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Review of Superconducting Nanostrip Photon Detectors using
Various Superconductors

Hiroyuki SHIBATA†a), Member

SUMMARY One of the highest performing single-photon detectors in
the visible and near-infrared regions is the superconducting nanostrip pho-
ton detector (SNSPD or SSPD), which usually uses NbN or NbTiN as the
superconductor. Using other superconductors may significantly improve,
for example, the operating temperature and count rate characteristics. This
paper briefly reviews the current state of the potential, characteristics, thin
film growth, and nanofabrication process of SNSPD using various super-
conductors.
key words: single-photon detector, SNSPD, SSPD, superconductor

1. Introduction

In the last 20 years of development, superconducting nano-
strip photon detector (SNSPD or SSPD)∗ has significantly
improved its performance, which is used in various fields
such as quantum key distribution, photonic quantum com-
puter, quantum optics, satellite laser ranging, space laser
optical communication, and fluorescence lifetime measure-
ment [1]–[5]. SNSPD has excellent performance: very
high system detection efficiency (SDE > 90%), negligible
dark count rate (DCR < 0.01 Hz), high count rate (CR >
100 MHz), and low jitter (< 20 ps) [3]–[15]. Further im-
provements, including a long wavelength detection, broad-
band detection, large detection area, photon-number detec-
tion, multi-element, high-operation temperature, and simul-
taneous achievement of these characteristics, are in progress
to expand its application field [3]–[5]. Selecting the super-
conductors is one of the most important factor in the devel-
opment.

In the diffusion-based hotspot model, the detection
limit energy is given by hc/λ ∼ N0Δ

2wd
√
πDτth(1−Ibias/Ic),

where h, c, λ,N0,Δ, w, d,D, τth, Ibias, Ic are the Plank’s con-
stant, speed of light, cutoff wavelength, density of states
at the Fermi level, superconducting energy gap, width and
thickness of the nanostrip, electronic diffusivity, electronic
thermalization time, bias current, and critical current of the
nanostrip, respectively [16], [17]. Therefore, a material hav-
ing small N0, small Δ, small D, and short τth is preferable
for longer wavelength detection.

The count rate is determined by the response time τ =
τrise + τfall, where τrise and τfall are the rise time and decay
time of the voltage pulse, respectively. From the electrical
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circuit model, τrise = Lk/(Z0+Rn(t)) and τfall = Lk/Z0, where
Lk, Rn(t) and Z0 are the kinetic inductance of the nanostrip,
time dependent hotspot resistivity, and load impedance of
the circuit, respectively [18]. Because Lk = (μ0λ

2
L)(l/A),

where μ0, λL, l, and A are the permeability of vacuum, the
magnetic penetration depth, the length, and the cross-section
of the nanostrip, respectively, a material having small λL is
preferable for detecting high count rate. There is a limita-
tion even if it is possible to increase the count rate of SNSPD
by decreasing Lk. If τfall becomes shorter than a thermal re-
laxation time τcool, the current return back to the nanostrip
before the nanostrip return to the superconducting state, and
self-heating hotspot remains, known as latched state. A ma-
terial having a small τe−ph is preferable for detecting high
count rate because τcool is set by electron-phonon interac-
tion time τe−ph and phonon escape time to the substrate τesc.
The internal detection efficiency (IDE) decreases as τe−ph is
small because the hotspot cools rapidly because of the rapid
energy transfer from electron to phonon.

For SNSPD’s high-temperature operation, a material
with a high-superconducting transition temperature (Tc) is
required. However, the detection wavelength limit is short-
ened because Δ also becomes large for high Tc material.

In selecting the material, it is necessary to consider
the material parameters and technical problems of fabrica-
tion. SNSPD usually needs ultrathin films with 5-nm thick-
ness and nanostrips with 100-nm width, and the technol-
ogy of thin film growth and nanofabrication process strongly
depends on the material. Generally, IDE and the detec-
tion wavelength limit are improved as the cross-section of
the nanostrip is reduced. However, when the cross-section
becomes too small and Ic decreases below approximately
10 μA, the jitter increases as the voltage pulse’s noise in-
creases. Hence, a material with high critical current density
( jc) is desirable to reduce the cross-section of the nanostrip.

This paper reviews the progress made so far in devel-
oping SNSPD using various superconductors and discusses
prospects.

2. Nb-Based SNSPDs

2.1 NbN and NbTiN

NbN (Tc = 17 K) is the first superconductor used for
∗SNSPD is traditionally known as superconducting nanowire

single-photon detector; the IEC standard recommends the use of
“nanostrip” instead of “nanowire” (IEC 61788-22-1).
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SNSPD [1]. NbN-SNSPD is the most widely used be-
cause it can operate using a Gifford-McMahon (GM) cry-
ocooler with high SDE, low jitter, low DCR and high
CR [8], [10], [19]. For NbN-SNSPD, the commonly used
film is the polycrystalline NbN ultrathin film, which is usu-
ally deposited on a thermally oxidized Si substrate or on a
distributed Bragg mirror (DBR) films by a DC magnetron
sputtering of a niobium target in a mixture of argon and ni-
trogen gases. There are many studies in obtaining an ultra-
thin film with smooth surface and high Tc and jc, in which it
is effective to use a large niobium target with a 6-in diame-
ter and/or add a RF bias to the substrate holder during sput-
tering [19], [20]. Recently, atomic layer deposition (ALD)
grew the ultrathin NbN film with exceptional homogene-
ity [21], [22]. The SNSPD using ALD film shows saturated
IDE over a broad bias range.

Instead of the polycrystalline film, the epitaxial NbN
thin film is grown by the sputtering on a MgO(100) sub-
strate [19]. Although the epitaxial film shows higher Tc

and jc and lower resistivity than the polycrystalline film,
the SDE of the device using epitaxial film is not high be-
cause the Ic of the device is limited by local constrictions
in the nanostrip, caused by defects in the epitaxial film [23].
Molecular beam epitaxy (MBE) on AlN-on-sapphire sub-
strate also grew the epitaxial NbN film [24]. The SNSPD us-
ing MBE film shows saturated IDE at 1050 nm, which may
due to fewer defects in the epitaxial film.

For the nanofabrication of NbN-SNSPD, electron beam
lithography and reactive ion etching (RIE) using CF4 or SF6

gas are commonly used. Instead of the e-beam lithography,
nanofabrication using local oxidation with an atomic force
microscope (AFM), nano-imprint lithography, and nonlin-
ear femtosecond optical lithography are also reported [25]–
[27].

Korneeva et al. recently reported a single-photon de-
tection in micron-wide NbN bridge, which has an Ic close to
a theoretical depairing current [28]. The bridge shows satu-
rated IDE in the high bias region. The NbN-SNSPD using
micron-wide bridge may become a single-photon detector
with a high count rate and large detection area.

NbTiN (Tc = 16 K) is also frequently used for SNSPD.
NbTiN-SNSPD is expected to operate faster than NbN-
SNSPD because the LK of NbTiN is approximately 25%
lower than that of NbN [29]. The performance of NbTiN-
SNSPD grown by co-sputtering of niobium and titanium is
high and comparable with that of NbN-SNSPD [9], [30].

2.2 Nb, NbC, NbSi, and NbRe

Single-photon detection at visible wavelength is reported in
Nb (Tc = 9.25 K) based SNSPD fabricated by the sputtering
and the e-beam lithography [16], [31]. However, the Nb-
SNSPD is easily latched because of the long τe−ph.

Single-photon detection at 405 nm is also reported NbC
(Tc = 12 K) based SNSPD fabricated by a pulsed laser de-
position (PLD) in hydrocarbon atmosphere and the e-beam
lithography [32]. The detection efficiency of NbC-SNSPD

is low and doesn’t have a single-photon sensitivity at longer
wavelength because D of NbC is 4.45 cm2/s, which is ap-
proximately 10 times larger than that of NbN.

Dorenbos et al. fabricates NbSi-SNSPD (Tc = 2 K) by
co-sputtering and e-beam lithography [33]. Single-photon
sensitivity was confirmed to down by 1900 nm because of
the small Δ.

NbRe (Tc = 9 K) thin film fabricated by sputtering
is robust for deposition and lithographic process. NbRe-
SNSPD shows a saturated IDE at 1301-nm wavelength at
2.8 K. It is possible to fabricate SNSPD with a low-filling
factor of meander because the refractive index and extinc-
tion of NbRe are higher than that of other materials used for
SNSPD [34].

3. Amorphous-Based SNSPDs

3.1 WSi

WSi (Tc = 4.9 K) based SNSPD shows a saturated SDE over
90% in a wide-bias range at the telecommunication wave-
length [7]. It is possible to fabricate a uniform homogeneous
WSi nanostrip without degrading its superconducting prop-
erties because WSi film is amorphous. The large hotspot
size owing to a small Δ and long τe−ph results in high SDE.
The shortage of WSi-SNSPD is the low-operation tempera-
ture and the large jitter due to the small Ibias. WSi-SNSPD is
fabricated by the co-sputtering of tungsten and silicon, the
sputtering of Si cap layer to prevent oxidation, the e-beam
lithography, and the RIE using the fluorine-based gas.

3.2 MoSi and MoGe

It is also possible to fabricate the uniform and homogeneous
nanostrip without degradation because MoSi (Tc = 7.5 K)
film is also grown as amorphous by co-sputtering [6], [35]–
[37]. The SDE of MoSi-SNSPD reaches a record of 98% at
1550 nm in a wide-bias range [6]. The fabrication process
is almost the same as that of WSi-SNSPD. MoSi-SNSPD
works at a higher temperature than WSi-SNSPD because of
the higher Tc of MoSi than WSi.

MoGe (Tc = 6.8 K) based SNSPD also shows a sat-
urated IDE at the telecom wavelength by its amorphous
structure [38]. MoGe-SNSPD also shows a lower jitter and
higher-operating temperature than that of WSi-SNSPD with
its larger Ic and higher Tc.

4. Nitride-Based SNSPDs

4.1 MoN

MoN-SNSPD shows a saturated IDE in a wide bias range
at 1064 nm [39]. The reason of high IDE is a large hot-spot
size owing to a long τe−ph of MoN. MoN has several phases,
such as γ-Mo2N (Tc = 7 K), β-Mo2N (Tc = 5 K), δ-MoN (Tc

= 12 K). Polycrystals of γ-Mo2N become dominant when
the film is grown by the reactive sputtering of molybdenum
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target in the mixture of argon and nitrogen gases. For the
nanofabrication of MoN, e-beam lithography and the RIE
of fluorine-based gas are used.

4.2 TaN and VN

TaN (Tc = 10.5 K) based SNSPD shows IDE higher than
NbN-SNSPD because of the small Δ and small N0 [40].
TaN-SNSPD is fabricated by magnetron sputtering, e-beam
lithography and the Ar-ion milling.

VN (Tc = 9 K) based SNSPD also shows a saturated
IDE at 900-nm wavelength [41]. VN-SNSPD is fabricated
by the reactive sputtering of vanadium, e-beam lithography
and dry etching using SF6.

5. MgB2-SNSPD

Since magnesium diboride (MgB2) has Tc of 39 K and a
short τe−ph of 2 ps, it is expected to become an SNSPD that
can operate at a higher temperature and higher count rate
than NbN-SNSPD [42]. MgB2-SNSPD detects at 11 K for a
photon in a visible range and at 13 K for a single biomolecu-
lar ion [43]–[46]. Recently, MgB2-SNSPD works more than
10 times faster than NbN-SNSPD [47]. Although these re-
sults promise well for the future of MgB2-SNSPD, the ma-
jor problem is the low IDE in the near-infrared region. The
SDE of MgB2-SNSPD is below 1% because of the large su-
perconducting gap Δ and the very short τcool. Alternatively,
100% detection efficiency is reported for the detecting high-
energy particles, such as single biomolecular ions [46].

The 10 nm-thick MgB2 films with Tc = 20 K are grown
by the MBE [43], [48]. Recently, using a hybrid physical
chemical vapor deposition (HPCVD), the 5 nm-thick films
with Tc > 30 K are reported [47], [49], [50].

For the nano-fabrication of MgB2, Ar ion milling is
usually used [42], [47]. It is necessary to deposit a protective
film such as Au, SiO2, or AlN on MgB2 film to prevent dam-
age during Ar ion milling. The dry etching using Br2-N2 gas
is also reported for the nanofabrication of MgB2 [45].

6. Iron-Based SNSPDs

Iron-based superconductors are newly discovered materials
with high Tc, making them a candidate for SNSPDs that can
operate at high temperatures. Furthermore, because iron-
based superconductors are resistant to a strong magnetic
field, iron-based SNSPD may be used for photon/particle
detector under a strong magnetic field, which is desirable
in the field of nuclear and high-energy physics [5]. Al-
though single-photon sensitivity has not yet been reported,
there are several reports on iron-based nanostrip fabrica-
tion [51]–[53]. Yuan et al. fabricated a 10 nm-thick Co
doped BaFe2As2 thin film by PLD and processed it into a
nanostrip with 200-nm width by Ar ion-beam etching and Cr
mask [51]. The nanostrip has a T zero

c of 20 K and a high Jc of
1.8×107 A/cm2 even at 10 K. Tsuji et al. fabricated a (00l)
oriented 23.5 nm-thick NdFeAs(O,F) thin film by MBE and

processed it into a nanostrip with 840-nm width by Ar ion-
beam etching [52]. The nanostrip has a T zero

c above 40 K and
a Jc above 5×106 A/cm2.

Presently, hysteretic current-voltage characteristics
necessary for SNSPDs, are not observed in the iron-based
nanostrips. Further reduction of the nanostrip’s size with
hysteretic I-V characteristics is required to realize iron-
based SNSPDs.

7. Cuprate-Based SNSPDs

There have been several reports towards a cuprate-based
SNSPD because it may work at high temperatures be-
cause of its high Tc [54]. The pump-probe measurement of
cuprate films also reveals that films exhibit picosecond pho-
toresponse because of their strong electron correlation [55],
which is important to realize faster SNSPDs. Thus, the
cuprate-based SNSPD as the ultrafast single-photon detec-
tor working at high temperature is expected. However, it
is technologically challenging to fabricate a high quality
cuprate nanostrip with a 5 nm-thick and 100 nm-wide di-
mension. Most of the early reports of cuprate nanostrip
did not have the hysteretic I-V characteristics, which indi-
cated that the nanostrips are damaged and cannot be used for
single-photon detection. Recently, there are several reports
with hysteretic I-V characteristics by improving the ultra-
thin film growth and nanofabrication process. However, the
single-photon sensitivity using cuprate nanostrip is not yet
achieved.

7.1 YBa2Cu3O7−δ

YBa2Cu3O7−δ is the most extensively studied for cuprate-
based SNSPD because of its high Tc of 92 K [54], [56]–[61].
Lyatti et al. grew a 5.8 nm (5 unit cell) thick YBa2Cu3O7−δ
thin film with Tc = 85 K on an SrTiO3 substrates by dc sput-
tering and processed it into a nanostrip with 5-μm width by
wet etching [57]. Although the Jc of the first three unit cell
layers adjacent to the substrate were low, the Jc of the two
upper layer reached 1.01×107 A/cm2. Ejrnaes et al. fab-
ricated YBa2Cu3O7−δ nanostrip with 10 nm-thickness and
65 nm-wide by PLD and Ar ion-beam etching with car-
bon mask. The nanostrip has hysteretic I-V characteristics,
and Jc reaches 2.2×107 A/cm2. The voltage pulse due to
dark count was also observed in the high-bias region (Ibias

> 0.98 Ic) at 4.9 K [59]. Recently, Xing et al. fabricated a
nanostrip with 10-μm width and 100-nm thickness by PLD
and selective epitaxial growth method. The Jc of the nano-
strip was 5.5×105 A/cm2 at 77 K and showed a photore-
sponse above 85 K [61].

7.2 La1.85Sr0.15CuO4

A 5 nm-thick La1.85Sr0.15CuO4 film with Tc = 42 K is epitax-
ially grown on LaSrAlO4 substrate by MBE [62], [63]. The
nanostrip with 100-nm width and 5-nm thickness fabricated
by the Ar ion milling showed hysteretic I-V characteristics
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Table 1 Summary of various superconductors used for SNSPD.

and a high Jc of 2.3×107 A/cm2 and shows a photoresponse
up to 30 K with a bias current just below Ic [63].

7.3 Pr1.85Ce0.15CuO4

Electron-doped cuprate is also tried realizing SNSPD [64].
Charpentier et al. grew 75-nm-thick Pr1.85Ce0.15CuO4 films
with Tc = 16 K and processed it into a nanostrip with 100-
nm width by Ar ion etching using carbon mask. The nano-
strip showed hysteretic I-V characteristic and Jc = 4.1×106

A/cm2.

8. Conclusions

SNSPDs using various superconductors are reviewed, which
are summarized in Table 1. The Nb(Ti)N-SNSPDs and
amorphous-based SNSPDs are currently exceptionally high-
est performance single-photon detectors, and contribute to
significant progress in many advanced scientific fields. To
further expanding the use of SNSPDs, increasing the oper-
ating temperature seems to be one of the most important fac-
tor. Thus, it is desirable to use high-Tc materials for SNSPD

without degrading its performance.
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