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Scattered Reflections on Scattering Parameters
—Demystifying Complex-Referenced S Parameters—

Shuhei AMAKAWA†a), Member

SUMMARY The most commonly used scattering parameters (S pa-
rameters) are normalized to a real reference resistance, typically 50Ω. In
some cases, the use of S parameters normalized to some complex reference
impedance is essential or convenient. But there are different definitions
of complex-referenced S parameters that are incompatible with each other
and serve different purposes. To make matters worse, different simulators
implement different ones and which ones are implemented is rarely prop-
erly documented. What are possible scenarios in which using the right one
matters? This tutorial-style paper is meant as an informal and not overly
technical exposition of some such confusing aspects of S parameters, for
those who have a basic familiarity with the ordinary, real-referenced S pa-
rameters.
key words: S parameters, reflection coefficient, transmission coefficient,
traveling waves, pseudo waves, power waves, reference impedance, renor-
malization transformation

1. Introduction

According to Carlin [1], the earliest article that dealt with
the scattering parameters or S parameters was [2], published
in 1920. The first book [3] that gave extensive coverage of
the subject was published in 1948 [1]. The S parameters
described in this book are essentially the same S parameters
as those we most often (but not always!) use today. Those
are the real-referenced S parameters.

To define S parameters, we must first define an effec-
tive voltage and an effective current from the electric and
magnetic fields in a waveguide, respectively. A “wave-
guide” here may refer to a (quasi-)TEM (transverse electro-
magnetic) transmission line, a hollow metallic waveguide,
or some other form of waveguide. In the case of ideal TEM
transmission lines, the mapping of electromagnetic (EM)
fields to voltages and currents is unique. But in general,
there is some arbitrariness in the mapping. This arbitrariness
implies that there is arbitrariness in the definition of charac-
teristic impedance, too. We don’t delve here into the diffi-
cult and controversial problem of how the mapping should
be done [4]–[8], and simply assume that effective voltage
and current have been defined appropriately. We will here-
after refer to them simply as “voltage” and “current,” respec-
tively. We will also assume that our waveguide is a quasi-
TEM transmission line.

Now that we have voltages and currents in waveguides
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Fig. 1 A length, �, of transmission line driven by a matched source
(source impedance ZS = Z0) and terminated with a load impedance ZL.
Z0 is the characteristic impedance of the line.

somehow defined, can we define S parameters uniquely?
Not yet. We have a choice between defining S parameters,
including reflection coefficients, based on voltages or cur-
rents. The choice may [3], [9]–[13] or may not [14] affect
the values of S parameters, depending on how you define
current scattering parameters. We opt for the voltage-based
definition, as is commonly practiced.

If a transmission line is terminated with an impedance
ZL as shown in Fig. 1, the voltage reflection coefficient at the
terminating load is [11]–[13]

S 11 =
ZL − Z0

ZL + Z0
, (1)

where Z0 is the characteristic impedance of the line. Z0

appears in Eq. (1) because the reflection coefficient is a
description of a 1-port in question (in this case, the load
impedance ZL) in terms of incident and reflected traveling
wave amplitudes in a one-dimensional medium (i.e. trans-
mission line) that feeds the 1-port. Z0 is a physical property
of the one-dimensional medium, not of the 1-port. The stan-
dard assumption, often made implicitly, is that the transmis-
sion line is lossless, and therefore Z0 is real. Its standard
value is 50Ω [15], [16]. To emphasize the fact that the value
of S 11 depends on Z0, and that its value is real, it is more
appropriate to write instead

S 11 (Rref ) =
ZL − Rref

ZL + Rref
. (2)

The above notation of explicitly showing the reference re-
sistance Rref of an S parameter in parentheses was intro-
duced by Woods [17]. The notation is summarized in Ta-
ble 1. The standard choice of Rref is the characteristic resis-
tance [18], [19] R0 of the lossless transmission line, which
the load ZL terminates. Why don’t we simply write S 11 (R0)?

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers
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Table 1 Notation for showing reference impedances.

Example Description

S i j (50Ω) S parameter with ports i and j referenced to 50Ω
S(Rref ) S matrix with all ports referenced to Rref

S 21 (Rref1 ,Rref2) Port 1 referenced to Rref1, port 2 referenced to Rref2

S(Zref1 , Zref2) 2-port S matrix referenced to Zref1 and Zref2

S(Zref ) S matrix referenced to reference impedance matrix
Zref = diag(Zref1,Zref2, · · · )

Well, we could, but we might want to use an Rref value
different than R0, which is a property of the transmission
line. In some situations, we might want to assign to Rref a
value that is not a property of a physical object (transmis-
sion line) at hand. We will later see when such a need arises
(§3.1). The characteristic resistance and the reference resis-
tance should not be mixed up.

In the real world, all transmission lines are lossy, at
least to a small degree. Then, the characteristic impedance
Z0 expressed in terms of the per-unit-length RLGC param-
eters,

Z0 =

√
R + jωL
G + jωC

, (3)

assumes a complex value, unless the the distortionless con-
dition [9], [11], [20],

R
L
=

G
C
, (4)

is met. What happens, then, to the reflection coefficient?
Can we keep using Eq. (1) or (2) with a complex Zref (refer-
ence impedance) substituted for Rref as follows,

S 11 (Zref ) =
ZL − Zref

ZL + Zref
, (5)

or do we need something different? It is curious that most
microwave textbooks refer to the complex characteristic
impedance formula, Eq. (3), yet many of them are silent
about how to define reflection coefficients and S param-
eters when Z0 or Zref is complex. Even microwave metrol-
ogists don’t appear to have looked very seriously into the
issue [21], perhaps till mid 1980s.

Another question that springs to mind in this connec-
tion is this: how does the definition of S 11 with a complex Z0

relate to the well-known textbook problem (Fig. 2) of maxi-
mizing the power absorbed (and dissipated) by a load ZL fed
by a signal source with an impedance ZS? We all know that,
to maximize the power absorbed by the load in Fig. 2, the
load impedance ZL and the source impedance ZS must be
complex conjugate of each other (ZL = Z∗S). Does S 11 = 0
(defined in what way?) imply that the power absorbed by the
load in Fig. 1 is maximized? This question is not as trivial
as it might appear (§2.5).

In this article, we look at complex-referenced S pa-
rameters. There are, at least, two distinct definitions of
complex-referenced S parameters. They are incompatible
with each other and serve different purposes. Depending

Fig. 2 A Thévenin signal source with an impedance ZS feeds a load
impedance ZL. How can the power absorbed (dissipated) by the load be
maximized?

on the system under consideration, the appropriate one to
use differs. The most appropriate value to use as the refer-
ence impedance Zref might be the characteristic impedance
Z0 that feeds the network, the source impedance ZS that di-
rectly feeds the network, or some other value. You might
possibly think that complex-referenced S parameters are a
matter of purely academic concern with little practical use.
But that is not so. We work on millimeter-wave CMOS cir-
cuit design [22]–[29] and related measurements [30]–[42],
and regularly use both types of complex-referenced S pa-
rameters out of necessity. Situations in which using the right
one would matter include millimeter-wave and terahertz on-
wafer measurements, where methods of vector network ana-
lyzer (VNA) calibration and de-embedding that work well
at lower microwave frequencies fail. Also relevant would
be power transfer systems, in which long transmission lines
are deployed and minimizing losses is imperative. It is un-
fortunate that, in spite of the practical importance of the sub-
ject, resources are largely limited to research papers scat-
tered about everywhere (a recent exception is [43]), at times
with somewhat biased views.

To make matters worse, microwave engineers are left
with microwave simulators, EM simulators and related
programs that are strangely silent about which complex-
referenced S parameters they implement (if they do), or
whether they do. It is practically very important that you
understand which S parameters you want to use and which
ones your simulator implements. I hope this article helps
develop practicing microwave engineers’ awareness of the
potential dangers of using wrong S parameters in the wrong
context. This article was derived from an article that I pre-
sented at MWE 2015 [44], which, in turn, was based upon a
tutorial that I gave in 2011 [45]. Articles that discuss related
issues include [4], [17], [46]–[51].

2. Two Definitions of Reflection Coefficients

A reflection coefficient is the S parameter of a 1-port. We
can learn a great deal about S parameters by looking at re-
flection coefficients.

2.1 Transmission Line and Reflection Coefficients

If the far end of a length of lossy transmission line is ter-
minated with its complex characteristic impedance Z0 as
shown in Fig. 3, the line looks as if it were infinitely long
(Zin = Z0) as seen from the near end. It means that no
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Fig. 3 A length of transmission line terminated with its characteristic
impedance Z0 at the far end looks as if the line were infinitely long as seen
from the near end. Zin = Z0 and S 11 (Z0) = 0.

waves reflect back when injected traveling waves reach the
far end. The reflection coefficient S 11 at the terminating
load, ZL = Z0, must be equal to 0. If ZL � Z0, S 11 will
be nonzero. We, therefore, adopt Eq. (5) with Zref = Z0 to
define the reflection coefficient of a 1-port ZL that termi-
nates the transmission line. If the terminating load has an
impedance ZL � Z0, reflected waves come back to the near
end, and the line no longer appears infinitely long. The re-
flection coefficient, defined as above, is a representation of
a 1-port in terms of traveling-wave amplitudes that appear
in a transmission line, through which the 1-port is excited.
That’s why a property, Z0, of the transmission line enters
the expression, Eq. (5), through Zref = Z0. The characteris-
tic impedance of the line physically connected to the load is
the natural reference impedance (my preferred term) in this
case. It is a property of the physical (as opposed to a virtual)
environment in which the network in question is embedded.

It is, however, not clear from Eq. (5) what the incident
and reflected waves are. Equation (5) is a voltage reflection
coefficient as noted in §1. Specifically,

S 11 (Zref ) ≡
V−1
V+1
=

b1

a1
, (6)

where V+1 is the complex amplitude of the rightward-
traveling wave incident upon the load, V−1 is that of the
leftward-traveling, reflected wave. While V+1 and V−1 are
sufficient for defining a reflection coefficient, with a view
to smooth extension to multiports†, normalized wave ampli-
tudes, a1 and b1, are usually used [4].

a1 ≡
√�(Zref)
|Zref | V+1 =

√�(Zref)
|Zref |

V1 + Zref I1

2
, (7)

b1 ≡
√�(Zref)
|Zref | V−1 =

√�(Zref)
|Zref |

V1 − Zref I1

2
, (8)

a1 and b1 are termed pseudo waves [4], because when
Zref assumes a value different than the natural reference
impedance (i.e. characteristic impedance Z0 of the physical

†If a scattering matrix is defined using voltage amplitudes V+i
and V−j , a reciprocal network’s S matrix becomes symmetric only if
reference resistances of all ports are equal [12], [52], [53]. If ai and
bj are used instead to define an S matrix, a reciprocal network’s S
matrix becomes symmetric even when reference resistances are not
all equal. But if reference impedances are complex, a reciprocal
network’s S matrix may be asymmetric.

transmission line that feeds the network), a1 and b1 (and V+1
and V−1 , too) are no longer directly related to the voltage- and
current-traveling-wave amplitudes in the line. Only when
Zref equals Z0 do a1 and b1 correspond to actual traveling-
wave amplitudes in the transmission line. But hereafter, we
conveniently forget the fictitious nature of pseudo waves,
and pretend that they are related to voltage- and current-
traveling-wave amplitudes.

The port voltage V1 and the port current I1 at the load
are related to the voltage- and current-traveling-wave ampli-
tudes as

V1 = V+1 + V−1 , (9)

I1 = I+1 + I−1 . (10)

The characteristic impedance relates the voltage- and
current-traveling-wave amplitudes traveling in the same di-
rection:

V+1
I+1
= −V−1

I−1
= Z0 (= Zref). (11)

Z0 being complex (arg Z0 � 0) means that there is a phase
difference between the voltage and current traveling waves.

Although a1 and b1 have the dimensions of square root
of power, they are just voltages multiplied by a real number,√�(Zref)/|Zref |, as is clear from Eqs. (7) and (8). They are,
therefore, essentially voltages, and the reflection coefficient,
Eq. (6), should be understood as a voltage reflection coeffi-
cient. If Zref is real (Zref = �(Zref) = Rref), Eqs. (7) and (8)
reduce to the widely known formulas:

a1 =
V+1√
Rref
=
√

Rref I
+
1 =

1√
Rref

V1 + Zref I1

2
, (12)

b1 =
V−1√
Rref
= −√Rref I

−
1 =

1√
Rref

V1 − Zref I1

2
. (13)

a1 and b1 are often mixed up in the literature with power
waves (Eqs. (19) and (20)) [54], which we will be discussing
in §2.3. While it is not incorrect to regard Eqs. (12) and (13)
as power waves, given the fact that Eqs. (19) and (20) reduce
to Eqs. (12) and (13) for real Zref , I would like to emphasize
that a1 and b1 are voltage waves, expressed in square root of
watts.

2.2 Current Reflection Coefficients

The real-referenced current reflection coefficient of a load
ZL (Fig. 1) is given usually [3], [9]–[13] by

S I11 (Rref ) = −S 11 (Rref ) = −
ZL − Rref

ZL + Rref
. (14)

This follows from

S I11 (Rref ) ≡
I−1
I+1
= −b1

a1
, (15)

where we used Eqs. (12) and (13). Its complex-referenced
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extension is S I11 (Zref ) = −S 11 (Zref ).
Less common but another valid definition of current re-

flection coefficient is [14]

S I′11 (Rref ) ≡
I−′1

I+1
=

b1

a1
= S 11 (Rref ) =

ZL − Rref

ZL + Rref
, (16)

where, I−′1 = −I−1 , and the port current is given by I1 =

I+1 − I−′1 , instead of Eq. (10). This amounts to accounting
for the direction of reflected current “outside” I−′1 . This not
so popular definition is not completely worthless, because
Eq. (16) is actually consistent with the power-wave reflec-
tion coefficient, Eq. (21), which is a current reflection coef-
ficient (§2.7, §2.8).

2.3 Reflection Coefficient for Power Maximization

Let’s get back to Fig. 2 and think about how a reflection co-
efficient should be defined if we want it to be zero when the
power absorbed by the load is maximized. Since ZL = Z∗S is
the condition for power maximization, an appropriate defi-
nition of the reflection coefficient would be

S P11 (Zref ) =
ZL − Z∗ref

ZL + Zref
(17)

with Zref = ZS. A subscript ‘P’ is added to the left-hand
side of Eq. (17) to make it distinguishable from Eq. (5). Re-
flection coefficients of this type can be traced back to [55].
Equation (17) reduces to Eq. (2) when Zref is real. When
S P11 (ZS) = 0, the power absorbed by the load ZL is maxi-
mized, and the absorbed power equals the available power,
Pavs, of the signal source.

Pavs ≡ |ES,rms/2|2
�(ZS)

=
|ES|2

8�(ZS)
. (18)

ES is the amplitude of the voltage source in Fig. 2, and ES,rms

is its root-mean-square (rms) value. The “waves” incident
upon the load and reflected back in Eq. (17) are [54], [56]–
[58]

ap1 =
1√�(Zref)

V1 + Zref I1

2
, (19)

bp1 =
1√�(Zref)

V1 − Z∗ref I1

2
, (20)

S P11 (Zref ) =
bp1

ap1
. (21)

ap1 and bp1 are usually referred to as the power waves [54],
although they have the dimensions of square root of power.
As mentioned earlier, Eqs. (7) and (8) are not power waves.

2.4 Power Absorbed by a Load

What about the power, PL, absorbed by the load in Fig. 1?
From Eqs. (6) through (10), we get

PL =
�(V1I∗1)

2
=
�[(V+1 + V−1 )(I+1 + I−1 )∗]

2
(22)

Fig. 4 A length of transmission line terminated with the complex conju-
gate, Z∗0, of the characteristic impedance Z0.

=
1
2

[
|a1|2 − |b1|2 − 2�(a∗1b1)

�(Zref)
�(Zref)

]
(23)

=
|a1|2

2

[
1 − ∣∣∣S 11 (Zref )

∣∣∣2 − 2� (S 11 (Zref )
) �(Zref)
�(Zref)

]
. (24)

Note that in this article V1 and I1 are amplitudes, not rms
values. If Zref is real, the last terms in Eqs. (23) and (24)
disappear, and we obtain the well-known result:

PL =
1
2

(
|a1|2 − |b1|2

)
=

1
2
|a1|2
(
1 − ∣∣∣S 11 (Rref )

∣∣∣2) , (25)

where a1 and b1 are given by Eqs. (12) and (13). In Eq. (25),
|a1|2/2 and |b1|2/2 can be interpreted as incident and re-
flected powers, respectively, and |S 11|2 can be understood
as the reflection coefficient for power. In contrast, when
Zref is complex, the last term in Eq. (24) kicks in, and
|a1|2/2 and |b1|2/2 can no longer be interpreted as pow-
ers [10], [52], [59]. This might appear undesirable proper-
ties of a1 and b1 as defined by Eqs. (7) and (8).

On the other hand, ap1 and bp1 are defined so that the
same form as Eq. (25) results even when Zref is complex:

PL =
1
2

(
|ap1|2 − |bp1|2

)
=

1
2
|ap1|2

(
1 − ∣∣∣S P11 (Zref )

∣∣∣2) . (26)

This is highly pleasing compared to the seemingly awkward
Eq. (24), and thereafter, power-wave S parameters became
network theorists’ favorite definition of complex-referenced
S parameters [52], [60], [61]. Power-wave S parameters also
saw widespread adoption by microwave engineers, too [12],
[14], [62]–[65]. But as we will see, the pleasing property
comes at a price. At this point, I only point out the fact that
the last term in Eq. (24) can’t be nulled out; it still lurks in
Eq. (26). Otherwise, the conservation of energy would be
violated. In this sense, nothing is fundamentally wrong with
Eq. (24). Also note that in Eq. (26) the reflection coefficient
for power is the scalar quantity |S P11|2, not the complex S P11.
The physical meaning of its phase, arg S P11, is not as clear
as arg S 11 [48], [65].

2.5 Transmission Line Terminated with Z∗0

What if the terminating load impedance in Fig. 1 is ZL =

Z∗0, as shown in Fig. 4? Looking leftward into the line from
the load, the input impedance is Z0. The natural reference
impedance there, therefore, is Zref = Z0 for both S 11 and
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Fig. 5 A length of transmission line terminated with its characteristic
impedance Z0. Traveling waves emanating from the signal source are ab-
sorbed by the load Z0 without any reflection.

Fig. 6 Input reflection coefficients S ′11 and S ′P11 at the left end of the
line.

S P11. Since Fig. 5 corresponds to the case where S 11 (Z0) = 0,
S 11 (Z0) � 0 in the case of Fig. 4. To be more specific, the
voltage reflection coefficient of the load Z∗0 is, from Eq. (5),

S 11 (Z0) =
Z∗0 − Z0

Z∗0 + Z0
= −j

X0

R0
(Fig. 4), (27)

where Z0 = R0 + jX0. This means that the line wouldn’t
appear infinitely long as seen from the signal source. How-
ever, since the leftward and rightward input impedances at
the load are, respectively, Z0 and Z∗0, the power-wave reflec-
tion coefficient of the load is, from Eq. (17),

S P11 (Z0) =
Z∗0 − Z∗0
Z∗0 + Z0

= 0 (Fig. 4). (28)

This means that the power PL (Eq. (26)) absorbed by the
load is maximized. But wait. In Fig. 5 (not Fig. 4), all
traveling waves are absorbed by the load as suggested by
S 11 (Z0) = 0. Equation (24) with S 11 = 0 seems to suggest
that PL is maximized in the case of Fig. 5, too. What’s going
on here?

The short answer: |ap1|2/2 = Pavs > |a1|2/2; see the first
terms of Eqs. (24) and (26). The power flowing out from
the signal source in Fig. 5 is less than its available power,
Eq. (18). In this rough sketch, we pretended that � → 0
and ignored the power dissipated by the lossy transmission
line itself. That must, of course, be taken into consider-
ation in practice in power transfer problems. What is the
actual power available at the right end of the transmission
line in Fig. 4? It must be less than Pavs. Even at the left
end of the line in Fig. 4, the power that flows into the line
should, in general, be less than Pavs due to the mismatch
there (S ′P11 (ZS) � 0 in Fig. 6). How can that power be made

Fig. 7 A passive ZL’s range of arg ZL on an impedance plane. | arg ZL | ≤
π/2.

equal to Pavs? Perhaps by changing the load from Z∗0? What
happens then to S 11 and S P11 at the right end of the line?

2.6 Moduli of Reflection Coefficients

Most textbooks state that the modulus of a passive load’s
(ZL with �(ZL) ≥ 0) reflection coefficient is at most unity.
This statement is valid for reflection coefficients defined
by Eq. (2) or (17), but not for Eq. (5). If Zref is complex,
|S 11 (Zref )| might become greater than unity (|S 11 (Zref )| > 1)
even if ZL is passive. In contrast, Eq. (17) always satis-
fies |S P11 (Zref )| ≤ 1 for passive ZL, which, again, might give
the impression that power waves, Eqs. (19) and (20), are su-
perior to pseudo waves, Eqs. (7) and (8).

Let’s look more closely at what this is about [59]. Let

zL ≡ ZL

Zref
. (29)

Then, from Eq. (5),

S 11 (Zref ) =
zL − 1
zL + 1

. (30)

Since�(ZL) ≥ 0 by passivity assumption, | arg ZL| ≤ π/2, as
shown in Fig. 7. Let Zref = Z0, where Z0 is given by Eq. (3).
Assuming that our transmission line is an ordinary right-
handed line [66] with R, L,G,C > 0, we have �(Zref) > 0.
Since the complex square root function is given by

z1/2 = ±
√
|z| exp

(
j
arg z

2

)
, (31)

| arg Zref | < π/4 as shown in Fig. 8. From Eq. (29) and Figs. 7
and 8, we get

| arg zL| < 3π
4
, (32)

as shown in Fig. 9. Let us now take a look at the numera-
tor and the denominator of Eq. (30) on a complex plane
(Fig. 10). It is geometrically clear from Fig. 10 that |zL − 1|
can be greater than |zL + 1|, and hence |S 11| > 1 is possible.
Analytically,

|S 11 (Zref )|2 =
zL − 1
zL + 1

· z∗L − 1

z∗L + 1
=
|zL|2 + 1 − 2�(zL)
|zL|2 + 1 + 2�(zL)

. (33)
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Fig. 8 The range of arg Zref on an impedance plane when Zref = Z0.
| arg Zref | < π/4.

Fig. 9 The range of arg zL, defined by Eq. (29), on a complex plane.
| arg zL | < 3π/4.

Fig. 10 Eq. (30)’s numerator zL − 1 and the denominator zL + 1 on a
complex plane.

�(zL) in Eq. (33) can be positive or negative because of
Eq. (32). |S 11 (Zref )| > 1 results if�(zL) < 0.

The fact that |S 11 (Zref )| can exceed unity even for a pas-
sive load has long been known [10], [11], [59], [67]–[70],
but unfortunately, only to not so many of those who have
known it. It is also well understood that no laws of physics
are violated even when |S 11 (Zref )| > 1, however uncomfort-
able you might feel with it. The theoretical maximum value
of |S 11 (Zref )| is stupendous 1 +

√
2 � 2.41 [59]! In reality,

|�(Z0)| is usually a small fraction of �(Z0) (> 0), and the
values of |S 11 (Z0)| (> 1) we encounter in real life (measure-
ments especially) will be fairly close to unity except at very

Fig. 11 A Norton signal source with an admittance YS feeds a load
impedance ZL.

low frequencies [67]. A |S 11 (Zref )| value significantly greater
than unity might, therefore, be an artifact of unrealistic sim-
ulation, for example. But any discomfort associated with
even the slightest deviation from |S 11 (Zref )| ≤ 1 might as well
be an “artifact” of human mind, because no laws of physics
demand that |S 11 (Zref )| ≤ 1.

2.7 Smith Chart and Reflection Coefficients

The result of §2.6 immediately leads to a disturbing conclu-
sion: If Zref is complex, a locus of a passive load’s S 11 (Zref )

can stray out of the unit circle on a Zref-centered Smith
chart [69]. Note also that Zref = Z0 is usually frequency-
dependent, which might be another nuisance.

Given the fact that |S P11 (Zref )| ≤ 1 for passive loads,
you might expect S P11 (Zref ) helps here too. But it’s not
that simple. Recall that the Smith chart is derived from
Eq. (5). Since Eq. (17) is different from Eq. (5), we can-
not plot S P11 (Zref ) on a Smith chart in the usual way we
know. Let’s consider an ideal “short” (ZL = 0). We all
know that short’s reflection coefficient is S 11 = −1. This
(S 11 (Zref ) = −1) is valid whether or not Zref is real in Eq. (5).
But we get from Eq. (17) and ZL = 0

S P11 (Zref ) = −
Z∗ref

Zref
(short). (34)

Evidently, S P11 (Zref ) � −1 unless Zref is real. This appears to
go against microwave engineer’s common sense. Now, how
can we plot S P11 (Zref ) on a Smith chart? Note that [54], [64]

S P11 (Zref ) =
[RL + j(XL + Xref)] − Rref

[RL + j(XL + Xref)] + Rref
=

Z′L − Rref

Z′L + Rref
, (35)

Zref = Rref + jXref , (36)

Z′L ≡ RL + j(XL + Xref). (37)

Equation (35) has the same form as Eq. (5). By plotting Z′L
instead of ZL on an Rref-centered Smith chart, we can find
the absolute value and the argument of S P11 (Zref ). Note that
Rref will often be frequency-dependent.

But this is not the whole story. The above is valid if
the signal source is a Thévenin equivalent as in Fig. 2. But
if you start the theoretical development from a Norton-type
signal source (Fig. 11), you can get a different conclusion! It
can be shown that (see [48] and Appendix F of [65]) another
possible and perfectly valid definition of the power-wave re-
flection coefficient is
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S PV11 (Zref ) =
Zref

Z∗ref

· ZL − Z∗ref

ZL + Zref
=

Zref

Z∗ref

S P11 (Zref ). (38)

The ‘V’ in the subscript indicates that this reflection coef-
ficient is a voltage reflection coefficient. Although I didn’t
explain this, contrary to popular belief, S P11 (Zref ) should be
understood as a current reflection coefficient [48] (§2.8).
Equation (17) reduces to Eq. (16) when Zref is real. Equa-
tion (38) follows from a somewhat different definition of
power waves than Eqs. (19) and (20):

a′p1 =
1√�(Yref)

I1 + YrefV1

2
, (39)

b′p1 =
1√�(Yref)

I1 − Y∗refV1

2
, (40)

S PV11 (Yref ) ≡
b′p1

a′p1

. (41)

Yref = 1/Zref is the reference admittance. From Eq. (38),
short’s reflection coefficient is S PV11 = −1! This might ap-
pear more desirable than Eq. (34). However, the definition
Eq. (41) is rarely adopted in practice.

In any case, why does such arbitrariness in the defi-
nition of power waves and associated SP parameters arise?
Thévenin and Norton signal sources are just two equiva-
lent representations of the same physical source. Note that
|S P11 (Zref )| = |S PV11 (Yref )| and that the arbitrariness is in the
phase. This is related to the remark made at the end of §2.4.
Other definitions than Eqs. (21) and (41) are also possible.
For example, yet another valid current-based definition of
power-wave reflection coefficient is

S PI11 (Zref ) = −S P11 (Zref ) = −
ZL − Z∗ref

ZL + Zref
. (42)

Equation (42) reduces to Eq. (14) when Zref is real. It can
further be shown that [51] the choice of phases of power
waves is arbitrary. What does this physically mean?

2.8 Measurable Waves and S Parameters

Measurement is the act of sensing some physical quantities.
As noted in §2.1, Eqs. (7) and (8) with Zref = Z0 are physi-
cal voltage traveling waves (multiplied by a real constant),
and therefore these are measurable complex (phasor) quan-
tities. Receivers in a calibrated VNA sense mathematically
transformed version of these waves. Modern VNAs adopt
analog-to-digital converters for voltage measurements [71].

What about the power waves, Eqs. (19) and (20) (or
Eqs. (39) and (40))? Power, too, is a physical and meas-
urable quantity, but it’s a scalar quantity. Power measure-
ments, therefore, reveal only |ap1| and |bp1|. But SP pa-
rameters given by Eq. (21) are complex quantities. How
can we measure arg ap1 and arg bp1? Well, perhaps you
can’t [17], [46], [47]. If the arguments of power waves are
not measurable quantities, that explains their arbitrariness
(§2.7).

Pseudo waves, Eqs. (7) and (8), are fictitious in that
they represent traveling waves that would be present in
the transmission line if its characteristic impedance were
Zref (� Z0). Power waves are still more fictitious in that
their phases are not measurable and can be dictated arbi-
trarily, usually following the convention started in the early
days [56]–[58]. Is it possible that the phases of power waves
will one day turn out physically significant somehow, just as
the phase of the wave function† turned out to have observ-
able significance in quantum mechanics [72]? I prefer to
doubt that. The difference between Eqs. (17) and (38) arises
only for a mathematical reason:

�
(
z−1
)
�
[�(z)

]−1 , (43)

where z is a complex number. For example, if

ZS = RS + jXS =
1
YS
, (44)

then

YS =
1
ZS
=

RS

R2
S + X2

S

− j
XS

R2
S + X2

S

. (45)

The available power of a signal source can be written as

Pavs =
1
2
�(ViI

∗
i ) (46)

=
1
2
�(ZS)IiI

∗
i =

1
2

ap1a∗p1 (Fig. 2) (47)

=
1
2
�(YS)ViV

∗
i =

1
2

a′p1a′∗p1 (Fig. 11), (48)

where

Ii ≡ ES

2�(ZS)
(incident current), (49)

Vi ≡ IS

2�(YS)
(incident voltage), (50)

ap1 ≡
√
�(ZS)Ii (Eq. (19)), (51)

a′p1 ≡
√
�(YS)Vi (Eq. (39)). (52)

3. Scattering Matrices (S Matrices)

We have already learned significantly about 1-port S param-
eters (reflection coefficients). It is straightforward to extend
them to multiports.

3.1 Definitions and Uses

Multiport extension of Eqs. (6) through (8) are

ai (Zrefi) = ejφi

√�(Zrefi)
|Zrefi|

Vi + ZrefiIi

2
(port i), (53)

†In quantum mechanics, probability is given by |ψ|2, where ψ
is the complex wave function. Obviously, argψ doesn’t affect |ψ|2,
at least in most elementary problems.
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Fig. 12 Series reactance as a 2-port.

b j (Zref j) = ejφ j

√�(Zref j)

|Zref j|
Vj − Zref jI j

2
(port j), (54)

S ji (Zrefi,Zref j) =
b j (Zref j)

ai (Zrefi)
(S parameter), (55)

S(Zref ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
...

. . . S i j (Zrefi,Zref j)

S ji (Zrefi,Zref j)
. . .

...
· · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (56)

ejφi and ejφ j in Eqs. (53) and (54) are phase factors that may
be needed depending on the mapping mentioned in §1 [4].
They can often be made to disappear in Eq. (55), which
always does in Eq. (6). Zref in Eq. (56) is the reference
impedance matrix:

Zref = diag(Zref1,Zref2, · · · ). (57)

The moduli of reflection coefficients of a passive net-
work may exceed unity if Zref is complex (§2.6). Likewise,
the moduli of transmission coefficients of a passive network
may exceed unity if Zref is complex. For example, the S
matrix of a series reactance (Fig. 12) is given by [12]

S(Zref ) =
1

jX + 2Zref

[
jX 2Zref

2Zref jX

]
. (58)

It follows that

∣∣∣S 21 (Zref )

∣∣∣2 = 4|Zref |2
X2 + 4X�(Zref) + 4|Zref |2 . (59)

If X = 1 and Zref = e−j(π/4) (Fig. 8),

∣∣∣S 21 (Zref )

∣∣∣2 = 4

12 − 4 · 1√
2
+ 4 · |1|2 � 1.84 > 1. (60)

This, of course, doesn’t violate any laws of physics, because
Eq. (60) isn’t power gain. Recall that in Eq. (24), |S 11 (Zref )|2
isn’t a power reflection coefficient, either.

Similarly, Eqs. (19) through (21) can be extended to
multiports.

api (Zrefi) =
1√�(Zrefi)

Vi + ZrefiIi

2
(incident on port i), (61)

bp j (Zref j) =
1√�(Zref j)

Vj − Z∗ref jI j

2
(out of port j), (62)

S P ji (Zrefi,Zref j) =
bp j (Zref j)

api (Zrefi)
(SP parameter), (63)

SP (Zref ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
...

. . . S Pi j (Zrefi,Zref j)

S P ji (Zrefi,Zref j)
. . .

...
· · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (64)

Equations (63) and (64) are also known as the generalized
S parameter and the generalized S matrix, respectively [12],
[14], [63].

For example, the SP parameters of a series reactance
(Fig. 12) with Zref1 = ZS and Zref2 = ZL are given by [14]

S P11 (ZS,ZL) =
jX + ZS + ZL − 2�(ZS)

jX + ZS + ZL
, (65)

S P21 (ZS,ZL) = S P12 (ZS,ZL) =
2
√�(ZS)

√�(ZL)
jX + ZS + ZL

, (66)

S P22 (ZS,ZL) =
jX + ZS + ZL − 2�(ZL)

jX + ZS + ZL
. (67)

Since

√
�(ZS)�(ZL) ≤ �(ZS) +�(ZL)

2
, (68)

we can conclude from Eq. (66) that∣∣∣S P21 (ZS,ZL)

∣∣∣ ≤ 1 (69)

as anticipated.
In majority of textbooks that cover complex-referenced

S matrices, the SP matrix is the complex-referenced S ma-
trix. But that doesn’t mean the pseudo-wave S matri-
ces are unimportant. On the contrary, they are indispen-
sable for microwave and millimeter-wave metrology, be-
cause some fundamental VNA calibration algorithms, such
as thru-reflect-line (TRL) [4], [21], [73], are formulated us-
ing complex-referenced S matrices (not SP matrices) [4],
[74], [75]. Like it or not, you get complex-referenced S
parameters (referenced to the natural reference impedance)
from measurements, at least in some situations, and you
have no choice but to work with them. When you do get
them, you will most likely want to convert them to 50-Ω-
referenced S parameters for further manipulation and sav-
ing into files, because results like Eq. (60) are, at best,
confusing. Some simulators and file formats don’t sup-
port S(Zref ). The mathematical operation of changing refer-
ence impedances is called the renormalization transforma-
tion [17], [47], [76], [77]. It can be done either by using a
direct S(Zref ) ↔ S′(Z′ref )

conversion formula [47], [76], [77], or
by cascading appropriate conversion networks [4].

On the other hand, the use of complex-referenced SP

matrices is not mandatory. They can be quite useful, for
example, for amplifier design especially when lengths of
interconnecting transmission lines (not including intentional
stubs and delay lines) can be ignored. However, every-
thing (including SP parameters) can be expressed in terms
of real-referenced S parameters [63], possibly derived from
measured, complex-referenced pseudo-wave S parameters;
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Fig. 13 Cascading is possible only if bp2 = ap3 and ap2 = bp3 are satis-
fied.

so you don’t have to use SP parameters if you don’t want to.
You use them if you find them useful and/or less disturbing
because moduli of passive SP parameters are guaranteed to
be less than or equal to unity. It is advisable in this case
too that you perform SP (Zref ) → S′(50Ω) before saving your
data. Make sure to use the right formula [54] (different from
S(Zref ) → S′(50Ω)) for the conversion.

In any case, you must be clear about which type of S
parameter you are dealing with. Conversion formulas for
Z↔ S(Zref ) and Z↔ SP(Zref ), for example, are different. Note
also that SP parameters have further unusual properties.

3.2 Cascading

Let us introduce the power-wave cascading matrix TP

(Fig. 13).[
bp1

ap1

]
= TP

[
ap2

bp2

]
=

[
TP11 TP12

TP21 TP22

] [
ap2

bp2

]
. (70)

In terms of the elements of SP,

TP =
1

S P21

[
S P12S P21 − S P11S P22 S P11

−S P22 1

]
. (71)

We want[
bp1

ap1

]
= TP1

[
ap2

bp2

]
= TP1TP2

[
ap4

bp4

]
(72)

to be valid. This requires that bp2 = ap3 and ap2 = bp3 be sat-
isfied at the interconnecting plane (Fig. 13). Since V2 = V3

and I2 = −I3 hold there, Zref2 = Z∗ref3 follows from Eqs. (61)
and (62) as a requirement [46]. This is in stark contrast with
the ordinary T matrices, for which Zref2 = Zref3 is required.
So be extra careful when doing cascading operations with
SP parameters or TP matrices.

3.3 S Matrices of a Length of Transmission Line

The complex-referenced S matrix of a length, �, of transmis-
sion line is

S(Zref ) =
1

Z2
0 + Z2

ref + 2Z0Zref coth(γ�)

×
[

Z2
0 − Z2

ref 2Z0Zref/ sinh(γ�)
2Z0Zref/ sinh(γ�) Z2

0 − Z2
ref

]
. (73)

With Zref = Z0, Eq. (73) reduces to

S(Z0) =

[
0 e−γ�

e−γ� 0

]
, (74)

regardless of the value of �. This property is used in the
formulation of TRL [4], [21], [73]. It also is the reason for
the line’s (generally unknown) Z0 becoming the reference
impedance (Zref = Z0) of the new reference planes after per-
forming TRL calibration.

More generally, a pair of reference impedances Zi1 and
Zi2 that makes S 11 = S 22 = 0 are known as the image
impedances [78] of the 2-port. If

S(Zref1,Zref2) =

[
S 11 S 12

S 21 S 22

]
, (75)

then

S(Zi1,Zi2) =

[
0 e−θi12

e−θi21 0

]
, (76)

where θi21 and θi12 are the image propagation parameters.
Obviously, Zi1 = Zi2 = Z0 and θi21 = θi12 = γ� in the case of
transmission lines.

The matrix elements of the complex-referenced SP ma-
trix of a length of transmission line are

S P11 (Zref1,Zref2) =
(Z2

0 − Z∗ref1Zref2) tanh γ� + Z0(Zref2 − Z∗ref1)

(Z2
0 + Zref1Zref2) tanh γ� + Z0(Zref1 + Zref2)

,

(77)

S P22 (Zref1,Zref2) =
(Z2

0 − Zref1Z∗ref2) tanh γ� + Z0(Zref1 − Z∗ref2)

(Z2
0 + Zref1Zref2) tanh γ� + Z0(Zref1 + Zref2)

,

(78)

S P21 (Zref1,Zref2) = S P12 (Zref1,Zref2)

=
2Z0

√�(Zref1)�(Zref2)/ cosh γ�

(Z2
0 + Zref1Zref2) tanh γ� + Z0(Zref1 + Zref2)

. (79)

Note that Zref1 = Zref2 = Z0 doesn’t make S P11 = S P22 = 0.
In this sense, SP matrices of lossy transmission lines are not
terribly useful.

A pair of reference impedances that makes S P11 =

S P22 = 0 is called the conjugate image impedances [55].
S P11 = S P22 = 0 means that simultaneous conjugate match-
ing is achieved at the input and output ports. Since a trans-
mission line is a symmetric 2-port, the conjugate image
impedances are the same for both ports. Unlike the image
impedance Z0, the conjugate image impedance depends on
�. This implies that it will be difficult to formulate VNA
calibration algorithms based on power waves and to meas-
ure SP parameters directly.

3.4 Amplifier Gains

The use of S P11 (Zref ), instead of S 11 (Zref ), can be beneficial for
reasons explained in §2.6. What about the use of 2-port SP

parameters? Suppose you are designing a multi-stage am-
plifier. Consider a single stage within it (Fig. 14). Its 50-Ω-
referenced power gain is |S 21 (50Ω)|2. What is its power gain
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Fig. 14 A single amplifying stage within a multi-stage amplifier.

Fig. 15 Power gains of a 2-port. Γin: Input reflection coefficient. Γout:
Output reflection coefficient. Pavs: Power available from the source. Pin:
Power absorbed by the 2-port network. Pavn: Power available from the
2-port network. Pin: Power absorbed by the load. ITN: Impedance trans-
forming network.

under the operating condition (mismatches with the preced-
ing and following stages included)?

The transducer gain GT is the gain that includes the
mismatches with the “source” and the “load” (Fig. 15). GT,
therefore, depends both on the source reflection coefficient
ΓS and the load reflection coefficient ΓL.

ΓS =
ZS − 50
ZS + 50

, (80)

ΓL =
ZL − 50
ZL + 50

, (81)

GT(ΓS,ΓL) ≡ PL

Pavs
(82)

=
(1 − |ΓL|2)(1 − |ΓS|2)|S 21|2

|(1 − S 22ΓL)(1 − S 11ΓS) − S 12S 21ΓSΓL|2 . (83)

While Eq. (83) already answers the question about the gain
in terms of 50-Ω-referenced S parameters, it is worth men-
tioning that GT can also be written concisely as follows:

GT(ΓS,ΓL) =
∣∣∣S P21 (ZS,ZL)

∣∣∣2 . (84)

Although Eqs. (83) and (84) are mathematically completely
the same, the latter should be much easier to understand in-
tuitively. When, for example, writing a program for design
optimization, if a library of functions are available for ma-
nipulating SP parameters, it is not only conceptually easier
to use Eq. (84) but also less error-prone than writing Eq. (83)
in the program.

Likewise, the available gain GA, which depends only

on ΓS, and the operating gain (or power gain) GP, which
depends only on ΓL, can be written concisely as S P21 with
appropriate reference impedances (Fig. 15).

GA(ΓS) ≡ Pavn

Pavs
= GT(ΓS,Γ

∗
out) (85)

=
1 − |ΓS|2
|1 − S 11ΓS|2 · |S 21|2 · 1

1 − |Γout|2 (86)

=

∣∣∣S P21 (ZS,ZL)

∣∣∣2
1 − ∣∣∣S P22 (ZS,ZL)

∣∣∣2 =
∣∣∣S P21 (ZS,Z∗out)

∣∣∣2 , (87)

Γout = S 22 +
S 21ΓSS 12

1 − S 22ΓS
, (88)

GP(ΓL) ≡ PL

Pin
= GT(Γ∗in,ΓL) (89)

=
1

1 − |Γin|2 · |S 21|2 · 1 − |ΓL|2
|1 − S 22ΓL|2 (90)

=

∣∣∣S P21 (ZS,ZL)

∣∣∣2
1 − ∣∣∣S P11 (ZS,ZL)

∣∣∣2 =
∣∣∣S P21 (Z∗in,ZL)

∣∣∣2 , (91)

Γin = S 11 +
S 12ΓLS 21

1 − S 22ΓL
. (92)

Equations (87) and (91) are easier to grasp than Eqs. (86)
and (90). This conceptual gain is the power of using SP pa-
rameters. Since GA and GP are the gains when conjugately
matched on the load side and the source side, respectively,
GT(ΓS,ΓL) ≤ GA(ΓS) and GT(ΓS,ΓL) ≤ GP(ΓL) hold.

When the 2-port in question is unconditionally stable,
the maximum possible value of GT equals the maximum
available gain GMA. Since GMA is a property of a 2-port,
it depends neither on ΓS nor on ΓL.

GMA ≡ GT(Γci1,Γci2) =
∣∣∣S P21 (Zci1,Zci2)

∣∣∣2 , (93)

Zci j =
1 + Γci j

1 − Γci j
( j = 1, 2). (94)

Zci1 and Zci2 are the conjugate image impedances [55] men-
tioned in §3.3. Γin = Γ

∗
ci1 and Γout = Γ

∗
ci2 hold.

4. Concluding Remarks

In this article we looked at two types of complex-referenced
S parameters. Both show somewhat weird properties
compared to the familiar 50-Ω-referenced S parameters
and serve different purposes. Pseudo-wave S parameters
(Eq. (55)) are indispensable for millimeter-wave metrology
because your measurement reference planes might end up
having complex reference impedances. In such a case,
you have no choice but to deal with them. The most im-
portant thing to do about them is to convert them to real-
referenced S parameters by renormalization transformation
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S(Zref ) → S′(50Ω). Power-wave S parameters (Eq. (63)) can be
useful for amplifier design and evaluation of antennas, but
their use is not required because SP parameters are derived
quantities from measurable S parameters (§2.8). Either way,
it is essential that you clarify which variant of complex-
referenced S parameters you are using and what the values
of your reference impedances are.

One very practically important point that I haven’t been
able to discuss is simulators and related programs. We
need simulators written by somebody else because we can’t
write everything ourselves. But the confusion surround-
ing complex-referenced S parameters seen in the literature
is, unfortunately and understandably, reflected in simulators
and their documents, too. Very often, complex-referenced
S parameters are poorly or not at all documented, even if
they are implemented somehow. If you have a support con-
tract with your simulator vendor, ask your support engineer.
You are lucky if your support engineer doesn’t share the said
“misfortune.” If you are not so lucky, you must somehow
figure out which ones are implemented in your simulator.
The outcome might not be as simple as “this simulator im-
plements which variant of S parameters.” Some inconsis-
tency could possibly exist in integrated simulation environ-
ments. Some commercial microwave simulators implement
SP (Zref ) in their circuit simulation environment. But in EM
simulation, more suitable one to use would be S(Zref ). How
are different parts of an integrated environment interfaced
with each other when reference impedances are complex?

What can we do with poorly documented simulators?
We must at least be vigilant and be very clear about what
we want to do using which kind of S parameter. Perhaps,
we should also be putting more effort into application en-
gineering, at least in the short term, till awareness of the
importance of the issue grows in the field. It seems to me
that the significance of application engineering in a situation
like this is grossly underappreciated. See [79], an excellent
application-engineering paper on a different but related sub-
ject.
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