
IEICE TRANS. ELECTRON., VOL.E107–C, NO.6 JUNE 2024
155

PAPER Special Section on Low-Power and High-Speed Chips

A 0.13 mJ/Prediction CIFAR-100 Fully Synthesizable
Raster-Scan-Based Wired-Logic Processor in 16-nm FPGA

Dongzhu LI†a), Zhijie ZHAN†, Rei SUMIKAWA†, Mototsugu HAMADA†, Atsutake KOSUGE†, Nonmembers,
and Tadahiro KURODA†, Fellow

SUMMARY A 0.13mJ/prediction with 68.6% accuracy wired-logic
deep neural network (DNN) processor is developed in a single 16-nm field-
programmable gate array (FPGA) chip. Compared with conventional von-
Neumann architecture DNN processors, the energy efficiency is greatly
improved by eliminating DRAM/BRAM access. A technical challenge
for conventional wired-logic processors is the large amount of hardware
resources required for implementing large-scale neural networks. To im-
plement a large-scale convolutional neural network (CNN) into a single
FPGA chip, two technologies are introduced: (1) a sparse neural network
known as a non-linear neural network (NNN), and (2) a newly developed
raster-scan wired-logic architecture. Furthermore, a novel high-level syn-
thesis (HLS) technique for wired-logic processor is proposed. The proposed
HLS technique enables the automatic generation of two key components:
(1) Verilog-hardware description language (HDL) code for a raster-scan-
based wired-logic processor and (2) test bench code for conducting equiv-
alence checking. The automated process significantly mitigates the time
and effort required for implementation and debugging. Compared with the
state-of-the-art FPGA-based processor, 238 times better energy efficiency
is achieved with only a slight decrease in accuracy on the CIFAR-100
task. In addition, 7 times better energy efficiency is achieved compared
with the state-of-the-art network-optimized application-specific integrated
circuit (ASIC).
key words: wired-logic, non-linear neural network, FGPA, high-level
synthesis, software and hardware co-design

1. Introduction

Artificial intelligence (AI) has become an integral part of
our lives. Neural networks are a central technology in AI
processing. In particular, convolutional neural networks
(CNNs) achieve excellent recognition performance; thus,
they are becoming a key technology for digital transforma-
tion. In applications such as industrial robots, autonomous
driving, and self-checkout stores, CNN is generally pro-
cessed in a power-constrained edge environment. Since these
edge devices have strict power and heat constraints, energy-
efficient CNN processors based on application-specific in-
tegrated circuits (ASICs) [1]–[15] are being developed. In
recent years, research has been conducted to improve power
efficiency by optimizing both the network structure and
hardware architecture. For example, an ASIC optimized
for hidden neural network (HNN) structure was presented
at ISSCC’22 [1]. This hardware applies random numbers

Manuscript received June 12, 2023.
Manuscript revised October 4, 2023.
Manuscript publicized November 24, 2023.

†The authors are with Graduate School of Engineering, The
University of Tokyo, Tokyo, 113–8656 Japan.

a) E-mail: ldzdongzhu@gmail.com
DOI: 10.1587/transele.2023LHP0001

Fig. 1 Wired-logic architecture-based processor using non-linear neural
network (NNN).

as weight coefficients. This eliminates the need to store
weight information and reduces memory usage and power
consumption for memory access. While such network and
task-optimized AI processors achieve good energy efficiency,
they have high non-recurring engineering (NRE) costs be-
cause their applications are fixed. The HNN example [1]
is dedicated to image classification tasks. Developing a
large number of dedicated network-optimized AI proces-
sors to cover a wide range of applications requires high cost
due to expensive photomask design and fabrication. On
the other hand, field-programable-gate-arrays (FPGAs) can
be customized for specific tasks without large NRE costs.
Moreover, FPGA implementation only needs hardware de-
scription language (HDL) codes and post-HDL processes are
highly automated by FPGA tools. Therefore, compared with
ASIC development, FPGA implementation requires much
lower design cost and less development time. Furthermore,
along with high-level synthesis (HLS) technology, HDL cod-
ing can also be automated, and designers only need to write
software codes like C++ or Python to implement AI models
on FPGAs.

However, their energy efficiency is lower than ASICs
due to the large capacitance of reconfigurable signaling wires
and the large amount of leakage current from unused circuit
blocks. Compared with ASIC-based implementation, con-
ventional FPGA-based hardware is less energy-efficient by
approximately two orders of magnitude [17].

In this work, a single-board FPGA-based raster-scan-
based wired-logic processor is developed, which can process
a 10-layer CNN for the CIFAR-100 task with 7 times bet-
ter energy efficiency than the state-of-the-art ASIC [1]. All
the processing elements (PEs) and signaling wires includ-
ing weight information are implemented on the FPGA to
eliminate memory access (Fig. 1 (a)). A technical challenge

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



156
IEICE TRANS. ELECTRON., VOL.E107–C, NO.6 JUNE 2024

of the wired-logic architecture is the large amount of hard-
ware resources. Multi-board implementation is not a good
way to achieve energy-efficient hardware because the power
consumption for the board-to-board interface of FPGAs is
much larger than that of the PEs [17]. To solve this problem,
two technologies are used. One is a non-linear neural net-
work (NNN) (Fig. 1 (b)). NNN presented in [18] achieves
high expressive capability by individually optimizing the
non-linear activation function of each neuron. As a result,
even a 97% pruned ultra-sparse binary-weight neural net-
work can achieve a high accuracy that is comparable to prior
works [19]. The other is a newly proposed raster-scan wired-
logic architecture. By reusing the same filter circuit in a time-
shared manner, the amount of required hardware resources
is reduced to 1/7.6, compared with the conventional wired-
logic architecture [19]. The developed processor achieves a
classification accuracy of 68.6% on the CIFAR-100 dataset
and an energy efficiency of 0.13mJ/prediction. This energy
efficiency is 238 times better than the state-of-the-art FPGA-
based AI processor [20] and achieved with only a slight drop
in accuracy. Moreover, even when compared with the state-
of-the-art ASIC optimized for HNN [1], the proposed raster-
scan wired-logic processor achieves 7 times better energy
efficiency.

This paper is an extended version of the conference
paper [31] with a new discussion about HLS tool chains to
reduce the design cost of the wired-logic processor. The rest
of this paper is organized as follows. In Sect. 2, we intro-
duce related works regarding non-Von-Neumann processors
and FPGA implementations. In Sects. 3 and 4, our proposed
raster-scan-based wired-logic processor and HLS tool chains
are presented, respectively. In Sect. 5, experimental results
are shown and finally, we conclude this paper with the sum-
mary in Sect. 6.

2. Related Works

2.1 Non-von-Neumann ASIC Implementations

The most common approach for low energy consuming non-
von-Neumann type AI hardware is to create ASICs. En-
ergy efficiency can be maximized to the limit by designing
ASICs with hardware structures optimized for the task to be
performed.

A major non-von-Neumann ASIC architecture for AI
processing is a wired-logic type implementation. Wired-
logic architecture is a method in which a sufficient number
of processing elements (PEs) are implemented on a chip.
The PEs are then wired according to the order of tasks to be
processed. Such a wired-logic type can be further divided
into two types of implementation methods.

One is the neuromorphic processor [2]–[10], which uses
a spiking neural network (SNN) model that mimics cere-
brum neural activity and expresses signals using spikes. The
SNN-based neuromorphic processor is actively studied us-
ing knowledge from the field of neuroscience. The other
is a wired-logic processor that uses NNN, which expresses

signals using digital values. NNN is a method that can build
models with high accuracy using a small number of neurons
and synapses. This is achieved by optimizing the activation
function of each neuron individually. An example of ASIC
design using NNN is reported Refs. [11] and [12].

A common technical challenge for the wired-logic ar-
chitecture including neuromorphic processors is that they
require a large amount of hardware for large-scale neural
networks. In the example of the neuromorphic processor [2],
it was necessary to use eight chips to implement the SNN
which has sufficiently high accuracy on the CIFAR-10 and
CIFAR-100 datasets. The chip-to-chip interface between
ASICs is the new performance bottleneck due to the large
power consumption and latency. The energy consumed by
the chip-to-chip interface is more than two orders of magni-
tude larger than the energy consumed by the PEs in the neu-
romorphic processor [17]. To mitigate this problem, single
chip implementations are needed for energy-efficient com-
puting.

2.2 FPGA Implementations

While these methods based on ASIC implementation en-
able the reduction of energy consumption by designing
task-optimized hardware, they lack post-implementation pro-
grammability and have high NRE costs. Therefore, a method
of hardware implementation of neural networks on FPGAs,
which can achieve low NRE costs, is being studied [18]–
[24]. Methods are being studied to overcome the drawback
that FPGA-based hardware has difficulties in achieving low
energy consumption compared to ASICs. Reference [20]
conducted structured pruning of CNN filters to reduce the
energy consumption of external DRAM accesses. A wired-
logic and NNN-based FPGA implementation, which is simi-
lar to the ASIC design method in [11], [12], has also achieved
the reduction of energy consumption [21]. A shift-register-
based wired-logic architecture has been reported in [19],
which can implement multiple CNN layers onto a single
FPGA board. In CNNs, the filter slides by one pixel at a
time from the top left corner of the input image, and the pro-
cessing proceeds in a raster-scan fashion until it reaches the
bottom right corner. In conventional wired-logic processors,
all these raster scan operations are loop-unrolled in the hori-
zontal direction of the image or both vertical and horizontal
directions. In a shift-register-based wired-logic implementa-
tion, all PEs are implemented in parallel as shown in Fig. 2.
Such conventional loop-unrolled wired- logic architecture
enables short latency and good energy efficiency.

However, this implementation has an issue with the
huge hardware implementation size for large-scale neural
networks. When implementing a CNN which has a large
number of channels, the hardware amount increases rapidly.
Therefore, in the conventional work [19], the number of
channels is limited to 64 for a 14-layer CNN for the CIFAR-
10 dataset. For more difficult tasks, such as classifying 100
classes of images in the CIFAR-100 dataset, more than 200
channels would be required. The hardware size would in-



LI et al.: A 0.13 MJ/PREDICTION CIFAR-100 FULLY SYNTHESIZABLE RASTER-SCAN-BASED WIRED-LOGIC PROCESSOR IN 16-NM FPGA
157

Fig. 2 Conventional loop-unrolled wired-logic architecture.

crease about nine times. Since the 64-channel 14-layer CNN
for CIFAR-10 uses 1.3M lookup tables (LUTs), 11.7M LUTs
would be needed when the number of channels increases be-
yond 200. This number far exceeds the size of available
FPGAs on the market. Therefore, multiple FPGA boards are
required for the implementation. As mentioned in [17], the
board-to-board interface is not suitable for implementations
pursuing low energy consumption due to its poor energy
efficiency, so further circuit area reduction is required.

3. Raster-Scan-Based Wired-Logic Processor

NNN [19] is a kind of binary neural network where the
weight coefficients are quantized to +1/−1. NNN [19] can
achieve high recognition accuracy even with binary weight
coefficients and an ultrasparse structure by optimizing the
nonlinear function to various shapes for each channel through
training. The raster-scan-based wired-logic processor using
NNN developed in this work is shown in Fig. 3. A line
buffer that can store one line of image data (a feature map)
is connected to other line buffers and configured as a large
shift register. In this work, the filter kernel size is set to 3
× 3 for all convolutional layers. Therefore, the shift register
of all convolutional layers can be regarded as three lines of
line buffers connected in series. The data for the filter ker-
nel is taken out from this shift register and output to each PE
(Fig. 4). By inserting data shifted by one pixel in every clock
cycle, a convolution operation with Stride=1 can be realized.
The shift register is connected to each PE by synapse wiring
that reflects the training results of the neural network (NNN).
If the weight coefficient is +1 as the result of training, it is
connected to the positive input of the PE (Fig. 4); and if the
weight coefficient is −1, it is connected to the negative input
of the PE. Each PE consists of adders and a lookup table
(LUT). As well as the conventional method [19], non-linear
functions of NNN are implemented using FPGA 6-LUTs.

Compared with the conventional loop-unrolled wired-
logic architecture (Fig. 2 (b)), while the proposed raster-scan
architecture increases the number of clock cycles for pro-
cessing due to the reduced parallelism, the hardware size
is reduced to the inverse of the width of the data. For ex-
ample, for the first convolutional layer, the input and output

Fig. 3 Proposed raster-scan-based wired-logic architecture.

Fig. 4 Detailed processing element implementation of the neural net-
work.

data are 32× 32 pixels in the CIFAR-100 dataset. Therefore,
applying the raster-scan wired-logic architecture increases
the number of clock cycles by 32 times, but reduces the
number of PEs required by a factor of 1/32. The larger the
data size, the greater the effect of hardware usage reduction.
Therefore, the effect of hardware usage reduction decreases
in the later layers beyond the pooling layers where the feature
map becomes smaller. Since the reduction effect is large in
the first several layers with a large feature map, a sufficient
hardware resource reduction effect can be achieved. The
challenge with the raster-scan wired-logic processor is the
zero-padding operation in convolution layers. In the con-
ventional loop-unrolled architecture, where the circuit needs
to insert zeros is always fixed and so it does not require com-
plicated control circuit. In the proposed raster-scan archi-
tecture, it is necessary to implement zero padding according
to the network structure. A counter is placed to check the
number of pixels applied to the circuit. After one line of
data has been input to the shift register, two pixels of zeros
are inserted. When it detects that data for all lines have been
input, it inserts zero data for two lines. All such controllers
are implemented with a state machine based on a counter.
The clock is applied synchronously with data, and the clock
frequency is divided by 2 using a divider at the pooling layer.



158
IEICE TRANS. ELECTRON., VOL.E107–C, NO.6 JUNE 2024

4. High-Level Synthesis Tool for Raster-Scan-Based
Wired-Logic Processor

To accelerate the development process of the raster-scan
wired-logic processor, we have developed a HLS tool that
can directly translate CNN models from PyTorch to Verilog.
This allows us to quickly reflect any design changes to the
neural networks made in PyTorch in the post-synthesis hard-
ware design. Moreover, our HLS tool has the added capabil-
ity of generating a test-bench in System Verilog that (1) reads
an arbitrary input image from the CIFAR-10 and CIFAR-100
datasets, (2) performs inference using both PyTorch and the
generated HDL code, and (3) validates the result of infer-
ence by comparing the output feature map (OFM) values of
individual layers. This comprehensive functionality of our
HLS tool has the advantage of greatly saving time and effort
in debugging and validating the wired-logic processor.

Although commercially available HLS tools such as
Xilinx Vitis [27] and Vitis AI [28] are strong at quick and
high-performance FPGA deployment for many applications,
they fall short for our usage because Ref. [27] does not sup-
port PyTorch and Ref. [28] is optimized for the on-board
Deep Learning Processor Units (DPUs) in Xilinx products
rather than FPGAs. On the other hand, recent HLS re-
search works [29], [30] have come to support PyTorch in
their frameworks as shown in Fig. 5 (a). The translation
from PyTorch to HDL is achieved with Multi-Level Inter-
mediate Representation (MLIR) and hence these tools sup-
port most of the existing PyTorch modules. However, to
support this wide range of PyTorch modules using MLIR,
the designer needs to manually plan dataflow and scheduling
ahead. Furthermore, no previous HLS tools can generate
HDL test-bench from PyTorch dataset.

The proposed raster-scan-based wired-logic architec-
ture enables the implementation of a large-scale NNN on a
single chip. As shown in Fig. 5 (b), this eliminates the man-
ual labor for dataflow design and scheduling because there
is no memory access during inference. This is achieved by
the Python code of the NNN model training results, which
already contains the entire data flow, shift registers, and PE
array scheduling of each layer.

Hence, the design process using our tool is faster com-
pared to conventional HLS tools. The proposed HLS tool,
while specifically designed for wired-logic architecture, of-
fers the flexibility of generating the required hardware design
code for various networks.

With the proposed HLS tool, we manage to unify (1)
the generation of new NNN models in HDL, (2) the gener-
ation of a new testbench in HDL, and (3) automated testing
of all models with one simple script. For model genera-
tion, the proposed HLS tool can translate HDL code for (a)
convolution (CONV), (b) max pooling, and (c) fully con-
nected (FC) layers. For each type of layer, the calculation
is element-wise unrolled in Verilog with appropriate weight
data hard-coded as wired-logic. The bit width of input and
output are assigned by the quantized network accordingly.

Fig. 5 Comparison of high-level synthesis flows between (a) previous
works and (b) this work.

Fig. 6 Conceptual sketch of the equivalence checking program.

The testbench generated by the proposed HLS tool ver-
ifies the output feature map (OFM) values of each layer and
identifies any incorrect layers, as shown in Fig. 6. Automat-
ing this process is necessary because the bit width, filter size,
and input image size at any layer may change during develop-
ment. Since HDLs are not suitable for handling this dynamic
typing nature, we utilize HLS in Python to dynamically gen-
erate new HDL testbenches. First, a ground truth file is
generated by passing an arbitrary image from the dataset
through the NNN in PyTorch. All intermediate OFM val-
ues are recorded as expected answers for the HLS-generated
model. These values are then converted into binaries and
hardcoded as LUTs to be accessed by the testbench program.
Next, a binary file is created using the image from PyTorch
as input data. Finally, a testbench program is generated in
SystemVerilog, incorporating updated shape and bit width
information obtained from the NNN model. The testbench
program performs the following tasks: (1) reads the file for
the generated HDL model, (2) compares the OFM values
between simulation and ground truth, and (3) records any
differences in a log.

By allowing quick evaluation and revision of the initial
CNN model at the hardware level, the proposed approach
significantly enhances the efficiency of testing new models.

This enables AI model designers to focus more on in-
novative and creative tasks.



LI et al.: A 0.13 MJ/PREDICTION CIFAR-100 FULLY SYNTHESIZABLE RASTER-SCAN-BASED WIRED-LOGIC PROCESSOR IN 16-NM FPGA
159

5. Experiment Results

5.1 Raster-Scan Wired-Logic Processor Using NNN

As shown in Fig. 7, a 10-layer VGG-like CNN that consists
of 6 convolution layers, 3 max-pooling layers, and 1 fully
connected layer was used as the initial structure to train the
NNN. Eight implementations of the networks having differ-
ent numbers of channels were trained, and all have 80% of
their synapses pruned. Compared to conventional CNNs,
the individual optimization of the nonlinear activation func-
tion in each neuron during backpropagation within the NNN
enables smaller-scale and highly pruned neural networks to
achieve a recognition accuracy similar to that of much larger
CNNs. The resulting recognition accuracy ranges from ap-
proximately 63.5% to 69.3%, showcasing only a minor re-
duction in accuracy compared to that of state-of-the-art CNN
processors [1], [20].

The proposed area-efficient raster-scan-based wired-
logic processor was implemented on the Xilinx UltraScale+

Fig. 7 NNN implementations and their training result on CIFAR-100
dataset.

Fig. 8 Trade-off between hardware resource and accuracy of NNN.

Virtex series FPGA. Figure 8 summarizes the implementa-
tion results, and the trade-off between recognition accuracy
and hardware usage was verified. In the NNN with a large
number of channels, the number of adders and signaling
wires increases with the number of channels, so the hardware
usage (LUTs) increases rapidly. On the other hand, because
the hardware usage increases non-linearly with the recogni-
tion accuracy of CIFAR-100, there is a point at which the
hardware resource is used most efficiently. In this case, im-
plementation #4 provides the best hardware usage efficiency.
The relationship between hardware usage and recognition ac-
curacy depends on the initial neural network structure. In this
work, implementation #1 has a recognition accuracy that is
closest to the recognition accuracy of previous research [2],
[16], and implementation #4 shows only a slight drop in
recognition accuracy compared to previous works [1], [20].

Using implementations #1 to #4 models, the total
amount of hardware resources used in the conventional
method [19] is compared with the proposed raster-scan-
based wired-logic architecture as shown in Fig. 9. In this
experiment, the conventional loop-unrolled wired-logic ar-
chitecture uses a larger amount of hardware as the accuracy
increases because the number of channels increases. The
hardware resources required for the raster-scan architecture
also increase, but the increase is much smaller than the loop-
unrolled architecture. When implementing a 68.6% accu-
racy NNN for the CIFAR-100 dataset, the number of LUTs
required is reduced from 8.04M LUTs (1) to 1.06M LUTs
(1/7.6).

5.2 Performance Comparison

Figure 10 shows the details of the #1, #4, and #8 implemen-
tation results. They were implemented using Xilinx’s Virtex
series, VU9P and VU19P respectively. The clock frequency
for all cases was set to 100 MHz. Notice that all implementa-
tions employ wired-logic architecture, so there is no BRAM
or DSP. The power consumption is 4.5W, 11.0W and 20.4W,
respectively, including leakage power.

A commercial general-purpose neural processing unit
(NPU) with high energy efficiency through cutting-edge pro-

Fig. 9 Hardware resource utilization comparison on the CIFAR-100
dataset.



160
IEICE TRANS. ELECTRON., VOL.E107–C, NO.6 JUNE 2024

Fig. 10 FPGA implementation results on the CIFAR-100 dataset.

Table 1 Comparison with the state-of-the-art FPGA implementations.

Table 2 Comparison with the state-of-the-art ASIC implementation.

cess nodes has been proposed [32]. However, realizing the
full extent of its theoretical performance is not always attain-
able. Depending on the specific neural networks or tasks,
power efficiency will fall short of these theoretical expecta-
tions. In contrast, the state-of-the-art network-optimized
ASIC [1] has provided superior performance when com-
pared to commercial NPUs. To conduct a comprehensive
assessment of energy efficiency, we compared our proposed
approach to the ASIC [1] using the CIFAR-100 dataset, in-
cluding system-level implementation from image input to
classification. Furthermore, we made comparisons with the
state-of-the-art FPGA-based AI accelerator [20]. It is worth
noting that in all cases presented in Table 1 and Table 2, the
input size of network is consistently 32 × 32 pixels, owing to
the use of the CIFAR-100 dataset. The energy efficiency of
the #1 implementation is 52µJ/prediction. Compared with
the previous work [16], the recognition accuracy is higher by
8 percentage points, and the energy efficiency is 1.8 times
better. The #4 implementation has an energy efficiency of
127µJ/prediction, which is 238 times better than that of an
FPGA-based accelerator [20] with only a small decrease in

recognition accuracy as shown in Table 1. Compared with
the state-of-the-art network-optimized ASIC [1], the energy
efficiency is 7 times better. In addition, the energy consump-
tion for model #8 is 235.8µJ/prediction, which represents a
129 times improvement over the state-of-the-art FPGA-based
accelerator [20] and a 3.75 times improvement compared to
the network-optimized ASIC [1]. The most energy-efficient
AI processor ever for the CIFAR-100 image classification
task has been realized as shown in Table 2. Meanwhile, the
experimental results presented above indicate that by using
the proposed method, FPGAs can achieve superior energy
efficiency when compared to ASICs.

6. Conclusion

An area-efficient raster-scan-based wired-logic processor
that realizes high energy efficiency and recognition accuracy
is presented. A CIFAR-100 NNN model with a recognition
accuracy of 68.64% was implemented on a single FPGA.
The proposed wired-logic processor processes the image
data with a high efficiency of 0.13mJ/prediction. Compared
with a state-of-the-art FPGA-based CNN accelerator with
high recognition accuracy, the energy efficiency is improved
by two orders of magnitude. Even compared with a state-
of-the-art network-optimized ASIC AI processor, the energy
efficiency is improved by 7 times, all while incurring only a
minor dip in accuracy. In addition, the design cycle is greatly
reduced through the proposed HLS tool, and testbench code
can be automatically generated to facilitate debugging.

Our research seeks to establish a solid foundation for
NNN and raster-scan wired-logic architecture, and our net-
work and hardware architecture can be easily expanded to
larger deep neural networks for different applications. NNN
training can be carried out using various larger network mod-
els or architectures as the initial structure, depending on the
user’s application such as keyword spotting task [33]. On the
other hand, depending on the size of the input data, the length
of shift registers within the hardware architecture varies ac-
cordingly. Furthermore, the number of channels and PEs
in raster-scan wired-logic architecture changes depending
on the implemented neural network model. However, for
highly complex tasks such as ImageNet classification, when
employing the VGG13-base model with a maximum of 512
channels in the convolutional layers, the required hardware
resources (LUTs) increase to 1.5×107. Even though benefit-
ing from NNN, achieving high accuracy with fewer than 512
channels in the convolutional layers is feasible, the required
hardware resources still exceed the maximum capacity of
currently available commercial FPGAs on the market. This
limitation implies that there exists an upper limit for scalabil-
ity to larger networks in the hardware implementation with a
single FPGA. To address the challenge, further research into
novel circuit technologies is necessary.

Acknowledgments

This work was supported by JST, PRESTO grant number



LI et al.: A 0.13 MJ/PREDICTION CIFAR-100 FULLY SYNTHESIZABLE RASTER-SCAN-BASED WIRED-LOGIC PROCESSOR IN 16-NM FPGA
161

JPMJPR21B4, Japan.

References

[1] K. Hirose, J. Yu, K. Ando, Á.L. García-Arias, J. Suzuki, T. Van Chu,
K. Kawamura, and M. Motomura, “Hiddenite: 4K-PE Hidden Net-
work Inference 4D- Tensor Engine Exploiting On-Chip Model Con-
struction Achieving 34.8-to-16.0TOPS/W for CIFAR-100 and Ima-
geNet,” IEEE International Solid-State Circuits Conference (ISSCC),
Dig. Tech. Papers, San Francisco, CA, USA, pp.252–253, Feb. 2022.

[2] S.K. Esser, P.A. Merolla, J.V. Arthur, A.S. Cassidy, R. Appuswamy,
A. Andreopoulos, D.J. Berg, J.L. McKinstry, T. Melano, D.R. Barch,
C. di Nolfo, P. Datta, A. Amir, B. Taba, M.D. Flickner, and D.S.
Modha, “Convolutional networks for fast, energy-efficient neuro-
morphic computing,” Proc. National Academy of Sciences of the
United States of America (PNAS), vol.113, no.41, pp.11441–11446,
Oct. 2016.

[3] J. Pu, W.L. Goh, V.P. Nambiar, M.M. Wong, and A.T. Do, “A 5.28-
mm2 4.5-pJ/SOP Energy-Efficient Spiking Neural Network Hard-
ware With Reconfigurable High Processing Speed Neuron Core and
Congestion-Aware Router,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol.68, no.12, pp.5081–5094, Dec. 2021.

[4] A. Shukla, V. Kumar, and U. Ganguly, “A Software-equivalent
SNN Hardware using RRAM-array for Asynchronous Real-time
Learning,” 2017 International Joint Conference on Neural Network
(IJCNN), Anchorage, AK, USA, pp.4657–4664, 2017.

[5] J. Luo, L. Yu, T. Liu, M. Yang, Z. Fu, Z. Liang, L. Chen, C. Chen,
S. Liu, S. Wu, Q. Huang, and R. Huang, “Capacitor-less Stochastic
Leaky-FeFET Neuron of Both Excitatory and Inhibitory Connec-
tions for SNN with Reduced Hardware Cost,” 2019 IEEE Interna-
tional Electron Devices Meeting (IEDM), San Francisco, CA, USA,
pp.6.4.1-6.4.4, 2019.

[6] D.-A. Nguyen, X.-T. Tran, and F. Iacopi, “A review of algorithms
and hardware implementations for spiking neural networks,” Journal
of Low Power Electronics and Applications, vol.11, no.2, p.23, May
2021.

[7] Y. Jang, G. Kang, T. Kim, Y. Seo, K.-J. Lee, B.-G. Park, and J.
Park, “Stochastic SOT device based SNN architecture for On-chip
Unsupervised STDP Learning,” IEEE Trans. Comput., vol.71, no.9,
pp.2022–2035, Oct. 2021.

[8] A.R. Young, M.E. Dean, J.S. Plank, and G.S. Rose, “A Review of
Spiking Neuromorphic Hardware Communication Systems” IEEE
Access, vol.7, pp.135606–135620, Sept. 2019.

[9] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S.
Millner, “A wafer-scale neuromorphic hardware system for large-
scale neural modeling,” IEEE International Symposium on Circuits
and Systems (ISCAS), Paris, France, pp.1947–1950, 2010.

[10] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E.
Eleftheriou, “Low-Power Neuromorphic Hardware for Signal Pro-
cessing Applications: A review of architectural and system-level
design approaches,” IEEE Signal Process. Mag., vol.36, no.6, pp.97–
110, Nov. 2019

[11] R. Sumikawa, K. Shiba, A. Kosuge, M. Hamada, and T. Kuroda, “A
1.2nJ/Classification 2.4mm2 Wired-Logic Neuron Cell Array Us-
ing Logically Compressed Non-Linear Function Blocks in 0.18µm
CMOS,” JSAP International Conference on Solid State Devices and
Materials, Chiba, Japan, pp.750–751, 2022.

[12] R. Sumikawa, K. Shiba, A. Kosuge, M. Hamada, and T. Kuroda, “1.2
nJ/classification 2.4 mm2 asynchronous wired-logic DNN processor
using synthesized nonlinear function blocks in 0.18 µm CMOS,”
Japanese Journal of Applied Physics, vol.62, no.SC, p.SC1019, Jan.
2023.

[13] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann,
“An Always-On 3.8 µ J/86% CIFAR-10 mixed-signal binary CNN
processor with all memory on chip in 28-nm CMOS,” IEEE J. Solid-
State Circuits, vol.54, no.1, pp.158–172, Oct. 2018.

[14] Y.H. Chen, T. Krishna, J.S. Emer, and V. Sze, “Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol.52, no.1, pp.127–138, Nov.
2016.

[15] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara,
S. Takamaeda-Yamazaki, M. Ikebe, T. Asai, T. Kuroda, and M.
Motomura, “BRein memory: A single-chip binary/ternary recon-
figurable in-memory deep neural network accelerator achieving 1.4
TOPS at 0.6 W,” IEEE J. Solid-State Circuits, vol.53, no.4, pp.983–
994, Dec. 2017.

[16] T. Luo, L. Yang, H. Zhang, C. Qu, X. Wang, Y. Cui, W.-F. Wong, and
R.S.M. Goh, “NC-Net: Efficient Neuromorphic Computing Using
Aggregated Subnets on a Crossbar-Based Architecture With Non-
volatile Memory,” IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol.41, no.9, pp.2957–2969, Sept. 2022.

[17] M. Horowitz, “Computing’s energy problem (and what we can
do about it),” IEEE International Solid-State Circuits Conference
(ISSCC), Dig. Tech. Papers, San Francisco, CA, USA, pp.10–14,
2014.

[18] A. Kosuge, Y.-C. Hsu, M. Hamada, and T. Kuroda, “A 0.61-µJ/Frame
Pipelined Wired-logic DNN Processor in 16-nm FPGA Using Convo-
lutional Non-Linear Neural Network,” IEEE Open Journal of Circuits
and Systems, vol.3, pp.4–14, Jan. 2022.

[19] Y.-C. Hsu, A. Kosuge, R. Sumikawa, K. Shiba, M. Hamada, and T.
Kuroda, “A 13.7µJ/prediction 88% Accuracy CIFAR-10 Single-Chip
Wired-logic Processor in 16-nm FPGA using Non-Linear Neural
Network,” IEEE Hot Chips Symposium (HCS), Cupertino, CA, USA,
pp.1–14, 2022.

[20] S. Moon, H. Lee, Y. Byun, J. Park, J. Joe, S. Hwang, S. Lee, and
Y. Lee, “FPGA-Based Sparsity-Aware CNN Accelerator for Noise-
Resilient Edge-Level Image Recognition,” IEEE Asian Solid- State
Circuits Conference (A-SSCC), Macau, Macao, pp.205–208, 2019.

[21] A. Kosuge, M. Hamada, and T. Kuroda, “A 16 nJ/Classification
FPGA-based Wired-Logic DNN Accelerator Using Fixed-Weight
Non-Linear Neural Net,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol.11, no.4, pp.751–761, Dec. 2021.

[22] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R.
Gupta, and Z. Zhang, “Accelerating Binarized Convolutional Neural
Networks with Software-Programmable FPGAs” Proc. ACM Inter-
national Symposium on Field-Programmable Gate Arrays (FPGA),
New York, NY, USA, pp.15–24, Feb. 2017.

[23] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai, “Exploring het-
erogeneous algorithms for accelerating deep convolutional neural
networks on FPGAs,” Proc. 54th Annual Design Automation Con-
ference, Austin, TX, USA, pp.1–6, June 2017.

[24] L. Gong, C. Wang, X. Li, H. Chen, and X. Zhou, “MALOC: A
fully pipelined FPGA accelerator for convolutional neural networks
with all layers mapped on chip,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol.37, no.11, pp.2601–2612, July 2018.

[25] A. Gaier and D. Ha, “Weight agnostic neural networks,” Advances
in Neural Information Processing Systems, Vancouver, BC, Canada,
pp.5364–5378, June 2019.

[26] Y.-C. Hsu, A. Kosuge, R. Sumikawa, K. Shiba, M. Hamada, and
T. Kuroda, “A Fully Synthesized 13.7µJ/prediction 88% Accuracy
CIFAR-10 Single-Chip Data-Reusing Wired-Logic Processor Using
Non-Linear Neural Network,” 28th Asia and South Pacific Design
Automation Conference (ASP-DAC’23), pp.182–183, Jan. 2023

[27] X. Inc., Vitis High-Level Synthesis User Guide: UG1399 (v2022.2),
2022.

[28] X. Inc., Vitis AI User Guide: UG414 (v3.0), 2023.
[29] H. Ye, C. Hao, J. Cheng, H. Jeong, J. Huang, S. Neuendorffer, and

D. Chen, “ScaleHLS: A New Scalable High-Level Synthesis Frame-
work on Multi-Level Intermediate Representation,” 2022 IEEE Inter-
national Symposium on High-Performance Computer Architecture
(HPCA), pp.741–755, April 2022.

[30] M. Urbach and M.B. Petersen, “HLS from PyTorch to System Verilog
with MLIR and CIRCT,” 2022 Workshop on Languages, Tools, and
Techniques for Accelerator Design (LATTE), March 2022.

http://dx.doi.org/10.1109/isscc42614.2022.9731668
http://dx.doi.org/10.1109/isscc42614.2022.9731668
http://dx.doi.org/10.1109/isscc42614.2022.9731668
http://dx.doi.org/10.1109/isscc42614.2022.9731668
http://dx.doi.org/10.1109/isscc42614.2022.9731668
http://dx.doi.org/10.1109/isscc42614.2022.9731668
http://dx.doi.org/10.1073/pnas.1604850113
http://dx.doi.org/10.1073/pnas.1604850113
http://dx.doi.org/10.1073/pnas.1604850113
http://dx.doi.org/10.1073/pnas.1604850113
http://dx.doi.org/10.1073/pnas.1604850113
http://dx.doi.org/10.1073/pnas.1604850113
http://dx.doi.org/10.1073/pnas.1604850113
http://dx.doi.org/10.1109/tcsi.2021.3112979
http://dx.doi.org/10.1109/tcsi.2021.3112979
http://dx.doi.org/10.1109/tcsi.2021.3112979
http://dx.doi.org/10.1109/tcsi.2021.3112979
http://dx.doi.org/10.1109/tcsi.2021.3112979
http://dx.doi.org/10.1109/ijcnn.2017.7966447
http://dx.doi.org/10.1109/ijcnn.2017.7966447
http://dx.doi.org/10.1109/ijcnn.2017.7966447
http://dx.doi.org/10.1109/ijcnn.2017.7966447
http://dx.doi.org/10.1109/iedm19573.2019.8993535
http://dx.doi.org/10.1109/iedm19573.2019.8993535
http://dx.doi.org/10.1109/iedm19573.2019.8993535
http://dx.doi.org/10.1109/iedm19573.2019.8993535
http://dx.doi.org/10.1109/iedm19573.2019.8993535
http://dx.doi.org/10.1109/iedm19573.2019.8993535
http://dx.doi.org/10.3390/jlpea11020023
http://dx.doi.org/10.3390/jlpea11020023
http://dx.doi.org/10.3390/jlpea11020023
http://dx.doi.org/10.3390/jlpea11020023
http://dx.doi.org/10.1109/tc.2021.3119180
http://dx.doi.org/10.1109/tc.2021.3119180
http://dx.doi.org/10.1109/tc.2021.3119180
http://dx.doi.org/10.1109/tc.2021.3119180
http://dx.doi.org/10.1109/access.2019.2941772
http://dx.doi.org/10.1109/access.2019.2941772
http://dx.doi.org/10.1109/access.2019.2941772
http://dx.doi.org/10.1109/iscas.2010.5536970
http://dx.doi.org/10.1109/iscas.2010.5536970
http://dx.doi.org/10.1109/iscas.2010.5536970
http://dx.doi.org/10.1109/iscas.2010.5536970
http://dx.doi.org/10.1109/msp.2019.2933719
http://dx.doi.org/10.1109/msp.2019.2933719
http://dx.doi.org/10.1109/msp.2019.2933719
http://dx.doi.org/10.1109/msp.2019.2933719
http://dx.doi.org/10.1109/msp.2019.2933719
http://dx.doi.org/10.7567/ssdm.2022.k-5-02
http://dx.doi.org/10.7567/ssdm.2022.k-5-02
http://dx.doi.org/10.7567/ssdm.2022.k-5-02
http://dx.doi.org/10.7567/ssdm.2022.k-5-02
http://dx.doi.org/10.7567/ssdm.2022.k-5-02
http://dx.doi.org/10.35848/1347-4065/acac38
http://dx.doi.org/10.35848/1347-4065/acac38
http://dx.doi.org/10.35848/1347-4065/acac38
http://dx.doi.org/10.35848/1347-4065/acac38
http://dx.doi.org/10.35848/1347-4065/acac38
http://dx.doi.org/10.1109/JSSC.2018.2869150
http://dx.doi.org/10.1109/JSSC.2018.2869150
http://dx.doi.org/10.1109/JSSC.2018.2869150
http://dx.doi.org/10.1109/JSSC.2018.2869150
http://dx.doi.org/10.1109/jssc.2016.2616357
http://dx.doi.org/10.1109/jssc.2016.2616357
http://dx.doi.org/10.1109/jssc.2016.2616357
http://dx.doi.org/10.1109/jssc.2016.2616357
http://dx.doi.org/10.1109/jssc.2017.2778702
http://dx.doi.org/10.1109/jssc.2017.2778702
http://dx.doi.org/10.1109/jssc.2017.2778702
http://dx.doi.org/10.1109/jssc.2017.2778702
http://dx.doi.org/10.1109/jssc.2017.2778702
http://dx.doi.org/10.1109/jssc.2017.2778702
http://dx.doi.org/10.1109/tcad.2021.3120068
http://dx.doi.org/10.1109/tcad.2021.3120068
http://dx.doi.org/10.1109/tcad.2021.3120068
http://dx.doi.org/10.1109/tcad.2021.3120068
http://dx.doi.org/10.1109/tcad.2021.3120068
http://dx.doi.org/10.1109/isscc.2014.6757323
http://dx.doi.org/10.1109/isscc.2014.6757323
http://dx.doi.org/10.1109/isscc.2014.6757323
http://dx.doi.org/10.1109/isscc.2014.6757323
http://dx.doi.org/10.1109/ojcas.2021.3137263
http://dx.doi.org/10.1109/ojcas.2021.3137263
http://dx.doi.org/10.1109/ojcas.2021.3137263
http://dx.doi.org/10.1109/ojcas.2021.3137263
http://dx.doi.org/10.1109/hcs55958.2022.9895600
http://dx.doi.org/10.1109/hcs55958.2022.9895600
http://dx.doi.org/10.1109/hcs55958.2022.9895600
http://dx.doi.org/10.1109/hcs55958.2022.9895600
http://dx.doi.org/10.1109/hcs55958.2022.9895600
http://dx.doi.org/10.1109/a-sscc47793.2019.9056957
http://dx.doi.org/10.1109/a-sscc47793.2019.9056957
http://dx.doi.org/10.1109/a-sscc47793.2019.9056957
http://dx.doi.org/10.1109/a-sscc47793.2019.9056957
http://dx.doi.org/10.1109/jetcas.2021.3114179
http://dx.doi.org/10.1109/jetcas.2021.3114179
http://dx.doi.org/10.1109/jetcas.2021.3114179
http://dx.doi.org/10.1109/jetcas.2021.3114179
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1145/3061639.3062244
http://dx.doi.org/10.1145/3061639.3062244
http://dx.doi.org/10.1145/3061639.3062244
http://dx.doi.org/10.1145/3061639.3062244
http://dx.doi.org/10.1109/tcad.2018.2857078
http://dx.doi.org/10.1109/tcad.2018.2857078
http://dx.doi.org/10.1109/tcad.2018.2857078
http://dx.doi.org/10.1109/tcad.2018.2857078
http://dx.doi.org/10.1145/3566097.3567942
http://dx.doi.org/10.1145/3566097.3567942
http://dx.doi.org/10.1145/3566097.3567942
http://dx.doi.org/10.1145/3566097.3567942
http://dx.doi.org/10.1145/3566097.3567942
http://dx.doi.org/10.1109/hpca53966.2022.00060
http://dx.doi.org/10.1109/hpca53966.2022.00060
http://dx.doi.org/10.1109/hpca53966.2022.00060
http://dx.doi.org/10.1109/hpca53966.2022.00060
http://dx.doi.org/10.1109/hpca53966.2022.00060


162
IEICE TRANS. ELECTRON., VOL.E107–C, NO.6 JUNE 2024

[31] D. Li, Y.-C. Hsu, R. Sumikawa, A. Kosuge, M. Hamada, and
T. Kuroda, “A 0.13mJ/Prediction CIFAR-100 Raster-Scan-Based
Wired-Logic Processor Using Non-Linear Neural Network,” IEEE
International Symposium on Circuits and Systems (ISCAS), May
2023.

[32] J.-S. Park, C. Park, S. Kwon, H.-S. Kim, T. Jeon, Y. Kang, H.
Lee, D. Lee, J. Kim, Y.J. Lee, S. Park, J.-W. Jang, S.H. Ha, M.S.
Kim, J. Bang, S.H. Lim, and I. Kang, “A Multi-Mode 8K-MAC
HW-Utilization-Aware Neural Processing Unit with a Unified Multi-
Precision Datapath in 4nm Flagship Mobile SoC,” IEEE International
Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA,
pp.246–248, Feb. 2022.

[33] A. Kosuge, R. Sumikawa, Y. -C. Hsu, K. Shiba, M. Hamada, and
T. Kuroda, “A 183.4nJ/inference 152.8µW Single-Chip Fully Syn-
thesizable Wired-Logic DNN Processor for Always-On 35 Voice
Commands Recognition Application,” IEEE Symposium on VLSI
Circuits, June 2023.

Dongzhu Li received the B.S. degree in in-
formation and electrical engineering from China
Agricultural University, Beijing, China in 2020.
He is currently pursuing the M.S. degree in elec-
trical engineering and information systems at
The University of Tokyo, Tokyo, Japan. His
research interests include energy-efficient hard-
ware and software co-design for emerging AI
processing.

Zhijie Zhan received the B.S. degree in in-
formation and communication engineering from
The University of Tokyo, Tokyo, Japan in 2023.
He is currently pursuing the M.S. degree in elec-
trical engineering and information systems at
The University of Tokyo, Tokyo, Japan. His re-
search interests include energy-efficient AI pro-
cessing, circuit design with emerging technolo-
gies, and heterogeneous architecture.

Rei Sumikawa received the B.S. degree in
electronics and electrical engineering from The
University of Tokyo, Tokyo, Japan in 2022. He
is currently pursuing the M.S. degree in electri-
cal engineering and information systems at The
University of Tokyo, Tokyo, Japan. His current
research interests include energy-efficient com-
puting, hardware architecture and circuit design.

Mototsugu Hamada received the B.S.,
M.S., and Ph.D. degrees in electronic engineer-
ing from the University of Tokyo, Tokyo, Japan,
in 1991, 1993, and 1996, respectively. In 1996,
he joined Toshiba Corporation and has been
engaged in wireless and low power electronic
circuits design with Center for Semiconductor
Research and Development, Kawasaki, Japan.
In 2016, he joined Keio University and was a
Project Professor. In 2020, he joined the Uni-
versity of Tokyo, where he is currently a Project

Professor of Systems Design Lab (d.lab).

Atsutake Kosuge received the Ph.D. degree
from Keio University in Yokohama, Japan, in
2016. From 2017 to 2020, he held research po-
sitions at Hitachi Ltd. and Sony Corporation. In
2021, he joined The University of Tokyo, where
he is currently an Assistant Professor of Systems
Design Lab (d.lab). His research interests in-
clude energy efficient computing, computational
sensing, and 3-D integration technologies.

Tadahiro Kuroda received the Ph.D. degree
in electrical engineering from the University of
Tokyo. In 1982, he joined Toshiba Corporation.
He left Toshiba to join Keio University in 2000,
and became a full professor in 2002. He was
a visiting researcher from 1988 to 1990 and the
Mackay Professor in 2007 at the University of
California, Berkeley. He has been a professor
at the University of Tokyo since 2019. He is
the director of Systems Design Lab (d.lab) and
the chairman of RaaS. He is an IEEE Fellow, an

IEICE Fellow, and a chair of VLSI Symposia.

http://dx.doi.org/10.1109/iscas46773.2023.10181427
http://dx.doi.org/10.1109/iscas46773.2023.10181427
http://dx.doi.org/10.1109/iscas46773.2023.10181427
http://dx.doi.org/10.1109/iscas46773.2023.10181427
http://dx.doi.org/10.1109/iscas46773.2023.10181427
http://dx.doi.org/10.1109/isscc42614.2022.9731639
http://dx.doi.org/10.1109/isscc42614.2022.9731639
http://dx.doi.org/10.1109/isscc42614.2022.9731639
http://dx.doi.org/10.1109/isscc42614.2022.9731639
http://dx.doi.org/10.1109/isscc42614.2022.9731639
http://dx.doi.org/10.1109/isscc42614.2022.9731639
http://dx.doi.org/10.1109/isscc42614.2022.9731639
http://dx.doi.org/10.23919/vlsitechnologyandcir57934.2023.10185297
http://dx.doi.org/10.23919/vlsitechnologyandcir57934.2023.10185297
http://dx.doi.org/10.23919/vlsitechnologyandcir57934.2023.10185297
http://dx.doi.org/10.23919/vlsitechnologyandcir57934.2023.10185297
http://dx.doi.org/10.23919/vlsitechnologyandcir57934.2023.10185297

