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A Simple Augmentation Method Using Cutout for Ground
Penetrating Radar Image in Deep Learning
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SUMMARY Ground penetrating radar (GPR) has the advantage of non-
destructively and quickly inspecting internal structures such as voids and
buried pipes under roads. However, it is necessary to estimate the inter-
nal structures from the GPR images. Recently, recognition and detection
methods for GPR images using deep learning have been studied. This paper
examines a data augmentation method using a cutout method necessary to
estimate GPR images with deep learning accurately. We find that the cutout
augmentation exhibits higher detection rates for all objects used in this study
than a commonly used horizontal shift augmentation.
key words: ground penetrating radar, deep learning, data augmentation,
cutout

1. Introduction

Ground Penetrating Radar (GPR) is a non-destructive and
fast measurement method of internal structures by radio
waves in several hundred MHz bands [1]. Currently, it has
been widely used to detect such as voids and buried pipes
under roads. Since GPR images obtained by radar surveys
cannot directly observe objects’ material, size, and loca-
tion, we need to estimate inner structures from GPR images.
Nowadays, skilled engineers determine internal conditions
by image reading, but automatic estimation is necessary due
to significant variations and lack of precision.

In recent years, many researches have been conducted
using convolutional neural network (CNN) and other deep
learning techniques to estimate structures and objects from
GPR images automatically [2], [10]. Deep learning can ac-
curately and automatically estimate objects in images, but it
is necessary to prepare a large number of images for training.
In the case of GPR, it is challenging to prepare many training
images for deep learning. For this problem, augmentation
methods such as rotation, scaling, and contrast adjustment
are commonly used in images of natural objects such as
animals and plants. Note that we cannot apply rotation, ver-
tical shift, or random brightness often used augmentation
methods in natural images because amplitude and pattern of
reflected waves from inner objects are observed according to
material, size, and depth in GPR images. Several augmen-
tation methods using finite-difference time-domain (FDTD)
method [10], [11] and generative adversarial network (GAN)
based style transformation method [12], [13] have been pro-
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posed for GPR images. Because of the high computational
cost of FDTD and GAN methods, we require uncomplicated
and inexpensive augmentation methods for GPR images.

We investigate simple and effective augmentation for
GPR images using a cutout method [14]. In this paper, GPR
images of four types of buried objects by a sandbox experi-
ment are augmented by the cutout method. We further eval-
uate detection rates using YOLOv3 [16] and compare them
to a commonly used horizontal shift method to demonstrate
the effectiveness of the cutout method.

2. Augmentation Method Using Cutout for GPR Im-
ages in Deep Learning

This study examines simple and effective augmentation
methods in deep learning that can apply to GPR images.
Deep learning, such as CNN, requires a large number of
labeled images for training to achieve high accuracy. For
example, the standard CIFAR-10 dataset consists of 60000
images with 10 classes of objects. In the case of GPR, it is
not easy to experimentally acquire many GPR images labeled
with different materials, sizes, and depths. Data augmenta-
tion is generally used to expand initially obtained data sets if
many training images cannot be prepared for deep learning.

In this study, GPR images of four types of buried ob-
jects were augmented by experiments in a sandbox shown
in Fig. 1. Figure 1 (a) presents buried objects with styrene
foam, concrete, wood, and aluminum. GPR was used for
the GSSI SIR-EZ 2600 MHz shown in Fig. 1 (b). Relative
permittivities of sand, styrene foam, wood, and concrete by
a time domain reflectometry (TDR) were 4.5, 1.1, 2.4, and
3.3, respectively. The buried objects were made in various
sizes by combining rectangular blocks of approximately 5
cm per side shown in Fig. 1 (c). In the experiment, the sizes
of the buried objects were set to 5 cm × 5 cm × 5 cm, 5 cm ×
5 cm × 10 cm, 10 cm × 10 cm × 5 cm, and 10 cm × 10 cm ×
10 cm. Here, the size of the object was written in x cm × y
cm × z cm with x and y in the horizontal direction and z in
the depth direction. Also, the objects were buried at depths
of 5, 10, 15, and 20 cm. Thus, 64 labeled GPR images were
obtained according to the materials, sizes, and depths.

The total 64 GPR images obtained in the sandbox ex-
periments were augmented using the cutout method. The
cutout augmentation is as simple as randomly placed rectan-
gular boxes in images. Figure 2 demonstrates augmentations
of the GPR images using the horizontal shift and the cutout
method. Here, the size of the GPR images shown in Fig. 2 is
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Fig. 1 Experiments of GPR image generation for learning in a sandbox.

2132 × 1240 pixels. The horizontal shift shown in Fig. 2 (a)
represents the reflected wave from the buried object moved
to the left and right. This method moves the image horizon-
tally within a given frame. Moving the image horizontally
allows more images to be obtained, thus reducing overfit-
ting and improving the robustness of the model. Horizontal
translation is particularly beneficial in object recognition and
classification tasks, where the position of objects in the im-
age is not fixed, and they may appear in different locations.
The cutout method in Fig. 2 (b) illustrates a box with 50 ×
50 pixels randomly placed around the reflected wave from
the buried object in the GPR images. This method masks
square regions at random locations to avoid excessive re-
liance on one part of the image, allowing the system to cope
with cases where certain features are not visible. In the case
of GPR, the area around the hyperbola is masked to identify
underground objects from the hyperbolic reflection image in
the GPR images. A similar method is the Random Erase
method [15], which requires changing the size and color of
the mask region. Consequently, the 64 GPR images gen-

Fig. 2 Examples of augmentation for GPR images.

erated in the sandbox experiments were augmented to 192
images by each method.

You only look once (YOLO) was used to detect the
buried object in the GPR images in this study. It is a widely
used real-time object detection algorithm based on CNN.
In YOLO training, objects are enclosed by bounding boxes
and labeled with position coordinates and types of objects
in images. Similarly, in the case of GPR images, reflected
waves from buried objects are enclosed by bounding boxes
and labeled for each type of object. After training, YOLO
can detect the types and positions of buried objects in GPR
images using bounding boxes.

3. Results and Discussions

Detection rates of the GPR images of the four different
objects with the cutout augmentation were evaluated us-
ing YOLOv3, which was used as YOLO implementation.
The detection rate was defined as whether the bounding box
could detect the material and position of buried objects. Of
all the 192 images generated by the sandbox experiments



BRIEF PAPER
499

Table 1 Confusion matrices of the detection rates with the augmenta-
tions.

and the cutout augmentation, 160 were used for training.
The remaining 32 and 16 additional images were used for
validation for 48 images.

Table 1 shows confusion matrices of the detection rates
using the horizontal shift and the cutout compared to without
augmentation. The average values of 10 cross-validations
are shown in Table 1. Table 1 (a) indicates that the detec-
tion rates were high in the styrene foam and the aluminum
and were low in the concrete and the wood due to differ-
ences in electric permittivity. The concrete with relative
permittivity of 3.3, which had a slight dielectric constant
difference between the sand, the detection rate was as low
as approximately 40%, and the non-detection rate was high
at approximately 50%. Similarly, for the wood with relative
permittivity of 2.4, the detection rate was low, approximately
40%, and the false positive rates for the concrete and styrene
foam were high, approximately 10% and 30%, respectively.
On the other hand, for the styrene foam with relative permit-
tivity of 1.1, which had a significant difference in dielectric
constant, the detection rate was as high as approximately
80%, and the non-detection and false detection rates were
less than approximately 5%. For the concrete augmented by
the horizontal shift and the cutout, the detection rate doubly
improved to approximately 70%, and the non-detection rate
halved to approximately 25% shown in Tables 1 (b) and (c).
As in the concrete case, the detection and non-detection rates
were improved for the wood. Table 1 (d) compares various
methods for the detection rates of four types of buried objects.
The detection rates were 63.2%, 82.9%, and 86.5% without
augmentation, with the horizontal shift and the cutout, re-
spectively. Furthermore, the detection rates with the cutout
were higher than the horizontal shift for all objects. The
reason for the high accuracy of the cutout method is that it

is a method that can handle cases where the entire reflection
image is not observed due to clutter caused by underground
inhomogeneity. We found that the cutout augmentation for
GPR images improved the detection rates. This paper indi-
cated that the cutout only requires the placement of a box,
which could easily augment and improve the detection rates.
However, since the cutout method is not highly accurate, it
must be combined with other data expansion methods.

4. Conclusions

This paper investigated the augmentation method by the
cutout for GPR images in deep learning. We evaluated the
detection rates using YOLOv3 for the GPR images of the
four types of buried objects. As a result, it is shown that the
average detection by the cutout method was 3.6% higher than
the horizontal shift. We found that the cutout augmentation
for GPR images was a simple and effective method.

In the future, we will study the detection rates depending
on the size and number of boxes used in the cutout method.
Moreover, we will apply it to real-time detection on sites
such as voids and pipes under roads.
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