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PAPER
An Extension of Physical Optics Approximation for Dielectric
Wedge Diffraction for a TM-Polarized Plane Wave

Duc Minh NGUYEN†a), Student Member, Hiroshi SHIRAI†b), Fellow, and Se-Yun KIM††c), Nonmember

SUMMARY In this study, the edge diffraction of a TM-polarized elec-
tromagnetic plane wave by two-dimensional dielectric wedges has been
analyzed. An asymptotic solution for the radiation field has been derived
from equivalent electric and magnetic currents which can be determined
by the geometrical optics (GO) rays. This method may be regarded as an
extended version of physical optics (PO). The diffracted field has been rep-
resented in terms of cotangent functions whose singularity behaviors are
closely related to GO shadow boundaries. Numerical calculations are per-
formed to compare the results with those by other reference solutions, such
as the hidden rays of diffraction (HRD) and a numerical finite-difference
time-domain (FDTD) simulation. Comparisons of the diffraction effect
among these results have been made to propose additional lateral waves in
the denser media.
key words: physical optics, PO, edge diffraction, dielectric wedge, uniform
asymptotic solution, hidden rays, FDTD, edge condition

1. Introduction

Among many important problems in wave propagation, edge
diffraction by dielectric-edged objects remains a challenging
and unsolved diffraction problem. Solutions for this prob-
lem play an important role in estimating the scattering of
electromagnetic waves by large polygonal obstacles. For
a limited number of simple shapes and small objects, the
scattering problem can be solved by a number of available
exact solutions [1], [2] and numerical methods [3]–[6]. In
spite of having reliable accuracy, these methods are not ideal
solutions for large objects because they are limited by the
time and memory consumption to perform a huge number of
calculations. Therefore, developing acceptably fast as well
as highly accurate approximation solutions for large objects
is truly imperative.

Some high-frequency approximation methods may be
able to analyze the scattering field by large conducting ob-
jects [7]–[10], such as physical optics (PO) [11]–[16], geo-
metrical theory of diffraction (GTD) [17]–[21], and its ex-
tended uniform solutions [22]–[26]. When the scattering ob-
jects are made of dielectric materials, the problem becomes
more complicated. While the GTD and its extended solutions
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can be applied only to the conducting objects, a heuristic ex-
tension of the uniform theory of diffraction (HUTD) [27]
can be used to solve the radiation field in the outer region
of the lossy dielectric objects only. This requires us to de-
velop other solutions that can provide a precise evaluation
of the scattering field for the inner region of these dielec-
tric objects. For this problem, modified solutions based on
the PO method may be possible for edge diffraction in both
regions of the penetrable objects. The mathematical foun-
dation for these solutions may be found from the surface
equivalence theorem [28]–[30], according to which the scat-
tering fields can be considered as radiation from equivalent
electric and magnetic currents on a virtual surface enclosing
the scattering body [31]. A uniform asymptotic PO (UAPO)
solution has been introduced for the diffraction by dielectric
wedges [32], [33]. In this solution, the singularity behav-
iors at the shadow boundary of the geometrical optics (GO)
rays were corrected by using the UTD transition function,
in which the non-uniform solution was multiplied by the
Fresnel integral. However, the accuracy of the PO for the
diffracted field has not been clearly evaluated in this investi-
gation.

The hidden rays of diffraction (HRD) have been pro-
posed to extend a concept of HUTD to the internal diffracted
field, in conjunction with the PO currents on the wedge
surfaces, and the additionally introduced terms may be inter-
preted to be excited by the non-physical incident waves [34],
[35]. Although the UAPO and HRD approximations are
rather simple and powerful tools for estimating the high-
frequency diffracted field, their reliability has not been ver-
ified clearly yet. This motivates us to evaluate the accuracy
of these approximation solutions, and to develop a reliable
solution for the edge diffraction by dielectric objects.

In this paper, the diffracted field of a TM-polarized
plane wave by a dielectric wedge has been evaluated by an
extended PO solution (EPO), in which the radiation fields are
obtained by integrating from the equivalent electric and mag-
netic currents on the wedge surface with two-dimensional
Green’s function. Unlike conventional PO solutions, these
currents are obtained from GO incident, reflected and trans-
mitted rays outside and inside the wedge, respectively. Uni-
form asymptotic solutions including the error function com-
plement have been derived by using the saddle point tech-
nique for scattering field integration. The diffracted fields
were then represented in terms of cotangent functions, which
have a one-to-one correspondence with the singularities of
the shadow boundaries of the GO rays.
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The numerical results were also calculated and com-
pared with those of reference solutions, such as HRD, and
the finite-difference time-domain (FDTD) method.

In the following discussion, the time-harmonic factor
e jωt is assumed and suppressed throughout the text.

2. Derivation of Diffracted Field

When an object is illuminated by an incident electromagnetic
wave (Ei, H i), the scattered field (Es, H s) may be calculated
by the radiation fields from induced electric and magnetic
currents on the surface of the object [21], [31]. For the two-
dimensional configuration ( ∂

∂z ≡ 0), the scattering field (Es,
H s) is given by integrating equivalent electric and magnetic
currents J , M on the boundary C of a scattering body with
the Green’s function G as [21]

Es = −
∫

C

[
jωµJ(r ′)G(r, r ′) + M(r ′) × ∇′G(r, r ′)

]
dl ′,

(1)

H s = −
∫

C

[
jωεM(r ′)G(r, r ′) − J(r ′) ×∇′G(r, r ′)

]
dl ′,

(2)

where a prime denotes the derivative with respect to the
source coordinates. Currents J and M are found from the
total field (E, H) on the boundary as

J = n̂ × H on C, (3)
M = E × n̂ on C, (4)

where n̂ denotes a unit normal vector on the boundary sur-
face C to the area containing the observation point. While
this formulation is mathematically rigorous and the derived
field is correct as long as the equivalent currents J and M
are precise, the correct current distribution is usually diffi-
cult to find. Accordingly, several approximations have been
proposed to estimate such currents.

As shown in Fig. 1, let us now consider a two-
dimensional dielectric wedge of the wedge angle ϕw and
the relative dielectric constant εr is illuminated by a TM-
polarized incident plane wave:

H i = e jkx cosϕ0+jky sinϕ0 ẑ, (5)

Fig. 1 Plane wave diffraction by a dielectric wedge.

Ei =

√
µ0

ε0
e jkx cosϕ0+jky sinϕ0 (sin ϕ0 x̂−cos ϕ0 ŷ), (6)

where k = ω
√
ε0µ0 denotes the free space wave number, and

ϕ0 is the incident angle.
Depending on the incident direction, the incident wave

may illuminate only surface OA (ϕ0 < ϕw − π), only surface
OB (ϕ0 > π), or both surfaces (ϕw − π < ϕ0 < π) of
the dielectric wedge. The derivation is illustrated here only
for surface OA illumination, and the corresponding result
for surface OB illumination is given in Appendix A. In
addition, multiple GO reflections may also occur depending
on the shape of the wedge and the direction of the incident
wave. In order to find a fractional diffraction effect, the
wedge angle and the incident angle are somewhat restricted
to avoid multiple GO reflections at the wedge surfaces. If
these exist, one simply treats these as additional incident
waves to derive the corresponding edge diffracted fields.

While our formulation can be extended for lossy dielec-
tric wedges, let us explain here for lossless cases, namely εr
is real positive.

2.1 Exterior Field

The equivalent currents J and M may be approximated from
the incident plane wave (Ei, H i) in Eqs. (5) and (6) and GO
reflected plane wave as

H r
A = ΓAe jkx cosϕ0−jky sinϕ0 ẑ, (7)

Er
A = −ΓA

√
µ0

ε0
e jkx cosϕ0−jky sinϕ0 (sin ϕ0 x̂+cos ϕ0 ŷ),

(8)

with ΓA is reflection coefficient from surface OA and is given
by:

ΓA =
εr sin ϕ0 −

√
εr − cos2 ϕ0

εr sin ϕ0 +
√
εr − cos2 ϕ0

. (9)

Then the equivalent currents Jex
A , Mex

A on surface OA can be
approximated as

Jex
A = n̂×H |y=0+≃ J i

A+J
r
A = n̂ × (H i+H r

A)|y=0+,
(10)

Mex
A = E |y=0+× n̂≃M i

A+M
r
A = (Ei+Er

A)|y=0+ × n̂.
(11)

Substituting J i
A and M i

A into Eq. (2), a representative (z)
component of the magnetic field HiA

z may be calculated as

HiA
z =

∫ ∞

0
e jkx′ cosϕ0

(
− j k sin ϕ0G +

∂G
∂y′

)
y′=0

dx ′,

(12)

G =
− j
4π

∫ ∞

−∞

e−jη(x−x
′)−j

√
k2−η2 |y−y′ |√

k2 − η2
dη. (13)
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Fig. 2 Integration contours C and SDP in the complex w plane.

Evaluating first the integration with respect to x ′, one gets

HiA
z =

j
4π

∫ ∞

−∞

(
−k sin ϕ0√

k2 − η2
±1

)
e−jηx−j

√
k2−η2 |y |

(k cos ϕ0+η)
dη.

(y ≷ 0)
(14)

If one uses variable transformation η = k sin w, x = ρ cos ϕ,
y = ρ sin ϕ, one gets

HiA
z =

j
4π

∫
C

− sin ϕ0±cos w
cos ϕ0+sin w

e−jkρ sin(w±ϕ)dw

=
± j
4π

∫
C
cot
π/2+w±ϕ0

2
e−jkρ sin(w±ϕ)dw, (ϕ ≶ π)

(15)

where the integral contour C runs from (−π/2 − j∞) to
(π/2 + j∞), as shown in Fig. 2. The above integral may
be evaluated by the saddle point technique for kρ ≫ 1.
Considering the location of the pole wp(= ϕ0 − π/2) and the
saddle point ws(= |ϕ − π | − π/2), one may derive a uniform
solution as [2]

HiA
z = HiA

d − Hi
zU(ϕ − π − ϕ0), (16)

HiA
d = −C(kρ)

[
cot
π − (ϕ − ϕ0)

2
+S−(ϕ−ϕ0)U(π−ϕ)

]
,

(17)

C(χ) = e−j(χ+π/4)√
8πχ

, (18)

where Hi
z represents the z-component of the GO incident

plane wave in Eq. (5), and U(x) is a unit step function. A
transition function S±(α) can be given by

S±(α) = 1
√
πC(kρ)

e jkρ cosα sgn(π ± α)

· Q
[
(1 + j)

���cos
α

2

��� √kρ
]
− 1

cos(α/2) , (19)

where Q(y) =
∫ ∞
y

e−x
2
dx and sgn(x) is a sign function.

Similarly, one also obtains the magnetic field HrA
z from

J r
A and M r

A due to the GO reflected wave as

HrA
z = HrA

d + Hr
AzU(π − ϕ0 − ϕ), (20)

HrA
d = −C(kρ)

·
[
ΓA cot

π−(ϕ+ϕ0)
2

+ ΓAS−(ϕ+ϕ0)U(π−ϕ)
]
,

(21)

where Hr
Az represents the z-component of the GO reflected

plane wave in Eq. (7).
By combining the contributions from the incident and

reflected waves, the exterior diffracted field of the dielectric
wedge due to surface OA can be given by:

H+A = HiA
d + HrA

d

= −C(kρ)
[
cot
π−(ϕ−ϕ0)

2
+S−(ϕ−ϕ0)U(ϕ−π)

· U(ϕw − π − ϕ0)

+ ΓA cot
π − (ϕ + ϕ0)

2
+ ΓAS−(ϕ+ϕ0)

· U(π−ϕ)U(π − ϕ0)
]
. (22)

In the above formulation, the singularity behaviors of
cotangent functions match with the shadow boundaries of the
GO rays from surface OA. When surface OB is illuminated,
the cotangent functions in Eq. (22) are replaced by others
corresponding to the incident and reflected waves from sur-
face OB (see Appendix A). The above solution is essentially
the same as UAPO [32] but has a different form due to a
different treatment near the transition region.

For the perfectly electrically conducting (PEC) wedge,
the reflection coefficient ΓA in Eq. (22) becomes a unit,
JA = 2n̂ × H i, and MA = 0. Accordingly, the resulting
diffracted field H+A becomes exactly the same as the one
formulated by the PO formulation [16], in which a general
formula with four cotangent functions can then be obtained
for any incident direction of the PEC wedge problem by
combining Eq. (22) and Eq. (A· 1). As mentioned above,
these cotangent functions have a one-to-one correspondence
with the GO rays. Depending on the direction of the in-
cidence, two GO rays become non-physical rays, and two
corresponding cotangent functions cancel out each other to
exhibit the correct diffracted field behavior, as reported in
[16]. This cancellation occurs even for our uniform expres-
sion in Eqs. (22) and (A· 1). On the other hand, when the GO
shadow boundary behavior is corrected by multiplying the
UTD-type transition function in terms of Fresnel integrals
in the UAPO formulation [32], the exact cancellation doesn’t
occur to yield a small residue to the diffracted field.

2.2 Interior Field

Inside the dielectric wedge, one has only the transmitted
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wave (H t
A, Et

A), which can be given by:

H t
A = TAe−jk1x cosϕt

A−jk1y sinϕt
A ẑ, (23)

Et
A = TA

√
µ0

εrε0
e−jk1x cosϕt

A−jk1y sinϕt
A (−sin ϕt

A x̂+cos ϕt
A ŷ),

(24)

where k1 = ω
√
εrε0µ0, the transmitted angle ϕt

A (⩾ π) is
defined as ϕt

A = π + arccos(cos ϕ0/
√
εr), and TA = 1+ ΓA is

the transmission coefficient from surface OA. Then the cor-
responding magnetic and electric currents can be obtained
as:

J in
A = n̂′ × H t

A |y=0− = −TAe−jk1x cosϕt
A x̂, (25)

M in
A = Et

A × n̂′ |y=0− = TA

√
µ0

εrε0
e−jk1x cosϕt

A sin ϕt
A ẑ.

(26)

Substituting J in
A and M in

A into Eq. (2), the z-component of
the internal scattering field due to the transmitted wave on
surface OA can be calculated in a similar manner in Eq. (15)
as

HtA
z =

−jTA

4π

∫
C
cot
ϕt

A−(w−π/2)
2

e−jk1ρ sin(w−ϕ)dw. (27)

Using saddle point technique to evaluate the above integral,
HtA

z can then be written as

HtA
z = H−

A + Ht
AzU(ϕ − ϕt

A), (28)

H−
A =−C(k1ρ)

[
TA cot

ϕ−ϕt
A

2
−TAS−(π−ϕt

A+ϕ)U(ϕ−ϕw)

· U(π − ϕ0)
]
, (29)

where Ht
Az represents the z-component of the GO transmitted

plane wave in Eq. (23). The singularity of the cotangent
function in Eq. (29) has a one-to-one correspondence with
the shadow boundary of the transmitted wave on surface
OA. As same as the exterior field, one may have another
contribution H−

B from the transmitted wave on surface OB as
represented by Eq. (A· 2) in Appendix A, as the surface OB
is illuminated.

3. Numerical Results and Discussion

In order to evaluate the accuracy of our extended PO (EPO)†
approximation solution, the numerical results were com-
puted and compared with those obtained from the HRD
and FDTD simulation. For convenience, the diffracted field
by the HRD solution has been summarized in Appendix
B. In order to avoid the multiple internal reflections of the

†As the terminology ‘PO’ has been often used only for the
cases of PEC scattering problems, the word ‘extended’ is added to
show the difference between the conventional PO and our EPO for
dielectric problems. EPO reduces to PO for PEC problems.

transmitted rays, a rather flat-angle wedge is selected for the
numerical example. While the results of EPO are derived
from Eqs. (22), (29), (A· 1) and (A· 2), those by HRD can
be found from Eqs. (A· 4) and (A· 5) in Appendix B. On the
other hand, the diffracted field constituent of FDTD is ob-
tained numerically by subtracting the GO rays from the total
field in the following comparisons. The numerical FDTD
calculation is rather simple, but the current 2D wedge body
spans infinitely. Then one has to select an appropriate tran-
sient time to avoid the spurious diffraction effect from the
absorbing boundaries. To obtain reliable FDTD simulation
results, the following parameters are selected: the frequency
is 6 GHz (λ = 50 mm); the analytical region whose center is
located at the edge, is 700 mm×700 mm; the rectangular Yee
cell size is 0.25 mm× 0.25 mm; and the number of iteration
is 50000.

Figure 3 shows the patterns of the total and diffracted
fields of a PEC wedge given by the EPO, HRD, and FDTD
simulation for a two-side illumination case, in which the
EPO has the same result as the conventional PO solution. In
this case, the incident wave excites the reflected fields from
both surfaces OA and OB. As can be seen from Figs. 3 (a) and
3 (b), the amplitude and the phase of the total field of the three
solutions match pretty well in all directions. While the HRD
and FDTD results are almost identical, some differences
from the EPO result can be observed near the wedge sur-
face. These differences are due to the fact that the diffracted
field by the EPO solution doesn’t satisfy the boundary and
edge conditions [16], [21], [34]. To show the difference
more clearly, Fig. 3 (c) is prepared to show the diffracted
fields without GO components. The diffracted field is small
compared with the GO rays and distributes mainly in the
vicinity of the geometrical shadow boundaries SBr. As men-
tioned in Appendix B, the HRD solution is composed from
the heuristic UTD diffracted solution of the lossy dielectric
wedge [27] to extend for diffracted fields inside the dielectric
wedge. Accordingly, the HRD solution coincides exactly
with the conventional UTD solution for the PEC wedge [24],
and the solution satisfies the boundary and the edge condi-
tions as well. While non-physical parts of the HRD solution
contribute to satisfying the boundary condition, the index n
relates to the edge condition [36]. One observes a correct
behavior of the diffracted field by HRD: the angular deriva-
tive (Eρ) of the diffracted field (Hz) becomes zero at the PEC
boundary.

When the PEC wedge is replaced by a dielectric wedge
of dielectric constant εr = 6, the corresponding results are
shown in Fig. 4. In this case, the incident wave excites
the reflected and transmitted waves from both surfaces OA
and OB. As can be seen from Figs. 4 (a) and 4 (b), the total
field patterns of three solutions also have a good agreement.
One observes that the exterior scattering pattern is quite
similar to the PEC case in Fig. 3, while the incident wave
mostly transmits into the dielectric region to yield a main
scattering lobe in the forward direction. Figure 4 (c) shows
small differences of diffracted fields among three results. In
contrast to the PEC wedge case, it can be seen that the results
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Fig. 3 Total and diffracted fields by PEC wedge: ϕw = 225◦, ϕ0 = 115◦
and ρ = 3λ. (a) Amplitude of total field. (b) Phase of total field. (c)
Amplitude of diffracted field.

Fig. 4 Total and diffracted fields by dielectric wedge: ϕw = 225◦, ϕ0 =
115◦, εr = 6 and ρ = 3λ. (a) Amplitude of total field. (b) Phase of total
field. (c) Amplitude of diffracted field.
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Fig. 5 Total field by dielectric wedge: ϕw = 225◦, ϕ0 = 30◦, εr = 6 and
ρ = 3λ. (a) Amplitude of total field. (b) Phase of total field.

by EPO match well with the FDTD simulation, while those
by HRD show some differences. So far, we cannot explain
why the EPO solution becomes better than the HRD solution.
This accuracy change of EPO and HRD may be related to the
edge condition. For the inside region, the diffracted fields
by the EPO and HRD solutions in Fig. 4 (c) exhibit almost
the same twin peaks at the transmission shadow boundaries
SBt and have some differences from the FDTD simulation.
One observes that, unlike the PEC wedge, both EPO and
HRD solutions don’t satisfy the boundary condition for the
dielectric case. This requires us to consider the missing
contributions from the boundary of the dielectric wedge.

When the incident angle ϕ0 is selected as 30◦, only
surface OA is illuminated and the corresponding numerical
results of the total field are shown in Fig. 5. One observes
that all three results match well in the exterior region, while
there are some differences in the interior region in Fig. 5 (a).
These differences are bigger than those of the two-side illu-
mination case in Fig. 4. An additional calculation (denoted

Fig. 6 Amplitudes of diffracted and unexplained remainder fields by di-
electric wedge: ϕw = 225◦, εr = 6 and ρ = 3λ. (a) Diffracted field for
ϕ0 = 30◦. (b) Unexplained remainder fields for ϕ0 = 30◦ and 40◦.

as FDTD1) with cell size of 0.15 mm × 0.15 mm has also
been performed to confirm the validity of the previous FDTD
calculations. It can be seen that the accuracy of the FDTD
results doesn’t change even if a significantly smaller cell size
is selected. A significant phase change near the wedge sur-
face can be seen for the FDTD result in Fig. 5 (b). This is
due to the fact that relatively small FDTD numerical values
give erroneous phase, and the analytical EPO and HRD give
correct phase change in this range. The difference has been
found in the diffracted field in Fig. 6 (a), in which additional
field constituent seems to radiate in the interior region. Fig-
ure 6 (b) shows the remainder field subtracted our EPO result
from the FDTD result in Fig. 6 (a). The corresponding result
for ϕ0 = 40◦ is also plotted in Fig. 6 (b). One observes that
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Fig. 7 Possible lateral waves excited by edge diffracted surface waves.

the remainder field becomes larger but has the same shape
when the incident angle is selected as 40◦.

While the GO contributions satisfy the boundary con-
dition on the wedge surface by the reflection/transmission
coefficient, the edge diffracted field excited at the wedge
tip doesn’t satisfy it. This is due to the fact that the edge
diffracted field as in Eq. (22) and Eq. (29) propagates in both
outer and inner wedge regions but with different wave num-
bers. This difference should be compensated by the lateral
waves excited in the denser medium. Figure 7 shows an
outline sketch of the lateral wave inspired by the radiation
field by a line source located at the interface between two
media [2]. The excitation of these lateral waves should be
dependent on the edge diffracted surface field. One no-
tices from Fig. 6 (a) that the edge diffracted surface field at
ϕ = 225◦ is stronger than the one at ϕ = 0◦. Accordingly,
the lateral wave is stronger in the vicinity of surface OB. So
far, we have not yet found how to augment this lateral wave
into our EPO solution.

4. Conclusion

In this paper, the EPO approximation method has been uti-
lized to study the edge diffraction by a dielectric wedge for
a TM-polarized plane wave incidence. Here, the scattering
field can be formulated by integrating the electric and mag-
netic currents excited on the illuminated dielectric interface
with two-dimensional Green’s function. By using the sad-
dle point technique to evaluate the integrations, the uniform
asymptotic solutions have been derived.

Comparisons of the numerical results have been made
with other reference methods. Good comparisons were ob-
served to confirm the reliability of our EPO for the external
field of the dielectric wedge. For the internal field, the EPO
and HRD results have been found to exhibit almost the same
results. Accordingly, non-physical additional terms intro-
duced by HRD have little effect to the total field, and EPO,
which requires significantly fewer computational resources
than HRD or FDTD, may be enough to evaluate the edge
diffracted field for the dielectric wedge calculation. The dif-
ference from the FDTD result suggests an additional diffrac-
tion effect, the lateral wave is needed to fill the results by
EPO and HRD. The observed change in the accuracy of the

EPO and HRD solutions for PEC and dielectric wedges may
require careful consideration of the edge condition. These
aspects are now under investigation and will be reported in
the future.
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Appendix A: Diffraction Field from Surface OB

When the incident wave illuminates surface OB, equivalent
currents JB and MB are excited, and the diffracted fields are
derived in a similar manner in Sect. 2. The external diffracted
field due to JB and MB may be given by

H+B = − C(kρ)

·
[
cot
π+(ϕ−ϕ0)

2
+S+(ϕ−ϕ0)U(ϕw−π−ϕ)U(ϕ0−π)

+ ΓB cot
π+(ϕ+ϕ0−2ϕw)

2
+ΓBS+(ϕ0+ϕ−2ϕw)

· U(ϕ+π−ϕw)U(ϕ0 + π − ϕw)
]
, (A· 1)

and the internal diffracted field is given by

H−
B = − C(k1ρ)

[
− TB cot

ϕ − ϕt
B

2
− TBS−(π+ϕt

B−ϕ)

· U(ϕ−ϕw)U(ϕ0 + π − ϕw)
]
, (A· 2)

where the transmitted angle ϕt
B is defined as ϕt

B = ϕw +

arccos
[
cos(π + ϕ0 − ϕw)/

√
εr

]
, and ΓB is the reflection co-

efficient from surface OB and is given by

ΓB =
εr sin(π + ϕ0 − ϕw) −

√
εr − cos2(π + ϕ0 − ϕw)

εr sin(π + ϕ0 − ϕw) +
√
εr − cos2(π + ϕ0 − ϕw)

,

(A· 3)

and TB = 1 + ΓB.

Appendix B: Hidden Rays of Diffraction (HRD) Solu-
tion

One knows that the PO solution does not satisfy the boundary
and edge conditions. A concept of hidden rays in the non-
physical domain has then been introduced to correct the error
of PO [34], [35]. The HRD solution is extended from the
HUTD solution and satisfies the boundary and edge condi-
tions for the case of the PEC wedge. The external and internal
diffracted fields by a two-dimensional dielectric wedge can
be given by the HRD solution, respectively as [34]

H̄+ = − C(kρ)

·
[
1
n

cot
π−(ϕ−ϕ0)

2n
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n
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n
cot
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n
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· U(ϕ+π−ϕw)
]
, (A· 4)

H̄− = − C(k1ρ)

·
[
T̄A

n
cot
ϕ − ϕt

A
2n

− T̄AS−(π − ϕt
A + ϕ)U(ϕ − ϕw)
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− T̄B

n
cot
ϕ − ϕt

B
2n

− T̄BS−(π + ϕt
B − ϕ)U(ϕ − ϕw)

]
,

(A· 5)

where Γ̄A and Γ̄B are the reflection coefficients of surfaces
OA and OB, and given by

Γ̄A =
εr | sin ϕ0 | −

√
εr − cos2 ϕ0

εr | sin ϕ0 | +
√
εr − cos2 ϕ0

(A· 6)

Γ̄B =
εr | sin(π + ϕ0 − ϕw)|−

√
εr − cos2(π + ϕ0 − ϕw)

εr | sin(π + ϕ0 − ϕw)|+
√
εr − cos2(π + ϕ0 − ϕw)

.

(A· 7)

T̄A = 1 + Γ̄A and T̄B = 1 + Γ̄B are corresponding transmis-
sion coefficients of surfaces OA and OB, respectively. The
index parameter n is taken by the minimum positive value
satisfying the edge condition as [34]

tan
2π − ϕw

n
= εr tan

−ϕw

n
. (A· 8)

The HRD formulations in Eqs. (A· 4) and (A· 5) may be ap-
plied to any direction of the incident wave, while one may
need additional multiple diffracted field contributions due to
particular incident and wedge angles.
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