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SUMMARY This study involves proposing a high-speed computer-
generated hologram playback by using a digital micromirror device for
high-definition spatiotemporal division multiplexing electroholography.
Consequently, the results indicated that the study successfully recon-
structed a high-definition 3-D movie of 3-D objects that was comprised
of approximately 900,000 points at 60 fps when each frame was divided
into twelve parts.
key words: electroholography, spatiotemporal division multiplexing
method, digital micromirror device, computer-generated hologram

1. Introduction

Holography [1] corresponds to an extremely promising 3-D
technology because it is used to directly record and faith-
fully reconstruct a 3-D image. Electroholography using
computer-generated holograms (CGHs) [2] is considered as
an ultimate 3-D television (TV) [3]. An aerial projection of
3-D movies using electroholography [4] and a table screen
360-deg holographic display [5], [6] ware reported.

However, a 3-D TV using electroholography requires
high-performance computational power to reconstruct 3-D
images from CGHs in real time. In order to overcome this
problem, fast CGH calculation techniques have been re-
ported [7]–[14]. In recent years, graphics processing units
(GPUs) exhibit high computational performance at low cost.
Thus, electroholography using GPUs was actively investi-
gated by extant studies [15]–[27].

However, the display of high-definition CGH obtained
for 3-D objects that are comprised of huge numbers of ob-
ject points requires a wide dynamic range that cannot be
achieved with the present spatial light modulator (SLM).
Thus, currently available SLMs are unable to faithfully dis-
play the CGH. Therefore, the image quality of the ob-
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tained CGH deteriorates when the CGH is displayed on an
SLM [28].

Furthermore, speckle noise is generated from un-
wanted interference and periodic location of the recon-
structed object points when coherent light is used as ref-
erence light. Extant studies proposed the pixel separa-
tion method [29], [30] and the random pixel separation
method [31] to reduce speckle noise. In 2015, a study im-
proved the image quality of electroholography by applying
a spatiotemporal division multiplexing method [32]. How-
ever, the spatiotemporal division multiplexing method re-
quires the SLM to play back the computer-generated holo-
gram at a high speed.

The present study involved proposing a method of
high-speed reconstruction of a computer-generated holo-
gram by using a digital micromirror device (DMD) [33] for
high-definition spatiotemporal division multiplexing elec-
troholography.

The rest of this paper is structured as follows. Sec-
tion 2 describes a binary CGH computation. The proposed
high-speed holographic movie playback using the DMD is
outlined in Sect. 3. The experimental results are presented
and discussed in Sect. 4. The conclusions are presented in
Sect. 5.

2. Binary Computer-Generated Hologram Computa-
tion

A simple algorithm was used to calculate the binary CGH
obtained from a 3-D object expressed by a point cloud for
in-line holography. With respect to a 3-D object composed
of N points, the light intensity of a point on the hologram is
calculated by using an equation [15] as follows:

I(xh, yh, 0) =
N∑

j=1

Aj cos

{
π

λz j

[
(xh − x j)

2 + (yh − y j)
2
]}
,

(1)

where I(xh, yh, 0) denotes the light intensity of the point
(xh, yh, 0) on the hologram, (x j, y j, z j) denotes the coordinate
of the j-th point on the 3-D object, Aj denotes the amplitude
of the object point, and λ denotes the wavelength of the ref-
erence light. Equation (1) is obtained by using the Fresnel
approximation. In this study, the parameter Aj of all object
points is set as 1.0. Following the calculation of Eq. (1), the
light intensity of each point on the hologram is binarized by
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using a threshold value of zero [34].

3. High-Speed Holographic Movie Playback by Using
a Digital Micromirror Device

Figure 1 shows an outline of the spatiotemporal division
multiplexing method [32] when the number of spatial divi-
sions corresponds to six. In Fig. 1, the N-th frame (Frame
N) of the original 3-D movie is divided into subframes that
are labeled as “DivN-1” to “DivN-6.” In the spatial division
of “Frame N,” the serial number of each object point on the
original 3-D object is used. Figure 2 illustrates the outline
of the spatial division technique [19] used in the study when
the number of spatial divisions corresponds to three. The
spatial division technique proceeds as follows:

Step 1. All object points on the original 3-D object are se-
rially numbered as P1, P2, and P3, . . . .

Step 2. In the original data file shown in Fig. 2, the coor-
dinate data of the object points are listed in ascending
order of the serial object point number.

Step 3. As shown in Fig. 2, the listed coordinate data in the
original data file are divided into three sub-files (Files
1–3) in ascending order of the serial object point num-
ber.

It should be noted that all object points on the original 3-D
object are serially numbered as P1, P2, and P3, . . . at Step 1
such that the object points stored in each sub-file are evenly
distributed over the entire area of the original 3-D object.

All CGHs obtained from all sub-frames of Frame N are
individually displayed on a SLM. The total number of sub-
frames is proportional to the number of spatial divisions.
Therefore, the spatiotemporal division multiplexing method
requires a high-refresh-rate SLM to play all sub-frames at a
high-speed.

The DMD displays color movies at a high refresh rate.
The reproduction of color images using DMD is shown in
the upper time-chart of Fig. 3. In each frame, the DMD re-
produces a color image by sequentially displaying the corre-
sponding RGB images as shown in the upper time-chart of
Fig. 3. Specifically, R, G, and B indicate red, green, and blue
colored images, respectively. Additionally, TR, TG, and TB

correspond to the display time periods of the red, green, and
blue images, respectively. A single-frame refresh period is
equally divided into three display time periods (i.e., TR, TG,
and TB). The RGB images are displayed at a refresh rate of
120 Hz [33]. Thus, the sum of TR, TG, and TB corresponds to
1/120Hz ≈ 8.3ms. The color image projected by the DMD
depends on the color of the projection light. Therefore, a
color image is faithfully projected on the screen when the
color-switching of the projection light is synchronized with
the display of the suitable RGB image on the DMD.

As shown in the lower time-chart of Fig. 3, the CGHs
corresponding to the sub-frames “DivN-1,” “DivN-2,” and
“DivN-3” are converted to red, green, and blue colored
CGHs, respectively. The colored CGHs with an 8-bit depth
form a 24-bit colored image. The color image is output from

Fig. 1 High-definition spatiotemporal division multiplexing electro-
holography.

Fig. 2 Outline of the spatial division technique.

Fig. 3 Time chart of the 3-D movie reproduction using the RGB-mode
method.

the GPU and fed into the DMD system via the DisplayPort.
The DMD system automatically displays three CGHs corre-
sponding to the sub-frames, namely “DivN-1,” “Div-N-2,”
and “DivN-3” in sequence as shown in the lower time-chart
of Fig. 3. Monochrome light is used as the reference light
because the 3-D movie reconstructed through electroholog-
raphy (as shown in Fig. 1) is monochrome. The frame rate
of this method is termed as the “RGB-mode method” and
corresponds to 120Hz × 3(color) = 360Hz.

Furthermore, it is proposed that two frames of a
monochromatic 3-D movie are assigned to each color im-
age (R, G, and B) of the conventional DMD reproduction as
shown in Fig. 4. In the proposed method, binary CGH [34]
and monochrome reference light are used. Figure 5 shows
the lighting time of three red images with gradation values
corresponding to 127, 128, and 255. A DMD chip has mil-
lions of microscopic mirrors arranged in a rectangular array
that correspond to the pixels in the image to be displayed.
The mirrors are individually rotated to an “ON” or “OFF”
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Fig. 4 Time chart of 3-D movie reproduction by using the proposed
method

Fig. 5 Binary PWM-sequence pattern.

Fig. 6 The method of incorporating two CGHs into a red-colored image.

state very quickly. In the “ON” state, the light from the light
source is reflected to the screen, and this makes the pixel
appear bright to a viewer. In the “OFF” state, the light is di-
rected to a light absorber material, and this essentially makes
the pixel appear dark on the screen. Therefore, the DMD
expresses the gradation of each color image by using binary
pulse width modulation (PWM) as shown in Fig. 5 [35]. In
Fig. 5, three red images are provided with gradation values
proportional to the percentage of time when the mirrors are
in the “ON” state during one-third of a single-frame refresh
period. The lighting time of the red image with the gradation
value of 128 is nearly equal to that of the image with the gra-
dation value corresponding to 127. The conventional binary
CGH is illustrated in bicolor. The binary CGHs “R127” and
“R128” are drawn in black and the red colors with gradation
values corresponding to 127 and 128, respectively, as shown
in Fig. 6. In order to display the binary CGHs, the mirrors

Fig. 7 The method of incorporating six CGHs into a color image.

corresponding to the pixels on the black and red areas of
the binary CGHs correspond to the “OFF” state and “ON”
state, respectively. In Fig. 6, the binary CGHs “R127” and
“R128” are assigned to the “Frame N” sub-frames “DivN-
1” and “DivN-2,” respectively (Fig. 4). A RGB color image
in the DMD is expressed in 24 bits. However, the grada-
tion of each color image (R, G, and B) shown in the upper
time-chart of Fig. 4 is expressed in 8 bits. Therefore, the
two CGH images “R127” and “R128” are combined into a
single image “Img R” as shown in Fig. 6. All sub-frames
from “DivN-1” to “DivN-6” as shown in Fig. 1 are com-
bined into a color image as shown in Fig. 7. Finally, as
shown in Fig. 1, “Frame N” is displayed at the frame rate
of 120 Hz when the number of spatial divisions corresponds
to six because each sub-frame is displayed at a frame rate of
720 Hz (120Hz × 3(color) × 2( f rame)).

4. Results and Discussion

The proposed gradation method is evaluated by using the
optical setup shown in Fig. 8. In the setup, a laser light with
a wavelength of 532 nm is use as the reference light, a DLP
LightCrafter 6500 (Texas Instruments, Micro-mirror pixel
pitch: 7.6 μm, Micromirror array size: 1920 × 1080) [33] is
used as the DMD system, and a digital camera (Canon EOS
6D) with a 35-mm CMOS image sensor is also used. In
the CGH computation, a PC equipped with an Intel Core i7
4770 processor (Clock Speed: 3.4 GHz, quad-core) a Linux
(CentOS 7.1) operating system, a NVIDIA GeForce GTX
TITAN X GPU, and a CUDA 7.0 software-development kit
is used for GPU programming. The distance between the
3-D object and the CGH corresponds to 1.0 m. The re-
fresh rate of DLP LightCrafter 6500 corresponds to 120 Hz
when the DMD system connects to the GPU via the Display-
Port [33]. In the study, the DisplayPort is used to connect
to the DMD system. In the RGB-mode, three subframes,
namely “DivN-1,” “DivN-2,” and “DivN-3” are displayed
for a single-frame refresh period (1/120Hz ≈ 8.3ms) as
shown in Fig. 3. The frame rate of RGB mode corresponds
to 120Hz × 3(color) = 360Hz. In the proposed method, six
subframes numbered “DivN-1” to “DivN-6” are displayed
for a single-frame refresh period (1/120Hz ≈ 8.3ms) as
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Fig. 8 Optical setup

Fig. 9 Still images produced through spatiotemporal division multiplex-
ing electroholography with a DMD.

Fig. 10 The CGHs are generated by using no-division and 12-division.

shown in Fig. 4. The frame rate of proposed method cor-
responds to 120Hz × 3(color) × 2( f rame) = 720Hz.

The reconstructed still image of the 3-D model that is
comprised of 912,462 points as shown in Fig. 9 (a) is evalu-
ated. Figure 9 shows that the reconstructed still 3-D image
obtained through spatiotemporal division multiplexing elec-
troholography is clear when the number of divisions corre-
sponds to twelve. Therefore, twelve-division spatiotempo-
ral division multiplexing electroholography is adapted for
the optical experiment by using the DMD. Figure 10 (a) and
(b) show the CGHs of no-division and twelve-division, re-
spectively. The CGH shown in Fig. 10 (b) correspond to fine
interference fringes when compared with the CGH shown in
Fig. 10 (a).

Figure 11 shows the snapshots of the reconstructed 3-
D movie that are played back at frame-rates corresponding
to 60-Hz, 120-Hz, 360-Hz, and 720-Hz. The reconstructed

Fig. 11 Snapshots of the reconstructed 3-D movie.

Table 1 The playback time of the reconstructed 3-D movie.

playback time (ms)
Conventional method 80.34
Video mode 40.13
RGB mode 13.54
Proposed method 6.85

Table 2 The playback speed of the reconstructed 3-D movie comprised
of 4,788 frames.

playback speed (ms/frame)
Conventional method 16.78
Video mode 8.38
RGB mode 2.83
Proposed method 1.43

3-D movie is comprised of 4,788 frames. The reconstructed
3-D movie is played back at frame-rates of 120 Hz, 360 Hz,
and 720 Hz by using the video mode [33], the RGB mode,
and the proposed method, respectively. Table 1 and Table 2
show the playback time and the speed of the reconstructed
3-D movie, respectively. Therefore, the proposed method is
used to realize high-speed movie playback.

5. Conclusion

In this study, a method was developed for high-speed holo-
graphic movie playback by using a DMD. It is extremely
easy to implement the proposed method because high-speed
holographic movie playback is executed through color im-
ages obtained from six binary CGHs of the 3-D movie. The
proposed method was further applied to reconstruct a high-
definition 3-D movie of a 3-D object that is approximately
comprised of 900,000 points by using spatiotemporal divi-
sion multiplexing electroholography with the DMD.
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