
IEICE TRANS. ELECTRON., VOL.E104–C, NO.7 JULY 2021
319

PAPER Special Section on Solid-State Circuit Design — Architecture, Circuit, Device and Design Methodology

SLIT: An Energy-Efficient Reconfigurable Hardware Architecture
for Deep Convolutional Neural Networks

Thi Diem TRAN†a), Nonmember and Yasuhiko NAKASHIMA†, Fellow

SUMMARY Convolutional neural networks (CNNs) have dominated a
range of applications, from advanced manufacturing to autonomous cars.
For energy cost-efficiency, developing low-power hardware for CNNs is
a research trend. Due to the large input size, the first few convolutional
layers generally consume most latency and hardware resources on hard-
ware design. To address these challenges, this paper proposes an innova-
tive architecture named SLIT to extract feature maps and reconstruct the
first few layers on CNNs. In this reconstruction approach, total multiply-
accumulate operations are eliminated on the first layers. We evaluate new
topology with MNIST, CIFAR, SVHN, and ImageNet datasets on image
classification application. Latency and hardware resources of the inference
step are evaluated on the chip ZC7Z020-1CLG484C FPGA with Lenet-5
and VGG schemes. On the Lenet-5 scheme, our architecture reduces 39%
of latency and 70% of hardware resources with a 0.456 W power consump-
tion compared to previous works. Even though the VGG models perform
with a 10% reduction in hardware resources and latency, we hope our over-
all results will potentially give a new impetus for future studies to reach
a higher optimization on hardware design. Notably, the SLIT architecture
efficiently merges with most popular CNNs at a slightly sacrificing accu-
racy of a factor of 0.27% on MNIST, ranging from 0.5% to 1.5% on CI-
FAR, approximately 2.2% on ImageNet, and remaining the same on SVHN
databases.
key words: primary visual cortex, image classification, convolutional neu-
ral network, hardware architecture, FPGA, feature extraction

1. Introduction

Convolutional neural networks (CNNs) have many promi-
nent applications with superior results such as object de-
tection, image classification, robot vision [1]–[3]. However,
their complicated network architecture and power consump-
tion, which have adverse influences on latency and required
accuracy, have posed many challenges. The CNNs use the
forward stage for inference and the feed-backward stage for
training. Training of deep networks often requires signif-
icant resource, energy, and computation time. Many au-
thors have chosen the off-line training for CNNs in practical
applications or used the trained model to perform acceler-
ators [4], [5]. How to speed up the feed-backward perfor-
mance and the feed-forward stage is a critical concern on
CNN. In other words, it is desirable to seek an efficient opti-
mization methodology, which can guarantee accuracy with
the least loss.

Manuscript received May 28, 2020.
Manuscript revised November 7, 2020.
Manuscript publicized December 18, 2020.
†The authors are with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, Ikoma-shi, 630–
0192 Japan.

a) E-mail: tran.thi diem.tl4@is.naist.jp
DOI: 10.1587/transele.2020CDP0002

Researchers have investigated to optimize memory ac-
cess or convolution operations. Recent works showed that
the sparsity optimization that involved pruning and exploit-
ing activation sparsity could reduce 89% of memory access
and 67% of computation operations [6]. Activation sparsity
can cut memory accesses and multiply-accumulate (MAC)
operations by a half [7] based on rectified linear unit non-
linearity to produce many zero outputs. The pruning and
compression were also investigated with the Bayesian net-
work. These reductions have nevertheless required the hard-
ware that was customized with the data movement and con-
trol. The reducing parameter approaches [8], [9] with a fac-
tor of 50× were studied due to the expense of many MAC
operations. The low-rank approximation (LRA) that ob-
tained a sparse convolution 2× - 4.5× faster than the corre-
sponding value at the absence of sparsity with a 1% accuracy
loss was reported by Denton et al. [10]. Due to a large num-
ber of hyper-parameters, the LRA has remained to be a big
problem in training. The bit-width optimization that aims to
decrease the bit-width of parameters from a floating-point to
a fixed point is another approach. This investigation reduced
the precision to get higher efficiency in exchange for mem-
ory access and computation operations. Ternary weight net-
work and BinaryConnect [11], [12] are examples of the bit-
width reduction of weights to 2-bits or 1-bit. Some studies
also quantized the activation function of the neural network,
which achieved a significant reduction in memory or com-
putation cost [13], [14]. These proposals nevertheless were
a trade-off for a considerable accuracy loss. As a result, the
gain of compact network architecture is the loss of accuracy.

The main challenges in using CNNs are latency and
memory access [15], [16], due to tens to hundreds of
megabyte parameters and operations which require data
movement between on-chip and off-chip to support the com-
putation. In edge applications such as smart sensors, wear-
able and autonomous devices, security and latency are im-
portant considerations [17], [18]. We have recently surveyed
the performance of state-of-the-art CNNs in terms of accu-
racy, size, and potentiality of various hardware platforms.
The results reveal a gap between the designers who strike for
comprehensive CNNs with better efficiency and the hard-
ware architects who try to simplify them [19], [20]. Many
researchers have attempted to speed up the CNN perfor-
mance by using graphical processing units (GPU) [21], [22];
yet, the power consumption on GPU remains a critical is-
sue. Moreover, the computation is subject to rigorous area
and power constraints in the inference stage due to the lim-

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers

320
IEICE TRANS. ELECTRON., VOL.E104–C, NO.7 JULY 2021

ited available resources. Therefore, many data scientists are
focusing on increasing inference performance by designing
various accelerators.

Field Programmable Gate Arrays (FPGAs) have be-
come the best candidate for the trade-off of cost, flexibility,
and performance in deep learning processor designs [23].
FPGAs are suitable for computationally intensive algo-
rithms that result in a faster speed and efficient energy. A
few highlights of these approaches include parameter re-
duction, binary weight quantization, memory bandwidth op-
timization, and data-flow optimization [24]–[27]. A highly
flexible architecture that can mold itself into the given CNNs
and achieve a higher resource utilization reduction is essen-
tial. Moreover, due to the large input size, the first few lay-
ers that typically contribute to the most significant latency
on CNN leave a plenty of room for improvement.

This paper proposes an innovative algorithm for fea-
ture extraction and reconfigures some first few layers on
CNNs. According to the results, this method proves la-
tency, hardware resources, power consumption, and train-
ing time reduction on the conventional CNNs for image
classification application. Accuracy and performance are
evaluated by using the MNIST [28], SVHN [29], CIFAR-10,
CIFAR-100 [30], and ImageNet [31] databases with Lenet-5
and VGG models. The proposal achieves a 39% reduction
in latency and a factor of 50% hardware resource deduc-
tion on the IP core for the Lenet-5 model compared to the
works [32], [33] by using the Vivado HLS tool. Our acceler-
ator also decreases 70% area at a 0.456 W power consump-
tion, which is less than Refs. [34]–[36] on the chip ZC7Z020
FPGA. Furthermore, the training time is decreased by 40%,
40% and 32%, corresponding with MNIST, CIFAR, and
SVHN datasets on Lenet-5 and CNN models. It also re-
duces by approximately 10% on VGG architectures with the
CIFAR database. In summary, our research makes the fol-
lowing contributions.

• A new efficient topology to extract features of input
data in the deep neural network is proposed. We have
successfully demonstrated how to replace this method
for the first few layers on CNNs.

• A new re-configurable CNN for the Lenet-5 and VGG
models in image classification application is proposed
and evaluated on MNIST, CIFAR-10, CIFAR-100, Im-
ageNet and SVHN datasets.

• We have succeeded in removing convolution opera-
tions in the first few layers, which take much latency
on CNNs as a bottleneck when implementing CNNs
on the hardware platform.

• A hardware architecture with high speed and efficiency
energy for the inference phase of the deep neural net-
work is demonstrated.

The rest of this paper is arranged as follows: Sect. 2 reviews
the preliminary convolutional neural network. In Sect. 3, the
proposed architectures are presented. The methodologies of
the verification are manifested in Sect. 4. In Sect. 5, the re-
sults of the software and hardware proposal are investigated.

Finally, the report is wrapped up with our future research
plan in Sect. 6.

2. Preliminary Convolutional Neural Network

Through development over 20 years, the network that was
initially inspired by neuroscience has attracted spacious at-
tention in such fields as image processing and computer
science [37]–[39]. Today, some object recognition systems
based on CNN can recognize objects with super-human ac-
curacy. CNN perceives an object through the feature ex-
traction step and the classification phase. In Fig. 1, the fea-
ture extraction step including the convolutional and sub-
sampling layers is a part to find variances of an input image
such as lines and edges. The classification phase combin-
ing the fully-connected (FC) layers decides the most likely
class object based on the extracted features. Using the con-
volutional (CONV), sub-sampling, and FC layers, CNN can
achieve a highly accurate classification.

The CONV layer receives features as input and per-
forms convolution operation with a filter kernel window to
generate one pixel in one output feature map. The output
channels are filtered through an activation function such as
Relu, Sigmoid, and Tanh. Total output feature maps form
a set of the input channels for the next CONV layer. Sum-
mary of the process which calculates one output channel is
formulated in Eq. (1).

Ok
j = f (Σi∈MIk−1

i ∗Wk
i j + bk

j) (1)

where Ok
j is the current output of the jth channel at kth layer,

Ik−1
i is the previous feature map of the ith channel in M input

channels, W is the i jth kernel filter, bk
j is corresponding the

bias of the jth channel, f is the activation function, and the
symbol “∗” is the element-wise multiplication operation.

The sub-sampling layer or the pooling layer is gener-
ally sandwiched between two CONV layers. The pooling
layer reduces the size of feature maps from the previous
layer. Besides, this layer is employed to avoid the over-
fitting problem and redundancy in the channels. There are
two main pooling methods: mean-pooling and max-pooling.
The output of the max-pooling (MP) layer is determined by
using Eq. (2).

um
i, j = max

0<=i, j∈P
un

(i,P+i),(j,P+ j) (2)

where um is the max output value in the kernel size P of the
mth channel, the un is input value in the kernel size P.

Fig. 1 The general CNN architecture

TRAN and NAKASHIMA: SLIT: AN ENERGY-EFFICIENT RECONFIGURABLE HARDWARE ARCHITECTURE FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
321

Algorithm 1 Laplacian filter
1: for i = 1 toN do
2: for j = 1 toN do
3: c[0]← in[i − 1][j]
4: c[1]← in[i][j − 1]
5: c[2]← in[i][j]
6: c[3]← in[i][j + 1]
7: c[4]← in[i + 1][j]
8: d← (c[2] ∗ 4 − (c[0] + c[1] + c[3] + c[4]))
9: out[i][j] = d < threshold?0 : 255

10: end for
11: end for

The FC layers that control object classification into var-
ious categories in CNNs are conjoined after multiple con-
volutional and sub-sampling layers. The term “fully con-
nected” means that all neurons in the previous layer are con-
nected to all neurons in the next layer. For example, the last
layer of the Lenet-5 for classifying the MNIST database has
ten possible outputs, and each output corresponds to a num-
ber from “0” to “9”. A neuron output Vout

k in the FC layer is
obtained by using Eq. (3). It is a typical matrix multiplica-
tion and addition with a bias.

Vout
k = ΣN

i=0Wki × Vin
i + biask (3)

where Wki is weights corresponding with N input neurons
at kth position, Vin

i is the total neurons of the previous layer,
and biask is the bias of kth output neuron.

3. Proposed Design Optimization

Creating a paradigm that reduces most hardware resources
and computation time in the first layers on CNNs without
cutting accuracy is the aim of our proposal. We propose an
innovative feature extraction layer of data inputs named the
SLIT layer to approach this aim. Besides replacing the first
CONV layer on CNNs, this layer also conveys a creative al-
ternative to optimize some next layers. Guaranteeing accu-
racy at allowing threshold, increasing speed, and enhancing
convergence are the robust features of this layer.

3.1 Motivation

The proof-of-concept of replacing the first few layers on
CNNs is inspired via the primary visual cortex princi-
ple [40], [41]. Edge detection plays a vital role in feature
extraction. To reach the goal of replacing the first layer on
CNNs, we use a filter kernel based on the Laplacian filter to
execute edge detection. Algorithm 1 illustrates what we are
going to use in our proposal. A 3×3 window is sliced on the
N×N image to obtain the result d. Then the edge output is
taken by comparing d with a threshold. There is an edge if
d value is larger than the threshold; otherwise, it is no edge.
After experimenting, we choose 30 as the value threshold to
gain the best accuracy.

We propose the shift circuit in a range of 0◦ to 157.5◦
with a gradual increase every 22.5◦ in the 4×4 window, as

Fig. 2 The SLIT detection with a 4×4 window

Algorithm 2 SLIT layer
1: for i = 1 toN − 1 do
2: for j = 1 toN − 1 do
3: for k = −1 to 3 do
4: for l = −1 to 3 do
5: edge[k + 1][l + 1]← in[i + k][j + l]
6: end for
7: end for
8: db[0]← edge[1][0]&edge[1][1]&edge[1][2]&
9: edge[1][3]&1

10:
11: db[7]← edge[1][0]&edge[1][1]&edge[2][2]&
12: edge[2][3]&1
13: for k = 0 to 7 do
14: out[k][i][j]← db[k]
15: end for
16: end for
17: end for

shown in Fig. 2 [42]. The results of SLIT detection execute
at the base of edge detection. The output channel chk result-
ing from the AND function of input edge values at examin-
ing slope is computed by applying Eq. (4). Each element is
1-bit, and the output values are 8-bits equivalent to the in-
put values. Concatenating ch0 to ch7, we get eight extracted
feature maps to form the SLIT layer.

chk = AND(Σ3
i=0Σ

3
j=0θi, j) (4)

where θ is a steady increase every 22.5◦, θi, j is the values at
examining slope θ in the 4×4 window.

3.2 SLIT Layer Architecture

In many CNNs such as VGG, MobileNet, ResNet, or
GoogleNet, the CONV layer is always the first layer. This
layer typically performs a whole number of sliding convo-
lution operations due to the largest input size. The first
layer requires much computation time when being com-
pared with other layers. In the CONV layer, with a num-
ber of input channels (ICs) and the K×K filters, there com-
pute six consecutive loops for producing output channels

322
IEICE TRANS. ELECTRON., VOL.E104–C, NO.7 JULY 2021

Fig. 3 The proposed SLIT layer

(OCs) in the traditional approach. In contrast, the proposed
SLIT layer presented in Algorithm 2 contains only four con-
tinuous loops. Figure 3 (a) explains how to calculate the
first CONV layer with the traditional approach. The first
CONV layer with an M×M input image is convoluted with
ICs×K×K×OCs kernel filters to yield N×N×OCs output
channels. Subsequently, the Relu activation function is em-
ployed to normalize the output values into a range between
0 and 1. In Fig. 3 (b), to obtain N×N×OCs output feature
maps like the first CONV layer, we leverage the SLIT layer,
as explained beforehand in the motivation section. Due to
the binary output, the activation function is discarded after
the SLIT layer.

In comparison with the first CONV layer on the orig-
inal CNNs, the MAC operation and activation function are
eliminated in the proposal. Each input is reused across all
filters of different output channels within the same layer in
the CONV layer. Therefore, storing memory and power
consumption have become enormous. On the other hand,
since there are no parameters required for the SLIT layer
during the training phase and inference step, memory ac-
cess and latency are significantly reduced in the proposal.
The normalization step for inputs, which are divided by 255,
is also ignored in our idea. We only use the Shift, AND,
and comparator operations to extract feature maps. Con-
sequently, our approach decreases many resources, latency,
and energy. Total parameters (params) are presented in
Eq. (5), and MAC operations (MACs) are shown in Eq. (6)
are ricocheted in the way that reconstructs with the SLIT
layer.

params = C in × K × K ×C out (5)

where C in is the number of input channel, K is the size of
kernel filter and C out is the number of output channel.

Fig. 4 The proposed kernel for the second layer

Fig. 5 The proposed max pooling kernel

MACs = C in × K × K × N in × N in ×C out (6)

where C in is the number of the input channel, K is the size
of kernel filter, N in is the dimension of output channel, and
C out is the number of output channel.

3.3 Next Layer Reconfiguration

Due to the binary output of the SLIT layer, we propose a
new scheme to reconfigure the second CONV, max-pooling
(MP), and fully connected (FC) layers. We name SCONV,
SMP, and SFC layers for the proposed second CONV, MP,
and FC layers. MAC operations also occupy most compu-
tation time in the second CONV layer, directly following
the first CONV layer on CNN. Many works have been in-
vestigated to optimize MAC operations, such as using XOR
functions [13]. In contrast, we suggest the architecture that
employs multiplexer (MUX) operation to determine output
feature maps for the second CONV layer. In Fig. 4 (a), we
illustrate the process with a 3×3 kernel filter. To receive the
second CONV output channel, there require 9 multiplica-
tion operations. On the other hand, our proposal only uses
9 MUX operations to generate a feature map for the second
CONV layer showed in Fig. 4 (b).

Our proposal excretes all or a part of multiplication op-
erations in the second CONV layer. First, the complete re-
placement will affect the situation if the SLIT layer only
generates eight binary output feature maps in which the in-
put image has one channel like the MINST database. Sec-
ond, a part of the replacement will take place when the input
image has three channels, such as CIFAR, SVHN, or Ima-
geNet database. The SLIT layer yields 11 channels by con-
catenating eight binary output feature maps of SLIT func-
tion with three original channels normalized in range 0 and
1. In this case, output channels of the second CONV layer
are determined by concatenating eight binary output chan-
nels of the SLIT layer with three feature maps of the nor-
malized input image.

The max-pooling (MP) layer mentioned in Fig. 5 is

TRAN and NAKASHIMA: SLIT: AN ENERGY-EFFICIENT RECONFIGURABLE HARDWARE ARCHITECTURE FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
323

Fig. 7 The proposed Lenet-5 and VGG model

Fig. 6 The proposed model of a neuron

optimized by utilizing an OR gate to determine maximum
value. Figure 5 (a) reveals that at least three comparator op-
erations are required to detect the maximum value in the
2×2 window at a stride of 2 with the conventional approach.
In contrast, our proposed circuit showed in Fig. 5 (b) only
uses the OR gate to estimate the maximum value for the MP
layer. Assuming that there have eight 14×14 output chan-
nels from the previous layer, a total of 14×14×3×8 = 4704
comparator operations are expected by applying Eq. (7). On
the other hand, our proposal demands 14×14×8 = 1568 OR
gates with four inputs.

Comp = N × N × (K × K − 1) ×Cout (7)

where Comp is total comparator operations required to de-
termine the maximum value, N is the size of the previous
channel, K is the kernel size, and Cout is the number of out-
put channels.

The FC proposed layer is affected by a model that con-
solidates the previous CONV layer and an MP layer. The
basic information processing unit of one neural in the arti-
ficial network is demonstrated in Fig. 6 (a). The inputs are
multiplied with corresponding weights, and then outcomes
are added with a bias. Figure 6 (b) shows the matrix multi-
plication replaced by the MUX operations, where the weight
values are one. Equation (8) defines the entire multiplication
operations, which occupy most time consumption in the FC,
are reduced by the multiplexer operations. Assume that we
have 1024 input neurons and 1024 output neurons; by using
Eq. (8), the entire 1024×1024 = 1M multiplication opera-
tions are pruned.

Muls = Num in × Num out (8)

where Muls is total multiplication operation to calculate one

output. Num in is the entire input neurons and Num out is
the whole output neurons.

3.4 Complete Proposed System

This section demonstrates how to reconstruct the first two
layers and the first three layers of our proposal in practi-
cal applications. We choose the Lenet-5 that combines one
CONV +MP + another CONV layers in the model to mani-
fest how to reconfigure with SLIT + SMP + SCONV layers.
In Fig. 7 (a), we replace the CONV + MP + CONV layers
with SLIT + SMP + SCONV layers. The remaining layers
stay the same as the original model. Figure 7 (b) shows how
to reconfigure the first two CONV layers that occur in some
famous models such as VGG-16, VGG-19. These models
include two CONV layers before the MP layer. In this fash-
ion, the first two CONV layers are changed by SLIT and
SCONV layers.

4. Experimental Setup

In this section, we investigate the utilization of the SLIT
layer in various models. We conduct extensive experiments
on the standard Lenet-5, VGG-16, and VGG-19 prototypes
with the MNIST, SVHN, CIFAR-10, CIFAR-100, and Im-
ageNet datasets. We use Tensorflow, Keras, and Pytorch
platforms to build the models. Training time and accu-
racy of the MNIST, CIFAR, and SVHN databases are an-
alyzed by using the Intel(R) Core(TM) i7-3970X CPU @
3.50GHz. We use the GeForce GTX 1080 for training
the ImageNet dataset. To determine hyper-parameter val-
ues in our model, we first train the examining database
on the traditional model to estimate the hyper-parameters
at an acceptable accuracy like benchmarks. Then, dur-
ing the training phase of the proposed model, we increase
or decrease appropriately the value of the reference hyper-
parameters extracted from the conventional model. Finally,
hyper-parameters of the proposal are determined when the
over-fitting and under-fitting phenomena disappear, and the
model converges with the highest accuracy. In compari-
son with the traditional model at the same database, the
hyper-parameters are nearly identical between the two mod-
els. Therefore, we have used the same values when training

324
IEICE TRANS. ELECTRON., VOL.E104–C, NO.7 JULY 2021

Fig. 8 The examples of MNIST, CIFAR, SVHN and ImageNet databases

conventional and proposed models. We evaluate latency,
hardware resources, and power consumption of the infer-
ence phase on the chip ZC7Z020-1CLG484C FPGA.

4.1 Software Configuration

Handwritten digits (MNIST): The MNIST database [28]
consists of 28×28 gray images of the handwritten digits
“0” through “9”. A total of 60000 images are provided
for training, and 10000 images leave for testing. In the re-
ported experiment, training images are sliced further into
a training set (50000 images) and a validation set (10000
images), equal to the distribution of digit classes. Fig-
ure 8 (a) shows samples of the MNIST dataset. The Lenet-5
paradigm is considered for performance analyses. From the
original Lenet-5 model which combines CONV(6) +MP(2)
+ CONV(16) + MP(2) + FC(120) + FC(84) + FC(10),
we propose the design that mixes of SLIT(8) + SMP(2) +
SCONV(16) + MP(2) + FC(120) + FC(84) + FC(10). The
simulation is carried out using a batch size of 100 images,
20 epochs, and the stochastic gradient descent (SGD) opti-
mization function with a learning rate of 0.1.

SVHN dataset: We examine our models on the SVHN
dataset [29], which has three channels in an image. SVHN
is collected from house numbers in Google Street View
images. It includes 73257 images for training and 26032
images for testing. Examples of the SVHN dataset are
displayed in Fig. 8 (b). We investigate the SVHN dataset
with the model that combines 2CONV(32) + MP(2) +
2CONV(64) + MP(2) + FC(512) + FC(10). In this man-
ner, we replace two CONV(32) layers with SLIT(11) and
SCONV(32) layers. The model is trained with a batch size
of 128 images, 20 epochs, and the SGD optimization func-
tion with a learning rate of 0.01.

CIFAR database: The proposal is interpreted in de-
tail on the CIFAR-10 and CIFAR-100 datasets [30]. These
datasets are composed of 60000 samples from ten categories
for CIFAR-10 and 100 categories for CIFAR-100. Fig-
ure 8 (c) shows examples of the CIFAR-10 dataset. We
utilize 45000 images for training, 5000 images for valida-

tion and the last 10000 images for testing, and augment the
database by exerting flip and shift operators. The Lenet-5,
VGG-16, and VGG-19 models are employed for measur-
ing performance. These models are assessed with a batch
size of 128 samples, 200 epochs, and the SGD optimization
function with learning rate change from 0.1 in a range of 0
to 100 epochs, 0.01 in a range of 100 to 150 epochs, and
0.001 for larger than 150 epochs. Since the CIFAR dataset
has three input channels, we concatenate eight output fea-
ture maps of the SLIT function with three input channels
normalized in a range 0 and 1 to create the SLIT layer. For
the Lenet-5 design, we validate with SLIT(11) + SMP(2)
+ SCONV(16) + MP(2) + FC(120) + FC(84) + FC(10) as
the equivalence of the conventional Lenet-5 scheme which
stacks up of CONV(6) + MP(2) + CONV(16) + MP(2) +
FC(120) + FC(84) + FC(10). In the VGG-16 and VGG-19
forms, two first CONV layers with 64 output channels are
switched by SLIT(11) + SCONV(64) layers.

ImageNet database: We have chosen the ILSVRC2012
ImageNet dataset [31] as a target to assess our topology in a
complicated case. ImageNet includes approximately 1.2M
training images with 1K classes and 50K validation im-
ages. This dataset covers natural images with reasonably
high resolution compared to the CIFAR, MNIST, and SVHN
datasets, which have relatively small images. The exam-
ples of the ImageNet database are shown in Fig. 8 (d). We
conduct our image classification performance to report Top-
1 and Top-5 accuracy. We adopt VGG-16 architecture as
our base proposal. Two first CONV layers of the VGG-16
model is reconstructed with SLIT(11) and SCONV layers.
The design is simulated with a batch size of 16 samples, 100
epochs, and the SGD optimization function at a learning rate
of 0.001.

4.2 Hardware Evaluation

Among the various available tools for implementing hard-
ware designs of CNNs on different FPGAs, Xilinx Vivado
R© High-Level-Synthesis (Vivado HLS) is commonly used
in literature for the sake of productivity at the cost of hard-
ware efficiency and performance [9], [32]–[36]. Hence, we
leverage the Vivado HLS and Vivado IDE (v2018.3) tools
to realize hardware circuits. The FPGA synthesis is exe-
cuted with chip ZC7Z020-1CLG484C for the property with
benchmarks in comparison. We use Vivado HLS to com-
pare hardware resources and latency of the IP core be-
tween the original approach and the proposal with a 32-bits
floating-point and 16-bits fixed point at a frequency of 100
Mhz. We conduct our IP core into an embedded system to
verify area and power on real FPGA at 115MHZ of the fre-
quency with 24-bits fixed point.

First, we evaluate the SLIT layer in two cases with
eight binary output feature maps and eleven output chan-
nels that concatenate eight binary channels with three in-
put channels. Second, we stack another CONV layer after
the first CONV layer to assess how to compose the SCONV
in the proposed topology. We have two CONV layers in

TRAN and NAKASHIMA: SLIT: AN ENERGY-EFFICIENT RECONFIGURABLE HARDWARE ARCHITECTURE FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
325

the primary, but in the proposal, we concatenate SLIT and
SCONV layers. Third, the MP proposal on CNNs is an-
alyzed by appending one MP after the first CONV layer.
We explain two cases: the first case is the structure hav-
ing CONV, MP layers and the second is CONV, MP, CONV
layers in the model. We handle the SLIT, SMP layers, and
the SLIT, SMP, SCONV layers to compare with the data
obtained from the conventional scheme. Next, the FC pro-
posal is studied by linking the SLIT, SMP, and SFC lay-
ers. Finally, we investigate the architecture of the Lenet-5
and VGG-16 models as the analyzed standard of the pro-
posed networks on hardware to compare with state-of-the-
art. How to replace the first three layers is showed in the
Lenet-5, and VGG-16 represents how to reconstruct the first
two layers on the deep neural networks.

5. Experimental Results

5.1 Software Performance Analysis

Figure 9 shows the accuracy of the MNIST, CIFAR-10,
CIFAR-100, SVHN and ImageNet datasets. A small de-
crease in accuracy of 0.27% from 99.07% to 98.8% with
the MNIST database has been observed when being com-
pared between the Lenet-5 proposal and the conventional
Lenet-5 paradigm. Moreover, it slightly decreases from
0.5% to 1.5% with CIFAR-10 and CIFAR-100 datasets, and
around 2.2% on the ImageNet. It also remarks efficiently on
the small CNN model that is experimented with the SVHN
dataset. With complicated models such as VGG-16 and
VGG-19, the loss of accuracy ranges from 0.5% to 2.2%. A
training time reduction shown in Fig. 10 compensates for the
loss of accuracy when our proposal is applied. Total train-
ing time is diminished by 40%, 40%, and 32%, correspond-
ing with MNIST, CIFAR, and SVHN databases on Lenet-5
and CNN models. It also decreases by approximately 10%
on larger paradigms such as VGG-16 and VGG-19 with the

Fig. 9 Comparing accuracy between the original model and the proposed
model

CIFAR database. Because the model verified with the VGG-
16 on ImageNet takes a long time for training one epoch,
this case is not revealed in Fig. 10.

Ordinarily, the first and second CONV layers con-
tribute 92.4% of MAC operations, while the FC layers of-
fer 7.6% of MAC operations on the Lenet-5 model. Pa-
rameter and operation reduction highlight the contribution
of the proposed model for the training phase on CNNs. Re-
sults indicate a considerable efficiency obtained on the pro-
posed Lenet-5 model. Table 1 and Table 2 show that a to-
tal of 1×5×5×6 = 150 parameters and 463K MAC opera-
tions are pruned in the proposal when evaluated with the
MNIST database. Remarkably, with the CIFAR dataset that
has three channels, 3×5×5×8 = 450 parameters and a total
of 3×5×5×32×32×6 + 6×5×5×16×16×16 = 1.07G MAC
operations are excluded. The proposal decreases approxi-
mately by 90% MAC operations and leads to training time
reduction during the training phase on the Lenet-5 model.
An entirety of 1728 parameters and 1.77M MAC operations
are also eliminated in the first layer on the VGG-16 model.
In short, to compare with the original approach and Ref. [9],
our model illustrates better MAC operation optimization on

Fig. 10 Comparing training time of one epoch between the original
model and the proposed model

Table 1 Comparison parameters on Lenet-5 and VGG-16 model

Layer Kernal Original Optimized [9] Proposal
Lenet-5 model

CONV1 1×5×5×6 150 336 0
CONV2 6×5×5×16 2400 2752 2400

VGG-16 model
CONV1 3×3×3×64 1728 41K 0
CONV2 64×3×3×64 2400 49K 2400

Table 2 Comparison operations on Lenet-5 and VGG-16 model

Layer Layer Original Optimized [9] Proposal
Lenet-5 model

CONV1 1×28×28 117.6K (a) 225K (a) 0
MP 6×24×24 27.6K (b) 27.6K (b) 9216 (c)

CONV2 6×12×12 345.6K (a) 419.5K (a) 345.6K (d)
VGG-16 model

CONV1 3×32×32 1.77M (a) 37.6G (a) 0
CONV2 64×32×32 37.7M (a) 50.3G (a) 37.7M (d)
a: MAC, b: Comparator, c: OR, d: Multiplexer

326
IEICE TRANS. ELECTRON., VOL.E104–C, NO.7 JULY 2021

the Lenet-5 and VGG-16 models.

5.2 Hardware Performance Analysis

Table 3 exposes the reduction of hardware resources and
performance for the first layer. The SLIT layer employs
fewer LUTs, FFs, BRAM and DSP48E blocks than the
CONV layer. Especially, the DSP48E blocks are humbled
eight times in the case of SLIT(8). Latency achieves a
13.47/0.427 = 31.5× reduction compared with the CONV(8)
layer and a factor of 38× decrease with the CONV(11) layer.
Table 4 (a) reveals the hardware resources and latency for
the second layer. By replacing all MAC operations with
the MUX function in case SLIT(8) + SCONV(16), hard-
ware utilization is notably reduced. For example, 2 DSP48E
blocks are proportional to 13 DSP48E blocks in the standard
design. BRAM blocks are lessened 18/2 = 9× between two
models. Latency is also decreased remarkably in our pro-
posal when being compared with the traditional topology.

Table 4 (b) reveals the max-pooling layer performance.
By replacing three comparator operations with an OR gate,
latency or speed is reduced from 13.6 ms to 0.46 ms. Hard-
ware resources that estimate the IP core area extremely de-
crease on DSP48E and BRAM blocks. A factor of approxi-

Table 3 Comparing hardware resources and latency for the first layer

Layers CONV(8) SLIT(8) CONV(11) SLIT(11)
Floating-point 32-bits 32-bits 32-bits 32-bits

LUT 724 241 815 549
FF 960 233 1073 657

DSP48E 8 0 8 3
BRAM 2 1 8 1

Latency (ms) 13.47 0.427 40.17 1.04

Table 4 Comparing hardware resource utilization and latency between the traditional approach and
the proposal

(a) Comparing hardware resources and latency for the proposed second layer
Layers CONV(8)+CONV(16) SLIT8+SCONV(16) CONV(11)+CONV(16) SLIT(11)+SCONV(16)

Floating-point 32-bits 32-bits 32-bits 32-bits
LUT 1303 736 1425 1223
FF 1649 769 1811 1399

DSP48E 13 2 13 8
BRAM 18 2 40 10

Latency (ms) 160.7 96.5 266.3 210.9
(b) Comparing hardware resources and latency for the proposed max pooling layer

Layers CONV(8)+MP(2) SLIT(8)+SMP(2) CONV(11)+MP(2)+CONV(16) SLIT(11)+SMP(2)+SCONV(16)
Floating-point 32-bits 32-bits 32-bits 32-bits

LUT 1028 341 1686 1497
FF 1255 334 2071 1673

DSP48E 8 0 13 8
BRAM 18 2 48 13

Latency (ms) 13.6 0.46 96.9 53.6
(c) Comparing hardware resources and latency for the proposed fully connected layer

Layers CONV(8)+MP(2)+FC(512) SLIT(8)+SMP(2)+FC(512) CONV(11)+MP(2)+FC(1024) SLIT(11)+SMP(2)+FC(1024)
Floating-point 32-bits 32-bits 32-bits 32-bits

LUT 1531 741 1549 1359
FF 1924 829 2006 1578

DSP48E 13 2 13 8
BRAM 22 3 48 13

Latency (ms) 105.5 60.5 454.3 379.9

mately 92% hardware resource reduction is observed when
our SMP layer is compared to the second traditional MP
layer. In a more complicated case like SLIT(11) + SMP(2)
+ SCONV(16), our reconfiguration not only reduces signif-
icant hardware resources but also demand 53.6 ms, a reduc-
tion from as 96.9 ms as in the case of CONV(11) + MP(2)
+ CONV(16). The FC proposal is analyzed by combining
SLIT, SMP, and SFC layers. By replacing the multiplica-
tion matrix with MUX functions, Table 4 (c) proves that our
suggestion also works better than the traditional process in
terms of hardware resource utilization and execution time
requirements. In short, four loops in the SLIT layer, OR
gate in the SMP layer, and MUX operation in the SCONV
layer result in enormous hardware resources and latency re-
duction.

5.3 Design Comparison

As a comparison with the traditional CNNs on Lenet-5 and
VGG models, our scheme replaces the first three layers
on the conventional Lenet-5 model and the first two layers
on VGG. By synthesizing with the Vivado HLS tool, Ta-
ble 5 (a) shows the proposal has consumed less than 52.9%
BRAM and 33.3% DSP48E blocks compared with the tradi-
tional Lenet-5 model. Moreover, our scheme achieves about
1- 20.78/34.3 = 0.394 or 39% latency reduction without us-
ing optimized methods such as #parama HLS PIPElINE or
#parama HLS UNROLL. We have also investigated hard-
ware resources and latency for the VGG-16 scheme. Ta-
ble 5 (b) demonstrates an efficient latency reduction on the
first and second layers. The proposal requires 1.04 ms as
comparing 249 ms on the first layer and a 6× latency re-
duction in the second layer. The hardware resources also

TRAN and NAKASHIMA: SLIT: AN ENERGY-EFFICIENT RECONFIGURABLE HARDWARE ARCHITECTURE FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
327

Table 5 Comparing hardware resource utilization and latency on Lenet-5 and VGG-16 models be-
tween the traditional CNN approach and the proposal

(a) Lenet-5 model on MNIST database with 32-bits floating-point
Layer Dimensions Traditional Lenet-5 Proposal Lenet-5

LUT FF BRAM DSP48E Latency (ms) LUT FF BRAM DSP48E Latency (ms)
CONV1 1×28×28 723 954 2 8 10.1 241 233 1 0 0.42

MP1 6×24×24 1017 1240 10 8 10.2 341 334 2 0 0.46
CONV2 6×12×12 1618 1960 12 13 26.3 1030 1130 3 4 17.9

Lenet-5 model 4568 4371 17 24 34.3 3854 3405 8 16 20.78
(b) VGG-16 model on CIFAR-10 database with 32-bits floating-point

Layer Dimensions Traditional VGG-16 Proposal VGG-16
LUT FF BRAM DSP48E Latency (ms) LUT FF BRAM DSP48E Latency (ms)

CONV1 3×32×32 832 1106 8 8 249.48 549 657 1 3 1.04
CONV2 64×32×32 2236 2236 136 10 5246.2 1869 4573 10 8 839.6

VGG-16 model 43442 11276 480 62 49820.9 43140 10852 354 57 44503.9

Fig. 11 Comparison hardware resources and latency of our IP core pro-
posal with other works on Lenet-5 model at 100 MHz using Vivado HLS
tool

degrade 26% in BRAM blocks and 8% in DSP28E blocks
for the complete proposed VGG-16 design.

For the IP core comparison between the proposal and
existing state-of-the-art using the MNIST database, the net-
work combining CONV(8) +MP(2) +CONV(8) +MP(2) +
FC(10) is proved. The proposed model consists of SLIT(8)
+ SMP(2) + SCONV(8) + MP(2) + FC(10). In addition
to constructing the first three layers, we also use #parama
HLS PIPELINE and #parama HLS UNROLL technologies
to improve the hardware design performance. We utilize
a 16-bits fixed point while still maintaining accuracy. Fig-
ure 11 reveals that the proposal demands a smaller num-
ber of hardware resources than previous works at higher
accuracy. Especially, the latency achieves a 40.8% reduc-
tion over the work [32], and a factor of 26.3/0.55 = 47×
decrease compared with the result reported in the previous
study [33]. Besides, the hardware resource is lower with 1
BRAM block, 4 DSP48E blocks, 6006/2542 = 2.3× FFs,
and 16086/7373 = 2.18× LUTs as compared with the high-
est current performance [32]. Moreover, our proposal main-
tains 97.82% accuracy higher than 96.33% in Ref. [32].

As shown in Fig. 12, the CNN accelerator design in-
cludes ARM, AXI, BRAM, and our IP core. The IP core is
called in an ARM CPU-based embedded system to analyze

Fig. 12 The system on chip implementation of the Lenet-5 model on
zynq7020 FPGA

Table 6 Comparing resource utilization and power consumption on chip
zynq7020 FPGA for Lenet-5 model

Parameter [34] [35] [36] Proposal
24-bits 32-bits 8-bits 24-bits

fixed point floating-point fixed point fixed point
Frequency 166 MHZ 100 MHZ 100 MHZ 115 MHZ

LUT 38836 14659 39898 6853
FF 23408 14172 25161 6378

DSP48E 95 125 0 16
BRAM 92 119.5 24 127

Power (W) 3.32 1.8 1.758 0.456

the effectiveness of the proposed optimization technique.
Table 6 exposes the comparison between our model and the
previous works in hardware resources used to estimate area
and power consumption. Due to the binary calculation on
SLIT, SMP, and SCONV layers, the DSP48E blocks are ex-
tremely reduced in our proposal. To fairly assess, we con-
vert 16 DSP48E blocks into 1003 LUTs, and 537 FFs in
the way Ref. [36] measurement and estimate equivalently
one BRAM into 256 LUTs as Refs. [43], [44]. As a re-
sult, our topology utilizes the same LUTs with a 72.5% re-
duction in FFs compared with the Ref. [36]. Moreover, the

328
IEICE TRANS. ELECTRON., VOL.E104–C, NO.7 JULY 2021

proposal also employs a 0.456 W power consumption lower
than works [34]–[36].

6. Conclusions

In this paper, we have created a layer that imitates the pri-
mary visual cortex principle and replaced the first few layers
of conventional CNNs successfully. The innovative recon-
figuration for the Lenet-5 scheme has achieved a 70% dis-
count in hardware resources and an improvement of 39%
latency at a power consumption of 0.456 W for the infer-
ence phase on FPGA. The entire convolution operations in
the first two convolutional layers of the traditional CNN
models are removed efficiently. Accuracy of the proposal
has just slightly reduced a factor of 0.27% on Lenet-5 with
MNIST dataset, approximately 1.5% on VGG-16 and VGG-
19 with CIFAR dataset, 2.2% on VGG-16 with ImageNet
database, and remained the same with the SVHN database.
Our method is elastic to concatenate with various conven-
tional models at high efficient energy and minimum hard-
ware resources on FPGA. Hence, it gives a new inspira-
tion toward combining our proposal with BinaryConnect or
SqueezeNet method to obtain higher hardware design op-
timization. In the future, we plan to study a more exten-
sive and scalable CNN accelerator that will integrate our
proposal with other optimization approaches. We hope that
SLIT can be a potential method in exploring the broad range
of CNN architecture reconfiguration.

Acknowledgments

A part of this research is based on Grant-in-Aid for Scien-
tific Research (A) JP17H00730.

References

[1] C. Cao, B. Wang, W. Zhang, X. Zeng, X. Yan, Z. Feng, Y. Liu, and
Z. Wu, “An improved faster r-cnn for small object detection,” IEEE
Access, vol.7, pp.106838–106846, 2019.

[2] X. Lei, H. Pan, and X. Huang, “A dilated cnn model for image clas-
sification,” IEEE Access, vol.7, pp.124087–124095, 2019.

[3] I. Gavrilut, A. Gacsadi, C. Grava, and V. Tiponut, “Vision based
algorithm for path planning of a mobile robot by using cellular neu-
ral networks,” 2006 IEEE International Conference on Automation,
Quality and Testing, Robotics, pp.306–311, IEEE, 2006.

[4] J. Shang, L. Qian, Z. Zhang, L. Xue, and H. Liu, “Lacs: A high-
computational-efficiency accelerator for cnns,” IEEE Access, vol.8,
pp.6045–6059, 2019.

[5] R. Wang, Z. Cao, X. Wang, Z. Liu, and X. Zhu, “Human pose
estimation with deeply learned multi-scale compositional models,”
IEEE Access, vol.7, pp.71158–71166, 2019.

[6] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient
convolutional neural networks using energy-aware pruning,” Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp.5687–5695, 2017.

[7] Y.-H. Chen, T. Krishna, J.S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neu-
ral networks,” IEEE journal of solid-state circuits, vol.52, no.1,
pp.127–138, 2016.

[8] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x

fewer parameters and< 0.5 mb model size,” arXiv preprint
arXiv:1602.07360, pp.1–13, 2016.

[9] M. Hailesellasie, S.R. Hasan, F. Khalid, F.A. Wad, and M. Shafique,
“Fpga-based convolutional neural network architecture with reduced
parameter requirements,” 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), pp.1–5, IEEE, 2018.

[10] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Ex-
ploiting linear structure within convolutional networks for efficient
evaluation,” 28th Annual Conference on Neural Information Pro-
cessing Systems 2014, NIPS 2014, pp.1269–1277, Neural informa-
tion processing systems foundation, 2014.

[11] Y. Umuroglu, N.J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “Finn: A framework for fast, scal-
able binarized neural network inference,” Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp.65–74, 2017.

[12] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional
neural networks with software-programmable fpgas,” Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp.15–24, 2017.

[13] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
European conference on computer vision, pp.525–542, Springer,
2016.

[14] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with
low precision by half-wave gaussian quantization,” Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp.5918–5926, 2017.

[15] J. Chung, W. Choi, J. Park, and S. Ghosh, “Domain wall memory-
based design of deep neural network convolutional layers,” IEEE
Access, vol.8, pp.19783–19798, 2020.

[16] D. Jung, S. Lee, W. Rhee, and J.H. Ahn, “Partitioning compute units
in cnn acceleration for statistical memory traffic shaping,” IEEE
Computer Architecture Letters, vol.17, no.1, pp.72–75, 2017.

[17] K. Huang, X. Liu, S. Fu, D. Guo, and M. Xu, “A lightweight privacy-
preserving cnn feature extraction framework for mobile sensing,”
IEEE Transactions on Dependable and Secure Computing, pp.1–15,
2019.

[18] A. Ferdowsi, U. Challita, and W. Saad, “Deep learning for re-
liable mobile edge analytics in intelligent transportation systems:
An overview,” IEEE vehicular technology magazine, vol.14, no.1,
pp.62–70, 2019.

[19] F.U.D. Farrukh, T. Xie, C. Zhang, and Z. Wang, “Optimization for
efficient hardware implementation of cnn on fpga,” 2018 IEEE In-
ternational Conference on Integrated Circuits, Technologies and Ap-
plications (ICTA), pp.88–89, IEEE, 2018.

[20] S. Li, W. Wen, Y. Wang, S. Han, Y. Chen, and H. Li, “An fpga design
framework for cnn sparsification and acceleration,” 2017 IEEE 25th
Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp.28–28, IEEE, 2017.

[21] H. Ando, Y. Niitsu, M. Hirasawa, H. Teduka, and M. Yajima,
“Improvements of classification accuracy of film defects by us-
ing gpu-accelerated image processing and machine learning frame-
works,” 2016 Nicograph International (NicoInt), pp.83–87, IEEE,
2016.

[22] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” Proceedings of the 22nd ACM interna-
tional conference on Multimedia, pp.675–678, 2014.

[23] S. Mittal, “A survey of fpga-based accelerators for convolutional
neural networks,” Neural computing and applications, pp.1–31,
2018.

[24] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, Y. Wang, and H. Yang, “Going deeper with em-
bedded fpga platform for convolutional neural network,” Proceed-
ings of the 2016 ACM/SIGDA International Symposium on Field-

http://dx.doi.org/10.1109/access.2019.2932731
http://dx.doi.org/10.1109/access.2019.2927169
http://dx.doi.org/10.1109/aqtr.2006.254650
http://dx.doi.org/10.1109/access.2019.2962746
http://dx.doi.org/10.1109/access.2019.2919154
http://dx.doi.org/10.1109/cvpr.2017.643
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1109/iscas.2018.8351283
http://dx.doi.org/10.1145/3020078.3021744
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1109/cvpr.2017.574
http://dx.doi.org/10.1109/access.2020.2968081
http://dx.doi.org/10.1109/lca.2017.2773055
http://dx.doi.org/10.1109/tdsc.2019.2913362
http://dx.doi.org/10.1109/mvt.2018.2883777
http://dx.doi.org/10.1109/cicta.2018.8706067
http://dx.doi.org/10.1109/fccm.2017.21
http://dx.doi.org/10.1109/nicoint.2016.15
http://dx.doi.org/10.1145/2647868.2654889
http://dx.doi.org/10.1007/s00521-018-3761-1
http://dx.doi.org/10.1145/2847263.2847265

TRAN and NAKASHIMA: SLIT: AN ENERGY-EFFICIENT RECONFIGURABLE HARDWARE ARCHITECTURE FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
329

Programmable Gate Arrays, pp.26–35, 2016.
[25] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-

ing fpga-based accelerator design for deep convolutional neural net-
works,” Proceedings of the 2015 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, pp.161–170, 2015.

[26] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing loop oper-
ation and dataflow in fpga acceleration of deep convolutional neu-
ral networks,” Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp.45–54, 2017.

[27] J. Iwamoto, Y. Kikutani, R. Zhang, and Y. Nakashima,
“Daisy-chained systolic array and reconfigurable memory space for
narrow memory bandwidth,” IEICE Transactions on Information
and Systems, vol.E103-D, no.3, pp.578–589, 2020.

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol.86, no.11, pp.2278–2324, 1998.

[29] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A.Y. Ng,
“Reading digits in natural images with unsupervised feature learn-
ing,” NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, pp.1–9, 2011.

[30] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of fea-
tures from tiny images,” Technical report, University of Toronto,
pp.32–33, 2009.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and
L. Fei-Fei, “ImageNet large scale visual recognition challenge,” In-
ternational Journal of Computer Vision, vol.115, no.3, pp.211–252,
April 2015.

[32] T.-H. Tsai, Y.-C. Ho, and M.-H. Sheu, “Implementation of fpga-
based accelerator for deep neural networks,” 2019 IEEE 22nd Inter-
national Symposium on Design and Diagnostics of Electronic Cir-
cuits & Systems (DDECS), pp.1–4, IEEE, 2019.

[33] S. Ghaffari and S. Sharifian, “Fpga-based convolutional neural net-
work accelerator design using high level synthesize,” 2016 2nd In-
ternational Conference of Signal Processing and Intelligent Systems
(ICSPIS), pp.1–6, IEEE, 2016.

[34] G. Feng, Z. Hu, S. Chen, and F. Wu, “Energy-efficient and high-
throughput fpga-based accelerator for convolutional neural net-
works,” 2016 13th IEEE International Conference on Solid-State
and Integrated Circuit Technology (ICSICT), pp.624–626, IEEE,
2016.

[35] D. Rongshi and T. Yongming, “Accelerator implementation of
lenet-5 convolution neural network based on fpga with hls,” 2019
3rd International Conference on Circuits, System and Simulation
(ICCSS), pp.64–67, IEEE, 2019.

[36] M. Zhao, X. Li, S. Zhu, and L. Zhou, “A method for accelerat-
ing convolutional neural networks based on fpga,” 2019 4th Inter-
national Conference on Communication and Information Systems
(ICCIS), pp.241–246, IEEE, 2019.

[37] G.N. Reeke Jr and O. Sporns, “Behaviorally based modeling and
computational approaches to neuroscience,” Annual Review of Neu-
roscience, vol.16, no.1, pp.597–623, 1993.

[38] D.D. Cox and T. Dean, “Neural networks and neuroscience-inspired
computer vision,” Current Biology, vol.24, no.18, pp.R921–R929,
2014.

[39] C.D. James, J.B. Aimone, N.E. Miner, C.M. Vineyard, F.H.
Rothganger, K.D. Carlson, S.A. Mulder, T.J. Draelos, A. Faust, M.J.
Marinella, J.H. Naegle, and S.J. Plimpton, “A historical survey of
algorithms and hardware architectures for neural-inspired and neu-
romorphic computing applications,” Biologically Inspired Cognitive
Architectures, vol.19, pp.49–64, 2017.

[40] G. Leuba and R. Kraftsik, “Changes in volume, surface estimate,
three-dimensional shape and total number of neurons of the human
primary visual cortex from midgestation until old age,” Anatomy
and embryology, vol.190, no.4, pp.351–366, 1994.

[41] C. Lv, Y. Xu, X. Zhang, S. Ma, S. Li, P. Xin, M. Zhu, and H. Ma,
“Feature extraction inspired by v1 in visual cortex,” Ninth Interna-

tional Conference on Graphic and Image Processing (ICGIP 2017),
p.106155C, International Society for Optics and Photonics, 2018.

[42] T.D. Tran, M. Kimura, and Y. Nakashima, “Primary visual cortex
inspired feature extraction hardware model,” 2020 4th International
Conference on Recent Advances in Signal Processing, Telecommu-
nications & Computing (SigTelCom), pp.20–24, IEEE, 2020.

[43] G.P. Saggese, A. Mazzeo, N. Mazzocca, and A.G. Strollo, “An fpga-
based performance analysis of the unrolling, tiling, and pipelining of
the aes algorithm,” International Conference on Field Programmable
Logic and Applications, pp.292–302, Springer, 2003.

[44] L. Li, S. Lin, S. Shen, K. Wu, X. Li, and Y. Chen, “High-throughput
and area-efficient fully-pipelined hashing cores using bram in fpga,”
Microprocessors and Microsystems, vol.67, pp.82–92, 2019.

Thi Diem Tran received her Bachelor
and Master degrees in physical electronics from
University of Science, Vietnam National Uni-
versity - Ho Chi Minh (VNU-HCM) in 2006 and
2009, respectively. She is currently working to-
ward the Ph.D. degree from the Nara Institute of
Science and Technology (NAIST), Japan. Her
research interests include machine learning and
image processing.

Yasuhiko Nakashima received B.E., M.E.,
and Ph.D. degrees in Computer Engineering
from Kyoto University in 1986, 1988 and 1998,
respectively. He was a computer architect in the
Computer and System Architecture Department,
FUJITSU Limited from 1988 to 1999. From
1999 to 2005, he was an associate professor at
the Graduate School of Economics, Kyoto Uni-
versity. Since 2006, he has been a professor
in the Graduate School of Information Science,
Nara Institute of Science and Technology. His

research interests include computer architecture, emulation, circuit design,
and accelerators. He is a member of IEEE CS, ACM, and IPSJ.

http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/3020078.3021736
http://dx.doi.org/10.1587/transinf.2019edp7144
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/ddecs.2019.8724665
http://dx.doi.org/10.1109/icspis.2016.7869873
http://dx.doi.org/10.1109/icsict.2016.7998996
http://dx.doi.org/10.1109/cirsyssim.2019.8935599
http://dx.doi.org/10.1109/iccis49662.2019.00049
http://dx.doi.org/10.1146/annurev.ne.16.030193.003121
http://dx.doi.org/10.1016/j.cub.2014.08.026
http://dx.doi.org/10.1016/j.bica.2016.11.002
http://dx.doi.org/10.1007/bf00187293
http://dx.doi.org/10.1117/12.2302951
http://dx.doi.org/10.1117/12.2302951
http://dx.doi.org/10.1109/sigtelcom49868.2020.9199057
http://dx.doi.org/10.1007/978-3-540-45234-8_29
http://dx.doi.org/10.1016/j.micpro.2019.03.002

