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Ultra-Small Silicon Photonic Wire Waveguide Devices
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SUMMARY Silicon photonic devices based on silicon photonic wire
waveguides are especially attractive devices, since they can be ultra-
compact and low-power consumption. In this paper, we demonstrated vari-
ous devices fabricated on silicon photonic wire waveguides. They included
optical directional couplers, reconfigurable optical add/drop multiplexers,
1 × 2, 1 × 4, 1 × 8 and 4 × 4 optical switches, ring resonators. The charac-
teristics of these devices show that silicon photonic wire waveguides offer
promising platforms in constructing compact and power-saving photonic
devices and systems.
key words: silicon photonics, photonic wire, optical devices, optical wave-
guide

1. Introduction

Silicon photonics is presently one of the most attractive
research issues in the field of integrated optics [1]–[5],
since it offers a promising platform in constructing com-
pact optical devices and systems. The silicon-based opti-
cal devices, which are usually manufactured on silicon-on-
insulate (SOI) substrates, are called as silicon photonic de-
vices. Comparing with conventional optical devices made
of silica or compound semiconductor (GaAs or InP) ma-
terials, silicon photonic devices can be ultra compact [6]–
[10], due to their small bends of waveguides with high light
confinement, as well as that they can be low-cost, which is
benefited from well developed CMOS process technology.
Furthermore, the silicon photonic devices that are controlled
with thermo-optical effect can be low-power consumption
because of the high thermo-optical efficiency of silicon ma-
terial and the small device footprints [11], [12].

Usually, silicon photonic devices are based on 3 kinds
of waveguide structure: photonic crystal (PhC) waveguides,
rib/ridge waveguides and photonic wire waveguides. PhC-
waveguide devices offer some unique characteristics with
their photonic band-gaps. They are expected to be used
as optical filters and resonators [13], [14]. However, they
are limited in use, due to their polarization dependency,
high propagation loss, and the demand of high manufac-
turing accuracy [15]–[17]. Silicon photonic devices made
of rib/ridge waveguides have been widely studied from the
beginning of silicon photonics study [18]. Although the
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rib/ridge waveguides offer low propagation losses [19], [20]
and they can be polarization independent [21], they have the
mortal wound of that they cannot be very compact due to
that the large bend radius of more than several hundred mi-
crometers are needed [20]. Now, the research of rib/ridge
waveguide devices are majorly focused on active devices,
such as, laser resonators [22], which are controlled through
carrier injection effect. Silicon photonic wire waveguides
are usually defined as waveguides consists of silicon core of
sub-micrometer cross-section size and surrounding air/silica
claddings. Many compact silicon photonic wire waveguide
devices including active and passive devices have been suc-
cessfully demonstrated [23]–[27], since silicon photonic
wire waveguides can be bent with a radius of several mi-
crometers [27], as well as they offer a low propagation loss
of about 1.5 dB/cm [28]. Although silicon photonic wire
waveguide devices are also envisaging the problem of polar-
ization dependency, some attempts have been made to solve
it using polarization diversity technique [29], [30].

In this paper, we focus on the silicon photonic wire
waveguide devices we have developed, including optical di-
rection couplers, reconfigurable optical add/drop multiplex-
ers, optical switches and ring resonators, which are expected
to be used in constructing the future photonic network sys-
tems.

2. Optical Directional Couplers

Since the light confinement in silicon photonic wire waveg-
uides can be much stronger than those in fibers and waveg-
uides made of silica materials, silicon photonic wire waveg-
uides can be bent with a radius of several micrometers. Us-
ing the small bends, we made ultra-compact optical cou-
plers [31], which were one of the most fundamental el-
ements in constructing various photonic devices, such as,
power combiner/dividers, wavelength multiplexers and op-
tical switches. The schematic of the optical couplers we fab-
ricated is shown in Fig. 1. The core cross-section size of the
waveguides we used was 300 × 300 nm, while the thick-
nesses of under cladding and upper cladding layers were
1 µm and 0.9 µm, respectively. The propagation losses of the
waveguides were 2.56 dB/mm and 1.89 dB/mm for TE-like
mode and TM-like mode, respectively. The gap between the
two waveguides was 300 nm at the coupling portion. The
bend radii of the S-shape waveguides were 10 µm, whose
bend losses were both less than 0.1 dB/bend for the TE-like
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Fig. 1 Optical directional coupler based on photonic wire waveguides.

Fig. 2 Power splitting ratio versus coupler length.

and TM-like modes [31]. By fabricating various couplers
with different coupling length, we obtained the complete
coupling length of 10 µm for TE-like mode and 11 µm for
TM-like mode, as shown in Fig. 2, respectively. The results
included the coupling influences from the S-shape waveg-
uides, which was estimated to correspond to a coupling
length of 2 µm. The experiment results were also in good
agreement with the simulation results we estimated with
a three-dimensional finite-difference-time-domain (FDTD)
method [31], as shown in Fig. 2.

3. Reconfigureable Optical Add/Drop Multiplexers

Optical add/drop multiplexers (OADMs) are essential op-
tical devices in wavelength division multiplexing (WDM)
network, in directing light signals with their wavelength.
Reconfigurable OADMs (ROADMs) further can tune the
wavelength. The OADM we fabricated is shown in Fig. 3. It
is a Mach-Zehnder interferometer (MZI) type ROADM, in
which Bragg-grating-reflectors are formed on both the MZI
branches. The MZI branches were connected with the 3-
dB optical couplers described previously. Here, the Bragg-

Fig. 3 Schematic of the reconfigurable optical add/drop multiplexer with
Bragg-grating-reflectors fabricated on silicon photonic wire waveguides.

Fig. 4 Transmission loss spectra of optical add/drop multiplexer.

grating-reflectors were selected due to their flap-topped
band pass spectra and wide free spectral ranges (FSRs). The
Bragg gratings were formed by making small fins at a pe-
riod of 370-nm on the sidewalls of the 500-µm-long waveg-
uides, whose cross section size were also 300 × 300 nm.
The projections of the fins were 30 nm. Upon the Bragg
gratings, metal thin-film heaters were formed over the up-
per cladding layer for thermo-optical tuning of the center
wavelength. The device was 700-µm-long, which was more
than one order of magnitude smaller than the conventional
OADMs made of silica materials [32], [33].

The transmission loss spectra for through and drop-out
ports of the ROADM were first measured for TM-like mode,
when no heating current was applied. The results are shown
in Fig. 4. The dropping center wavelength was 1551.4 nm.
The channel dropping bandwidth was about 1.6 nm, which
is corresponded to 200-GHz dense wavelength division mul-
tiplexing (D-WDM). The device insertion losses were about
15 dB, including the lensed-fiber-to-device coupling losses
of about 6 dB/port.

Next, we measured the wavelength tuning characteris-
tics of the ROADM at various heating currents, as shown
in Fig. 5. The dropping wavelength shifted to longer wave-
length as the heating current was increased, while the trans-
mission spectra retained their shape without conspicuous
deformation. The tuning efficiency was 8.05 nm/W. The av-
erage tuning speed of the device was about 200 µsec [34].
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Fig. 5 Heating current dependence of drop-out spectra.

4. Optical Switches

Optical switches are indispensable devices in constructing
photonic network systems. Although many studies have
been devoted to silicon waveguide optical switches [12],
[35], the devices they demonstrated are still insufficient for
the real applications on the aspects of extinction ratios, de-
vice size or switching power. In this section, we describe
some ultra compact MZI-type optical switches based on sil-
icon photonic wire waveguides, which have the same core
cross-section size as those introduced in Sects. 2 and 3.

First, we fabricated a 1 × 2 MZI-type optical switch
composed of a Y-splitter and a 3-dB directional coupler, as
shown in Fig. 6. The Y-splitter was only 7-µm long since
a large splitting angle (> 4.8◦) is possible for the silicon
photonic wire waveguides. The radii of the bends in our
switches are either 5 or 10 µm. The bending losses were
less than 0.1 dB. These small bends are the primary reason
for the reduction in device size. The MZI branches were 40-
µm long. Thus, the device was very compact with a footprint
of 85 × 30 µm. The switches were controlled with thin-film
heaters formed over the MZI branches.

In characterization, we measured the transmissions on
heating power at the wavelength of 1550 nm for TM-like
mode, as shown in Fig. 7. From Fig. 7, we found the light
outputs of the 1×2 switch were alternately changed between
port 1 and 2 at a switching power of 90 mW [11]. In later ex-
periments, the switching power has been presently improved
to 25 mW, by optimizing the heater designing, i.e. reducing
the heater width to 4 µm from the previous value of 12 µm.
The maximum extinction ratio was more than 30 dB. The
switching response time was around 100 µsec.

With the 1 × 2 switches, we fabricated a 1 × 4 and a
1 × 8 optical switches. The microscope view of the 1 × 4
switch is shown in Fig. 8. The 1 × 4 switch had a footprint
of 190 × 75 µm, which was believed to be the smallest one
in the world. The 1×8 switch was similar to the 1×4 switch
[36]. The operations of the 1 × 4 and 1 × 8 switches were
both confirmed [36].

Further, we fabricated a 4 × 4 switch with six 2 × 2
optical switches, which was made by replacing the Y-splitter

Fig. 6 Ultra-compact 1 × 2 optical switch.

Fig. 7 Switching characteristics of the 1 × 2 optical switch.

Fig. 8 1 × 4 optical switches fabricated with silicon photonic wire
waveguides.

Fig. 9 4 × 4 optical switch.

in the 1×2 switch with a 3-dB directional coupler, as shown
in Fig. 9. In the 4 × 4 switch, directional couplers in cross
state were used as the waveguide cross connections. The
output ports of the switch had the same interval as that of the
inferred micro-lens-array, which was used for coupling light
from optical fiber arrays to the waveguides. The operations
of the 4 × 4 switch were also confirmed.
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Fig. 10 Single ring resonator and its optical characteristics.

5. Ring Resonator

Ring resonators are one of the most attractive devices based
on silicon photonics wire waveguides, since they can have
a very wide FSR, due to that their very short cavity lengths
with a small radius of several micrometers. The ring res-
onators are expected to be used in fabricating many novel
devices, such as, laser resonator, optical delay/buffer and
optical filters for applications in data communication and
processing. Many researches have been reported on ring
resonators [22]–[24]. However, most of them used carrier
injection technique in tuning the resonator frequency. To
date, we did not find any report on tuning the ring resonator
through thermo-optical effect, which was an easy way in
device fabrication and can widely tune the resonance fre-
quency.

Here, we fabricate 2 kinds of ring resonator with sil-
icon photonic wire waveguides: single ring resonators and
double ring resonators. The waveguides had a core cross-
section size of 450 × 220 nm. The thickness of the under
cladding and upper cladding layers are 3 µm and 2 µm, re-
spectively. The propagation losses of the waveguides were
0.8 dB/mm for the TE-like mode and 0.6 dB/mm for the TM-
like mode, respectively. In characterizations, TM-like mode
only was used. Figure 10 shows the microscope view of the
single ring resonator we fabricated and the optical charac-
teristics. The FSR of the single ring resonator was about
380 GHz. The cross talk between the through and drop-out
ports was more than 10 dB at the C-band and the L-band in
WDM optical communication.

Although it is also possible to obtain a high side-mode
suppression ratio for single ring resonators, the resonating

Fig. 11 Double ring resonator and its optical characteristics.

wavelength tuning range is still limited due to the small
change of effective index [37]. However, the double ring
resonator can have a much wide tuning range which is en-
hanced via Vernier effect [37]. The microscope view of
the double ring resonators is shown in Fig. 11. Since the
radii of the two rings were designed with slight difference,
the FSR of the two rings also differed slightly. Thus, we
could get a wavelength range between the two transmission-
peaks, which were formed at the points when transmission
peaks of the two ring resonators matched to each other
[37], [38]. Then, by changing the resonating wavelength
through thermo-optical effect, we could change the trans-
mission wavelength of the double ring filter, which was set
to the C-band or the L-band in WDM optical communica-
tion. Figure 11 also shows the characteristic of the double
ring resonator with different heating currents to the small
ring. From Fig. 10, we can see that the resonating wave-
length shifted to shorter wavelength discretely by a FSR of
about 4200 GHz, when heating current increasing. The tun-
ing efficiency was 656 nm/W, which is 10 times higher than
that of the silica double ring resonators [38].

6. Conclusions

Silicon photonic devices are highly expected to be used in
constructing future optical interconnection systems and pho-
tonic network systems. Among them, the devices based
on silicon photonic wire waveguides, which are waveguides
with core cross-section size of less than 0.5 µm, are espe-
cially attractive, since they can be ultra-compact and low-
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power consumption. In this paper, we demonstrated vari-
ous devices fabricated on silicon photonic wire waveguides.
They included optical directional couplers, reconfigurable
optical add/drop multiplexers, 1×2, 1×4, 1×8 and 4×4 op-
tical switches, ring resonators. The characteristics of these
devices show that silicon photonic wire waveguides offer
promising platforms in constructing various novel photonic
devices. Consequently, it is believed that the silicon pho-
tonic devices, including those built with photonic crystals,
rib/ridge waveguides and photonic wire waveguides, are
future key devices in building optical interconnection and
telecommunication systems.
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