime | Received frame | Prediction frame | L, — Lp
(fps) dataset tp (ms) Dy | Ly (ms) | Dy Ly, (ms) (ms)
3 3-fps 333 6.9 230.0 -3.6 -120.0 350.0
375 | 3.75-fps 267 9.9 330.0 1.1 36.7 293.3
5 5-fps 200 49 163.3 -0.9 -30.0 193.3
6 6-fps 167 6.4 213.3 1.4 46.7 166.7
10 10-fps 100 6.3 210.0 2.8 93.3 116.7

out prediction, L, varies from 163.3 ms in the 5-fps dataset
to 330.0ms in the 3.75-fps dataset. The object-to-display
latency of prediction frames L; becomes lower than that
of received frames, from —120.0 ms to 93.3 ms, approach-
ing L, —t,. The presence of negative latency for predic-
tion frames indicates that our approach has the potential to
achieve zero-latency. If the prediction time 7, is small rela-
tive to the latency L, as in the case of an input video rate of
10 fps, the effect of compensation is small.

To compare with conventional remote monitoring sys-
tems, the processing time of video prediction should be ex-
cluded from the results. For instance, the latency of 230 ms
in the 3 fps input includes the processing time for video pre-
diction of approximately 70 ms; the object-to-display latency
of the conventional remote monitoring system is estimated
as 160 ms. The prediction time of the video prediction pro-
cess 1, which accounts for this additional processing time, 7,
compensates for the object-to-display latency L, including
the latency of the conventional system and this processing
time itself. If relationship of times as ¢, > 1,,, applying video
prediction should be avoided.

Figure 16(b) is an example image of the observation
camera captured when the robot arm reached the right turn-
ing point. In this example, the arm is in motion in the
received frame (ii), while the prediction frame (iii) stops at
the right turning point.

6. Discussions

Based on the results of this study, we can demonstrate the
feasibility of achieving “zero-latency” remote monitoring by
using video prediction. We developed real-time video pre-
diction with buffer control mechanisms as shown in Fig. 11
and confirmed the possibility of compensating for the object-
to-display latency, including the processing time for video
prediction itself, which had not been considered in previous
studies [10], [12]. The experimental results for the input
video rate of 3 fps indicate that the object-to-display latency,
approximately 160 ms (derived from subtracting 66.8 ms of
the (T4-T5) interval in Table 3 from 230 ms of La in Table 4),
can be compensated using video prediction of up to 333 ms.

In the prototype system, the prediction time ¢, is fixed
according to the interval time #; as illustrated in Fig. 11. As
latency varies with conditions, compensation for the latency
using video prediction results in both positive and negative
variations, as shown in Table 4. If the prediction time #,, can
be set larger than the total latency, as seen in the cases of
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inputting video rates 3 fps and 5 fps in Table 4, the object-
to-display latency becomes zero by controlling the display
timing using buffers, as shown in function #A of Fig. 17.

According to the configuration of Fig. 11, if the predic-
tion time 7, is increased, the frame rate must be set lower.
However, a lower frame rate for the video will result in lower-
quality remote monitoring. For high frame rates, it is pos-
sible to have the system predict future video several frames
ahead, but this would require a large prediction buffer to
capture movements and increase computational costs. To
address this issue, 7, and 7y can be independently set by
arranging the configuration of prediction buffers. The func-
tion #B in Fig. 17 illustrates an example that implements two
prediction buffers to accommodate higher frame rates.

In this experiment, the latency in the network between
the server and the client is less than 25 ms, as indicated by
“T2-T3” in Fig. 15. Although this latency may vary depend-
ing on the distance and conditions of networks, it can also
be compensated for using video prediction. If a larger la-
tency needs to be accommodated, the prediction time can be
increased by incorporating state-of-the-art video prediction
algorithms and leveraging greater computational resources.

We have confirmed that the use of prediction frames
results in higher PSNR values than using frames with la-
tency. However, there are still image blurs present. Further
improvements in image quality can be achieved by using the
updated version of PredNet [18] and other state-of-the-art
methods [8].

In this study, simple robot arm movements were targeted
for monitoring. However, for broader applications, it is es-
sential to focus on more complex movements. We believe
that addressing this challenge can be also achieved by in-
corporating state-of-the-art video prediction algorithms. In
such future scenarios, we anticipate that the framework for
implementing video prediction will remain consistent with
the remote monitoring system considered in this study.

7. Conclusion

We have investigated a practical method to compensate com-
munication latency in the video monitoring system by using
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video prediction techniques. The prediction frames demon-
strate higher PSNR and MOS values in the 167 ms prediction
for two different video datasets, and higher PSNR in the 333
ms prediction for the simple movement of the robot arm.
Implementation in the actual video monitoring system has
indicated the potential of real-time processing to compen-
sate communication latency using video prediction. The
experimental results demonstrate that the object-to-display
latency, which includes network latency as well as latency
of devices (cameras and displays) and processing times (en-
coding, decoding, and video prediction), can be compen-
sated using video prediction. Regarding the buffer control
mechanism used to achieve real-time processing, we also
considered a buffer mechanism for time adjustment to cope
with variations in latency as a future concept. The next step
is to study effective applications of online video systems that
achieve “zero-latency” using video prediction, which can
handle more complex motion.
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