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Impossibility on the Schnorr Signature from the One-More DL
Assumption in the Non-Programmable Random Oracle Model∗
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SUMMARY The Schnorr signature is one of the representative signa-
ture schemes and its security was widely discussed. In the random ora-
cle model (ROM), it is provable from the DL assumption, whereas there
is negative circumstantial evidence in the standard model. Fleischhacker,
Jager, and Schröder showed that the tight security of the Schnorr signa-
ture is unprovable from a strong cryptographic assumption, such as the
One-More DL (OM-DL) assumption and the computational and decisional
Diffie-Hellman assumption, in the ROM via a generic reduction as long as
the underlying cryptographic assumption holds. However, it remains open
whether or not the impossibility of the provable security of the Schnorr sig-
nature from a strong assumption via a non-tight and reasonable reduction.
In this paper, we show that the security of the Schnorr signature is unprov-
able from the OM-DL assumption in the non-programmable ROM as long
as the OM-DL assumption holds. Our impossibility result is proven via a
non-tight Turing reduction.
key words: Schnorr signature, non-programmable random oracle model,
impossibility result, one-more DL assumption

1. Introduction

The Schnorr signature is one of the representative signature
schemes and its security was discussed in several pieces of
literature. Pointcheval and Stern [2] showed that it is prov-
able to be strongly existentially unforgeable against the cho-
sen message attack (seuf-cma) in the random oracle model
(ROM) from the discrete logarithm (DL) assumption. Ab-
dalla, An, Bellare, and Namprempre [3] expands its result
to cover other signatures which can be obtained via the Fiat-
Shamir transformation [4] as well as the Schnorr signature.

On the other hand, there is negative circumstantial ev-
idence for the provable security of the Schnorr signature in
the standard model. The Schnorr signature is unprovable to
be secure from the DL assumption in the standard model via
an algebraic reduction as long as the One-More DL (OM-
DL) assumption holds [5]. The OM-DL assumption [6] is
parameterized by a polynomial T . It intuitively states that
any probabilistic polynomial-time (PPT) adversary A can-
not find the DLs (x1, x2, . . . , xT+1) of given T + 1 group ele-
ments (y1, y2, . . . , yT+1), even when A adaptively obtains at
most T DLs of arbitrary elements. We occasionally call such
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a OM-DL assumption T-OM-DL assumption explicitly.
For the provable security of the Schnorr signature, the

affirmative results were given in the ROM, whereas the im-
possibility result was given in the standard model. The ROM
is different from the standard model in the feature that the
hash value is a truly random string in the ROM. This fea-
ture enables a reduction in the security proof to simulate
the random oracle which involves the programming tech-
nique [2]. The programming technique allows a reduction
R, which is constructed in the security proof, to simulate
the random oracle by setting hash values itself. By employ-
ing this technique, many cryptographic schemes e.g. [7], [8]
were proven to be secure in the ROM. Especially, the fork-
ing lemma [2] can be realized by using this technique to
construct security proofs of several cryptographic schemes
including the Schnorr signature.

In the theoretical cryptography, one of the interests is
how one can relax the property of the ROM for proving the
security of cryptographic schemes. For this purpose, inter-
mediate security models between the ROM and the standard
model were proposed. One of these is a Non-programmable
ROM (NPROM). The concept of the NPROM was intro-
duced by Nielsen [9] to give the impossibility result on non-
interactive non-committing encryptions. They defined the
notion in the simulation-based security model. Fischlin,
Lehmann, Ristenpart, Shrimpton, Stam, and Tessaro [10]
formalized the NPROM for the game-based security proof
and discussed the security of a trapdoor-permutation-based
key-encapsulation and a full-domain hash in the NPROM.
In the NPROM, the random oracle is dealt with the inde-
pendent party, and any parties in the security proof such as
a reduction R and an adversary obtain hash values from the
external random oracle as well as the ROM. However, R is
prohibited to simulate it, namely R cannot set the hash val-
ues, and hence we cannot use the programming technique.

The security of the Schnorr signature in the NPROM
was also discussed. Fischlin and Fleischhacker [11] first
gave negative circumstantial evidence. They showed that the
Schnorr signature is unprovable to be euf-cma from the DL
assumption in the NPROM via a single-instance (SI) reduc-
tion as long as the OM-DL assumption holds. Subsequently,
their impossibility result was extended to cover other sig-
natures or assumptions [12]–[14]. In particular, Fukumitsu
and Hasegawa [13] enhanced their result to cover the exis-
tential unforgeability against the key-only attack (euf-koa)
which is weaker security than euf-cma. Moreover, they [12]
also proved that the DL assumption is incompatible with
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the selective unforgeability against the static message attack
(suf-sma) [15] of the Schnorr signature in the NPROM via
a sequentially multi-instance (SMI) reduction. The impos-
sibility results in [11], [13] require the OM-DL assumption
on the statement while the result excludes the provable se-
curity of the Schnorr signature from the DL assumption in
the NPROM. Thus their result does not cover the situation
where the DL assumption holds but the OM-DL assump-
tion can be broken. [12] addressed this issue so that the
impossibility result can capture this situation. Namely, they
showed that the Schnorr signature is unprovable to be suf-
sma, which is weaker than euf-cma, from the DL assump-
tion in the NPROM via an SMI reduction as long as the DL
assumption holds. The SMI reduction is one of the general-
ized variants of the SI reduction such that it can invoke an
adversary of the target cryptographic scheme polynomially
many times, although it is prohibited to invoke the clones of
the adversary concurrently.

As described above, it seems to be hard for the Schnorr
signature to be proven secure under the DL assumption
without the programming technique. One can consider the
possibility of security proofs with a cryptographic assump-
tion that is stronger than the DL assumption, such as the
OM-DL assumption and the computational and decisional
Diffie-Hellman assumption [16]. In particular, whether or
not interactive cryptographic assumptions such as the OM-
DL assumption help the security proof of the Schnorr sig-
nature is an interesting problem. The difference between
interactive assumptions and non-interactive ones in secu-
rity proofs is that one can use oracles that correspond to the
underlying interactive assumption to construct a reduction.
This question was also discussed. Paillier and Vergnaud [5]
showed that the Schnorr signature is provable to be un-
keybreakable against the chosen-message attack (ukb-cma)
from the OM-DL assumption in the standard model. Al-
though it was proven via a tight reduction, the ukb-cma is a
weaker notion than the ordinary euf-cma.

Not only the affirmative result but also pieces of the
negative circumstantial evidence were given. Fleischhacker,
Jager, and Schröder [17] showed that the Schnorr signature
is unprovable to be universally unforgeable against the key
only attack (uuf-koa) from some cryptographic assumption,
such as not only the DL assumption but also the OM-DL
assumption, in the ROM via a tight and generic reduction
as long as the underlying cryptographic assumption holds.
Recall that Paillier and Vergnaud [5] also gave the impos-
sibility result from the DL assumption via a tight and alge-
braic reduction. It should be noted that their impossibility
results do not contradict the affirmative results by [2], [3].
This is because the results by [2], [3] considered a non-tight
reduction for the security proofs, whereas these impossibil-
ity results hold only for tight and some constrained reduc-
tions like generic or algebraic reductions. For the impos-
sibility result which concerns a non-tight reduction, Fuku-
mitsu and Hasegawa [18] showed that the generalized OM
assumption [19], which is a generalization of the OM-DL
assumption, seems not to imply the euf-cma security of sev-

Table 1 The affirmative results on proving the security of the Schnorr
signature.

Model Security Tight Assumption Forger
[2], [3] ROM seuf-cma DL
[20] ROM euf-cma

√
DL AGM

[5] Standard ukb-cma
√

OM-DL

eral Fiat-Shamir-type signature schemes. Non-tight reduc-
tions are considered in their result, however, they only con-
sidered a vanilla reduction which only can invoke a forger
once and is prohibited to rewind it.

Eventually, it remains open whether or not the im-
possibility holds on the provable security of the Schnorr
signature from an interactive cryptographic assumption in
the NPROM via a non-restricted reduction. Moreover, the
known impossibility result of the Schnorr signature from the
OM-DL assumption in the NPROM concerns the cma secu-
rity. Since it is stronger than the koa security, from the point
of view of impossibility, there may be a chance to prove the
security in the NPROM on the koa security.

The affirmative results and the impossibility results
mentioned above are collected in Tables 1 and 2, respec-
tively. Note that “only” in the Tight column means that the
corresponding impossibility result excludes a tight reduc-
tion only. Namely, there is a possibility of the existence of
non-tight reductions.

1.1 Our Contributions

In this paper, we aim to show the impossibility results con-
cerning the koa security of the Schnorr signature from an
interactive assumption via a non-restricted reduction. We
give an impossibility result on the provable security of
the Schnorr signature from the OM-DL assumption in the
NPROM via a black-box Turing reduction. It is given by the
following theorem.

Theorem 1. (Informal) The Schnorr signature is unprovable
to be uuf-koa from the OM-DL assumption in the NPROM
via a black-box Turing reduction as long as the OM-DL as-
sumption holds. The considered situations are explained be-
low.

Theorem 1 can cover the class of black-box reductions
R which is wider than that of SMI reductions. SMI reduc-
tion can invoke a forger F polynomially many times, but
such invocations are only sequential. In other words, the re-
duction cannot invoke multiple forgers concurrently. On the
other hand, our class of reductions allows concurrent invo-
cations of forgers. Moreover, our result does not restrict the
operation of the reductions like generic or algebraic reduc-
tion.

We describe the basic strategy of the proof of Theo-
rem 1. Assume that there exists a PPT black-box Turing
reduction algorithm R which solves the OM-DL problem
by invoking a uuf-koa forger F of the Schnorr signature in
the NPROM. We shall construct a PPT meta-reduction al-
gorithm [23]M which solves the OM-DL problem by run-
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Table 2 The impossibility results on proving the security of the Schnorr signature.

Assumed reduction R Resulting meta-reductionM
Model Security Tight Assumption Type Assumption

[5], [21], [22] ROM uuf-koa only DL algebraic OM-DL
[17] ROM uuf-koa only DL generic DL
[17] ROM uuf-koa only OM-DL generic OM-DL
[ours] NPROM-PROM uuf-koa OM-DL Turing OM-DL
[11] NPROM-NPROM euf-cma DL SI OM-DL
[13, Theorem 1] NPROM-NPROM euf-koa DL key-preserving OM-DL
[13, Theorem 2] NPROM-NPROM euf-cma DL SI key-preserving DL
[12] NPROM-NPROM suf-sma [15] DL SMI DL
[18] NPROM-NPROM euf-cma generalized OM Vanilla generalized OM
[5] Standard uuf-koa DL algebraic OM-DL

For “Security” column, uuf, suf, euf, koa, sma, and cma stand for universal unforgeability, selective unforgeability, existential unforgeability, key-only
attack, static-message attack, and chosen-message attack, respectively. “Type” column describes the type of black-box reductions R which are covered in the
impossibility results. algebraic stands for algebraic reductions to which any group element is yielded only by the group operation on given group elements.
generic stands for generic reductions which are the almost same as algebraic reductions except that generic reductions only can yield any group operation via
accessing the corresponding oracle. key-preserving indicates key-preserving reduction which invokes a forger F only with the public key same as that given
to R. Vanilla reductions cannot invoke F multiple times and rewind F . SI is the abbreviation of single-instance. Such reductions cannot invoke a forger
multiple times as Vanilla one, but it can rewind F polynomially many times. SMI means sequentially-multi-instance. Such reductions can invoke forgers
polynomially many times and rewind F , although it is prohibited to invoke F concurrently.

ning R. This means that the OM-DL assumption is broken
if there exists such a reduction R. Thus the theorem follows
from the contraposition. On the construction ofM, we uti-
lize the ability of R that solves the OM-DL problem which
is supposed at the statement. Since R requires the help of a
uuf-koa forger F to run correctly, the main task ofM is the
simulation of F .

In Theorem 1, we consider the uuf-koa security [24].
The uuf-koa security states that any PPT forger F cannot
find a signature σ of m on a given pair (pk,m) of a public
key pk and a message m. In the uuf-koa security, a forger F
makes no signing oracle query. Since uuf-koa is weaker than
suf-cma, euf-koa, and euf-cma, [15], [24], putting together
with Theorem 1, the impossibility of the suf-cma, euf-koa,
and euf-cma securities also follows.

In the ordinary security proof of signature schemes, we
construct a reduction R which breaks some cryptographic
assumption by using a forger F which is assumed in the
statement. Such an R is required to run correctly when F
computes a forgery. In the impossibility proof case, a re-
duction R is assumed to exist and R is desired to run with
any forger F which succeeds in computing a forgery. By
using this property of R, we consider a specific type of forg-
ers to correspond to the concurrent invocation of F and the
rewinding F by R.

The specific uuf-koa forger F̃ is deterministic and
makes only one query to the external random oracle. Since
F̃ performs the key only attack, F̃ makes no query to the
signing oracle. And the hash value cannot be controlled
by R because we consider the NPROM setting. Therefore
the behavior of F̃ is determined totally by the input (pk,m)
which is given from R when R invokes F̃ , and the output σ
of F̃ is also fixed. Thus R cannot affect F̃ even if R rewinds
F̃ or invokes it concurrently. Then the meta-reduction M
does not have to consider the concurrent invocation of F̃
and the rewinding of it in the simulation of F̃ when the uuf-

koa security is considered. Namely, the impossibility on the
uuf-koa security not only is important itself but also helps
us to cover the black-box Turing reduction.

As described above, we can show the impossibility
against the black-box Turing reduction if M can simulate
the hypothetical uuf-koa forger. We now briefly explain the
idea of constructing our meta-reductionM. Recall thatM
aims to make the assumed reduction R solve the OM-DL
problem. Since R may invoke a uuf-koa forger F with a
pair (pk,m),M is required to simulate it. In the simulation,
M needs to return a valid signature σ of m under pk for the
pair (pk,m). A straightforward idea is to utilize the honest-
verifier zero-knowledge (HVZK) property of the Schnorr
signature. This is frequently used to simulate the signing
oracle in the security proof of the Schnorr signature in the
ordinary ROM.

We consider whether or not this idea can be employed
in our case where uuf-koa forgers are considered. In the se-
curity proof of the Schnorr signature, the idea of using the
HVZK succeeds by incorporating the programming tech-
nique which is due to the ordinary ROM. From the point
of view of the treatment of the random oracle byM, we can
find two types of meta-reductions in existing impossibility
results in NPROM.

The first one is that M also obtains any hash value
from the external random oracle as well as R. The meta-
reductions such as [11], [12], [18] are categorized in this
type. We refer to this type of meta-reductions as the
NPROM-NPROM model. Meta-reductions in this type do
not employ the idea using the HVZK becauseM cannot use
the programming technique of the random oracle. Instead,
M constructed in [11], [12], [18] utilized the abilities of the
signing oracle emulated by R to simulate F . To make the
assumed reduction R have the ability to simulate the sign-
ing oracle, one has to consider the cma or sma forger in the
statement of the impossibility. This is the reason why their
impossibility results cannot cover koa forgers. Therefore
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the idea of using the HVZK cannot be applied to our case
where uuf-koa forgers are considered when we employ the
NPROM-NPROM model.

To make matters worse, we now consider an impos-
sibility result from the interactive cryptographic assump-
tion via a non-restricted reduction. The meta-reductions in
[11], [12], [18] run R multiple times to succeed in the uti-
lization of the ability of R. Such a multiple running of R
byM seems not to directly employ the security from inter-
active assumptions. This is because interactive assumptions
including the OM-DL assumption generally have a limit on
the number of times of the access to the oracle supposed by
the assumption, and each R can access the oracle at most
such times. This means that the total number of times of the
access to the oracle byM is beyond this limit, and henceM
no longer breaks the assumption. Although [20] constructed
a meta-reduction to overcome this difficulty, the assumed re-
duction R is restricted to be a vanilla reduction. This sug-
gests that it is difficult for us to give an impossibility result
of the koa security in the NPROM-NPROM from interactive
assumption via a reasonable reduction.

The other type of the meta-reduction is that M can
simulate the random oracle for R. Fischlin, Harasser, and
Janson [25] used this type of meta-reduction implicitly to
show the impossibility of the security of a signature scheme
yielded from a parallel-OR protocol, under some crypto-
graphic assumption as long as the same assumption holds.
They succeeded in the simulation ofF by allowingM to use
the programming technique. We call this type the NPROM-
PROM model.

In this paper, we employ the NPROM-PROM model in
the construction of M. Under the NPROM-PROM model,
we can use the programming technique of the random ora-
cle. This idea comes from the result by [25], however, their
proof does not seem to apply to our case directly. This is be-
cause [25] considers the impossibility of the euf-cma secu-
rity from the non-interactive assumption via an SMI reduc-
tion, whereas we consider the impossibility of the uuf-koa
security from the interactive assumption, i.e. OM-DL as-
sumption, via a black-box Turing reduction. Thus we have
to adjust the proof to the case of the Schnorr signature. For-
tunately, we can avoid the need of the cma forgers in [25]
by using the algebraic structure on which the Schnorr signa-
ture is based, and then we can achieve the impossibility of
the uuf-koa security. In [25], the cma forgers are required
to make R have the ability of the signing oracle. M uses
such a signing oracle to check the validity of given public
keys of the OR protocol. In our case, the inputs to the forger
from R can be checked with no help of R, since the inputs
are the public keys of the Schnorr signature, i.e. instances
of the DL problem, and one can check easily whether or not
a given element is a generator of an underlying cyclic group
of prime order. Then we can simulate the uuf-koa forger by
incorporating the HVZK property of the Schnorr signature.
Eventually, we achieve the impossibility of the black-box
Turing reduction by considering the uuf-koa forger from the
OM-DL assumption in the statement. We finally note that

our proof of impossibility is specific to the Schnorr signa-
ture. Whether or not a similar result holds for other types of
signature remains to be open.

1.2 Related Works

Pass [26] gave an impossibility result of the provable secu-
rity on the Schnorr ID scheme [27] from which the Schnorr
signature is derived via the Fiat-Shamir transformation.
They showed that the Schnorr ID is unprovable to be secure
against the impersonation under the active attack (imp-aa se-
cure) from several interactive assumptions such as the OM-
DL assumption. Note that the imp-aa security of the Schnorr
ID was proven from the OM-DL assumption in [28]. The
difference between these two results is due to the parameter
T of the OM-DL assumption. Bellare and Palacio [28] con-
sidered the case where T is equivalent to the number of the
access to the oracle in the imp-aa game, whereas Pass con-
sidered that T is asymptotically smaller than the number of
the oracle access. It is known that the T1-OM-DL assump-
tion may be strictly weaker than the T2-OM-DL assumption
when T2 > T1 [29]. These imply that the Schnorr ID may
be unprovable to be secure from the T -OM-DL assumption
where the parameter T is strictly smaller than the number of
the oracle access.

Although they focused on the provable security of the
Schnorr ID, their result seems not to directly elucidate the
question on the provable security of the Schnorr signature
from the OM-DL assumption in the NPROM. This is be-
cause the relationship between the security of the Schnorr
signature in the NPROM and the security of the Schnorr ID
has not been known so far. Therefore, we consider this ques-
tion by directly observing the relationship between the secu-
rity of the Schnorr signature and the OM-DL assumption.

Recently, Fuchsbauer, Plouviez, and Seurin [20] prove
the euf-cma security of the Schnorr signature in the ROM
with a tight security by restricting the computational model
of a forger to the algebraic group model (AGM).

1.3 Differences from Proceedings Version

The earlier version of this paper appeared in [1]. In the pro-
ceeding version, we showed the impossibility result only
concerning the selective unforgeability against the chosen
message attack (suf-cma) from the OM-DL assumption in
the NPROM. We employed the NPROM-NPROM model in
this result. Thus the statement involved the suf-cma forgers.

In this paper, we strengthen the previous result, namely
we consider the impossibility of the uuf-koa security from
the OM-DL assumption in the NPROM via a black-box Tur-
ing reduction. As described above, our result in this paper
is achieved by applying the NPROM-PROM model to the
Schnorr signature case.

2. Preliminaries

For any natural number n, let Zn denote the residue ring
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Z/nZ. The notation x ∈U X means that an element x is
sampled uniformly at random from the finite set X. For
a finite set X, let U(X) be the uniform distribution over
X. And, x ∈D X means that x is sampled according to
the distribution D. We denote by x := y that x is de-
fined or substituted as y. For any algorithm A, we define
by y ← A(x) that A takes x as input and then outputs y.
When A is probabilistic, we write y ← A(x; r) to denote
that A takes x as input with a randomness r and then out-
puts y, and A(x) is the random variable on the fixed input
x, where the probability is taken over the internal coin flips
of A. A function ε is negligible if for any polynomial ν,
there exists a natural number λ0 such that for any λ > λ0,
ε(λ) < 1/ν(λ). For any ensembles

{
D(1)
λ

}
λ

and
{
D(2)
λ

}
λ

of
distributions over an ensemble {Xλ}λ of sets, we say that{
D(1)
λ

}
λ

is statistically close to
{
D(2)
λ

}
λ

if the statistical dis-

tance between
{
D(1)
λ

}
λ

and
{
D(2)
λ

}
λ

is negligible in λ, where

the statistical distance between
{
D(1)
λ

}
λ

and
{
D(2)
λ

}
λ

is defined

as 1/2
∑

x∈Xλ

∣∣∣∣∣Pr
[
x ∈D(1)

λ
Xλ

]
− Pr

[
x ∈D(2)

λ
Xλ

]∣∣∣∣∣. Then the fol-

lowing lemma holds.

Lemma 1. Let
{
D(1)
λ

}
λ
,
{
D(2)
λ

}
λ

and {Dλ}λ be ensembles of

distributions over an ensemble {Xλ}λ. Assume that
{
D(1)
λ

}
λ

and
{
D(2)
λ

}
λ

are statistically close to {Dλ}λ, respectively.

Then,
{
D(1)
λ

}
λ

is also statistically close to
{
D(2)
λ

}
λ
.

Proof. For the statistical distance between
{
D(1)
λ

}
λ

and{
D(2)
λ

}
λ
, we have

1
2

∑
x∈Xλ

|Pr[x ∈D(1)
λ

Xλ] − Pr[x ∈D(2)
λ

Xλ]|

=
1
2

∑
x∈Xλ

|Pr[x ∈D(1)
λ

Xλ] + (Pr[x ∈Dλ
Xλ] − Pr[x ∈Dλ

Xλ])

− Pr[x ∈D(2)
λ

Xλ]|

≤
1
2

∑
x∈Xλ

(|Pr[x ∈D(1)
λ

Xλ] − Pr[x ∈Dλ
Xλ]|

+ |Pr[x ∈Dλ
Xλ] − Pr[x ∈D(2)

λ
Xλ]|)

=
1
2

∑
x∈Xλ

|Pr[x ∈D(1)
λ

Xλ] − Pr[x ∈Dλ
Xλ]|

+
1
2

∑
x∈Xλ

|Pr[x ∈Dλ
Xλ] − Pr[x ∈D(2)

λ
Xλ]|.

By the definition of the statistical distance, the former term
is the statistical distance between

{
D(1)
λ

}
λ

and {Dλ}λ, and the

latter term is the one between
{
D(2)
λ

}
λ

and {Dλ}λ. Both are
negligible from the assumption of the lemma. It follows that{
D(1)
λ

}
λ

is also statistically close to
{
D(2)
λ

}
λ
. �

Let L denote a key-value list. For any key string x ∈
{0, 1}∗, L[x] stands for the value of x. For a string x, L[x] =

⊥ means that the value of x is undefined. For any list L,
any algorithm or distributionD and any string x, we denote
by y fD L[x] the lazy sampling from D, in a sense that
y := L[x] if L[x] , ⊥, or y := L[x]← D(x) otherwise.

2.1 Cryptographic Assumption

We first introduce the notion of interactive cryptographic as-
sumptions [26], [30], [31]. For a polynomial r, an r-round
interactive cryptographic assumption is formalized by a pair
(C, t) of a PPT interactive algorithm C of r rounds, which
is called the challenger, and a polynomial t which is called
the threshold function. We say that the r-round interactive
assumption (C, t) holds if for any PPT interactive algorithm
A, there exists a negligible function ν such that for any λ, C
returns 1 after the interaction between C andA with proba-
bility at most t(λ)+ν(λ). Such an interaction is referred to as
the security game. Contrary, we say thatA breaks or solves
(C, t) if for some polynomial µ, C returns 1 after the interac-
tion with probability at least t(λ) + 1/µ(λ) for all sufficiently
large λ. Note that the threshold function t of any assumption
on computational problems rather than decisional problems
is set to 0. Since we only consider the computational as-
sumptions in this paper, we remove the threshold t from the
notation.

We now introduce the One-More DL (OM-DL) as-
sumption. Let `p be a polynomial in λ. We write GGen
to denote a PPT group parameter generator which takes a
security parameter 1λ as input, and then outputs a group pa-
rameter (G, p, g) of a group description G which is of prime
order p such that p < 2`p with a generator g. For any group
parameter (G, p, g)← GGen(1λ) and any element y ∈ G, an
element x ∈ Zp is said to be the discrete logarithm (DL) of y
if it holds that y = gx in G.

Let T be a polynomial in λ. An algorithm A is said to
solve the T-OM-DL problem if a challenger C outputs 1 in
the T-OM-DL game that is defined in the following way: on
a security parameter λ,

OM Init A is given a tuple (G, p, g, y1, y2, . . . , yT+1)
where C generates a group parameter (G, p, g) ←
GGen(1λ), and then samples T + 1 distinct instances
y1, . . . , yT+1 ∈U G.

DL Oracle A is allowed to access the DL oracle. Namely,
when A sends a t-th query yt ∈ G, A receives the DL
xt ∈ Zp of yt.

OM Challenge When A eventually outputs a tuple
(x1, x2, . . . , xT+1), C outputs 1 if A made at most T
queries to the DL oracle in DL Oracle phase, and for
any 1 ≤ t ≤ T + 1, xt is the DL of yt.

The T-OM-DL assumption states that any PPT algorithm
A solves the T -OM-DL problem with negligible probabil-
ity. In short, T -OM-DL assumption coincides with (T + 1)-
round interactive assumption defined by the T -OM-DL chal-
lenger C above.
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2.2 Signature Scheme

A signature scheme Sig consists of a tuple (KGen,Sign,Ver)
of three polynomial-time algorithms. KGen is a PPT key
generator which takes a security parameter 1λ as input, and
then outputs a pair (sk, pk) of a secret key and a public key.
Sign is a PPT signing algorithm that takes a key pair (sk, pk)
and a message m as input, and then outputs a signature σ.
Ver is a deterministic verification algorithm which takes a
public key pk, a message m and a signature σ as input, and
then outputs 1 if σ is a valid signature on the message m
under the public key pk.

We now introduce for Sig := (KGen,Sign,Ver), the
notions of the existential unforgeability against the chosen
message attack (euf-cma) and the universal unforgeability
against the key-only attack (uuf-koa). Let Qs be a polyno-
mial in a security parameter λ. The Qs-euf-cma game is
defined in the following way: on a security parameter λ,

EF Init A forger F is given a public key pk where a chal-
lenger C generates (sk, pk)← KGen(1λ).

Signing Oracle When F hands an i-th message mi to C, C
replies its signature σi ← Sign(sk, pk,mi). Note that
F can access this phase at most Qs times.

EF Challenge When F finally returns a pair (m∗, σ∗), C
outputs 1 if m∗ < {mi}

Qs
i=1 and Ver(pk,m∗, σ∗) = 1.

In a similar manner, the uuf-koa game is defined in the fol-
lowing way: on a security parameter λ,

UF Init A forger F is given a public key pk and a mes-
sage m where a challenger C generates (sk, pk) ←
KGen(1λ) and samples m.

UF Challenge When F finally returns a signatureσ, C out-
puts 1 if Ver(pk,m, σ) = 1.

Let sec ∈ {Qs-euf-cma, uuf-koa}. Then F is said to win the
sec game of Sig if C outputs 1 in the corresponding game.
The signature scheme Sig is said to be sec if any PPT forger
F wins the corresponding game with a negligible probabil-
ity. The probability is taken over the internal coin flips of
KGen and F , and the choices of m only for the uuf-koa
game.

The Qs-euf-cma security is the (Qs + 1)-round inter-
active assumption defined by the Qs-euf-cma challenger,
whereas the uuf-koa security is the 1-round interactive as-
sumption defined by the uuf-koa challenger. On the rela-
tionship between these two security notions, the following
proposition holds.

Proposition 1 ([24]). Let Sig be a signature scheme, and
let Qs be a polynomial in a security parameter λ. If there
exists a PPT forger algorithm that wins the uuf-koa game of
Sig, then there exists a PPT forger algorithm that wins the
Qs-euf-cma game of Sig.

2.3 Black-Box Reduction

Following [26], [31], we describe the notion of black-

box assumptions. Consider two cryptographic assumptions
(C1, t1) and (C2, t2). A black-box reduction R from (C1, t1)
to (C2, t2) is a PPT interactive algorithm R which breaks
(C1, t1) if a deterministic algorithm A which breaks (C2, t2)
is provided as a subrutine. The “subroutine” means that R
is only given interfaces of input and output for A. In other
words, it cannot utilize the internal code of A. On the exe-
cution ofA against (C2, t2), R is required to simulate C2.

3. Impossibility on Schnorr Signature in NPROM

In this section, we show the impossibility of proving that the
Schnorr signature is uuf-koa from the T -OM-DL assump-
tion in the NPROM.

3.1 Schnorr Signature

We now introduce the Schnorr signature [27].

KGen(1λ) outputs (sk, pk), where (G, p, g) ← GGen(1λ),
sk ∈U Zp, y := gsk, and pk := (G, p, g, y).

Sign(sk, pk,m) outputs a signature σ := (cmt, res) on the
message m ∈ {0, 1}`m , where `m is a polynomial in λ,
under the public key pk. The procedure is as follows:

(1) st ∈U Zp and then cmt := gst,

(2) cha := H(cmt,m), where H : {0, 1}∗ → {0, 1}2`p ,

(3) res := st + sk · cha mod p.

Ver(pk,m, σ) outputs 1 if we have cmt = gresy−H(cmt,m).

Note that we consider the hash function H : {0, 1}∗ →
{0, 1}2`p instead of H′ : {0, 1}∗ → Zp. This is because the
uniform distribution over {0, 1}2`p can be seen as the one
over Zp regardless of the order p by the following lemma.

Lemma 2. Let `p be a polynomial in λ, and let p < 2`p .
Then, the distribution of z mod p for z ∈U {0, 1}2`p is statis-
tically close to U(Zp).

Proof. To prove this lemma, we use the following fact.

Lemma 3 ([32, Lemma 3]). Let {n1(λ)}λ and {n2(λ)}λ be
two sequences of natural numbers. Assume that n2/n1 is
negligible in λ. If z ∈U Zn1 , then the distribution of z mod n2
is statistically close to the uniform distribution over Zn2 .

Since p/22`p < 2`p/22`p = 1/2`p is negligible in λ,
Lemma 3 implies that the distribution of z mod p for z ∈U

{0, 1}2
`p is statistically close to U(Zp). �

We note the notation H(cmt,m). The string cha is de-
fined as the hash value of H(cmt,m). The domain of the hash
function H is defined as {0, 1}∗, and the input pair (cmt,m) is
in G× {0, 1}`m . We consider that the hash value H(cmt,m) is
computed on the concatication of the binary representation
of cmt ∈ G and m ∈ {0, 1}`m .

The Schnorr signature is known to have the honest-
verifier zero-knowledge property. Namely, there exists a
PPT simulator which takes a public key pk = (G, p, g, y)
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and a string cha ∈ {0, 1}2`p as input, and then return
(cmt, cha, res) such that Ver(pk,m, σ) = 1. Moreover, for
any (pk, sk) ← KGen(1λ) and any m ∈ {0, 1}`m , the dis-
tribution of (cmt, res) is identical to that of

(
cmt, res

)
←

Sign(sk, pk,m) if the distribution of cha given to the sim-
ulator coincides with that of H(cmt,m). Note that the
above property follows in the random oracle model by sam-
pling a string cha uniformly at random from {0, 1}2`p , since
H(cmt,m) is uniformly distributed over {0, 1}2`p in the ran-
dom oracle model.

3.2 Our Impossibility Result

Let T be a polynomial in λ. We now explain the situation
where the Schnorr signature is provable to be uuf-koa from
the T-OM-DL assumption. This is defined by the manner
of the black-box reduction from the OM-DL assumption to
the uuf-koa security of Schnorr signature such as [2], [11].
Namely, there exist a non-negligible function ε and a PPT
black-box reduction algorithm R such that R solves the T -
OM-DL problem with probability ε by invoking a forger F
which wins the uuf-koa game. Here, R is allowed to access
the DL oracle at most T times, since R aims to win the T -
OM-DL game.

Let (G, p, g, y1, y2, . . . , yT+1) be a T -OM-DL instance
given from the T -OM-DL challenger C to the reduction R.
R aims to find the solution (x1, x2, . . . , xT+1) of the instance
(G, p, g, y1, y2, . . . , yT+1). For this purpose, R would access
the DL oracle at most T times and invoke a uuf-koa forger
F polynomially many times. R plays a role of a T -OM-
DL adversary in the T -OM-DL game, and plays a uuf-koa
challenger in the uuf-koa game simultaneously. On a t-th
DL oracle query, R sends a t-th instance yt ∈ G to receive
its DL xt ∈ Zp. On the other hand, R invokes a forger F
of the Schnorr signature. Suppose that R invokes F with a
pair (pk,m). Then, F returns a forgery σ, namely a valid
signature σ of m.

We consider the security in the non-programmable ran-
dom oracle model (NPROM) [11]. In the NPROM, R and
F should obtain hash values from the random oracle in a
similar manner to the ordinary ROM. However, the random
oracle is dealt with an independent party from R and F in
the security proof. This means that R is prohibited to simu-
late the random oracle internally, whereas such a simulation
is allowed in the ordinary ROM. Hence, R can observe all
random oracle queries by F , but it is not allowed to program
these values.

R is allowed to concurrently and adaptively invoke F
at most I times and rewind it polynomially many times for
some polynomial I. R would eventually behave as follows.
On a T -OM-DL instance (G, p, g, y1, y2, . . . , yT+1) to R, R
would execute the following processes concurrently:

Access to DL oracle When R sends a t-th instance yt to the
DL oracle, it receives its DL xt.

Request to obtain the hash value When R makes an i-th
pair

(
cmt,m

)
to the random oracle, it receives its hash

value cha.
Invocation of F When R invokes a k-th forger F (k) on(

pkk,mk
)
, R obtains a forgery σk := (cmtk, resk) after

F (k) obtains the hash value chak of the pair (cmtk,mk).

Finally, R outputs the solution (x1, x2, . . . , xT+1) of
(G, p, g, y1, y2, . . . , yT+1) with probability ε. The behavior
of R is depicted as in Fig. 1. Note that R may rewind F (k)

just after F (k) queries to the random oracle. This is because
R can observe the queries and the responses of F (k) in the
NPROM setting.

We assume that R is fixed-parameter [31] in a sense
that R and F run with respect to the same security param-
eter. Namely, for each k-th invocation F (k), the length of(
pkk,mk

)
given to F (k) is fixed by the security parameter λ

that is used to genretate the T -OM-DL instance to R. More
precicely, for each 1 ≤ k ≤ I, R invokes F (k) only with(
pkk,mk

)
such that pkk = (Gk, pk, gk, ỹk) ∈ PKλ, especially

the length of the order pk is `p, where PKλ is the set of all
public keys (G, p, g, y) of the Schnorr signature such that
(G, p, g) is a group parameter which would be output by
GGen on input the security parameter 1λ and y ∈ G. This
is a relaxed notion of the key-preserving reduction [5], [13]
which requires that each pkk must coincide with the T -OM-
DL instance given to R.

We now show the impossibility of the provable security
of the Schnorr signature in the NPROM.

Theorem 1. Let `p, T , and I be polynomials in λ, and
let ε be a non-negligible function. Assume that there ex-
ists a PPT fixed-parameter black-box reduction algorithm R
which solves the T -OM-DL problem with probability ε by
invoking a forger F at most I times such that F wins the
uuf-koa game on a public key pkk = (Gk, pk, gk, ỹk) ∈ PKλ

for pk < 2`p . Then there exists a PPT algorithm M which
solves the T -OM-DL problem with probability ε − negl.

Proof. Assume that there exists a PPT fixed-parameter
black-box reduction algorithm R which solves the T -OM-
DL problem with probability ε by invoking a forger F that
wins the uuf-koa game at most I times. As mentioned above,
R can find the solution (x1, . . . , xT+1) of a given T -OM-DL
instance (G, p, g, y1, . . . , yT+1) with probability ε if a forger
F which can win the uuf-koa game is provided to R no
matter what F executes. We first describe a specific hypo-
thetical uuf-koa forger F̃ . We shall next construct a meta-
reduction algorithmMwhich solves the T -OM-DL problem
with non-negligible probability by utilizing R and simulat-
ing F̃ .

(1) Family
{
F̃G

}
G

of Hypothetical Forgers

We consider a family of hypothetical uuf-koa forgers F̃G
which are parameterized by a uniformly random chosen
function G ∈U Gλ, where Gλ is the set of all functions G :
PKλ × {0, 1}`m → {0, 1}2`p for each λ. As in [19], [26], [31],
G is used to generate random values while maintaining the
deterministic execution of F̃G. It follows from G ∈U Gλ
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Fig. 1 The overview of a reduction R(G, p, g, y1, y2, . . . , yT+1).

Fig. 2 uuf-koa forger F̃G(pk,m), where pk = (G, p, g, y).

that G(pk,m) is distirubted according to U
(
{0, 1}2`p

)
for any

(pk,m) ∈ PKλ × {0, 1}`m . F̃G aims to return a forgery
σ = (cmt, res) whose distribution is statistically close to that
of Sign(sk, pk,m). The formal description of F̃G is given
in Fig. 2. Since we now consider the security game in the
NPROM, all hash values are supposed to be obtained from
the external random oracle. Since the output of G is dis-
tributed according to the distribution U

(
{0, 1}2`p

)
, Lemma 2

implies that the distribution of st generated in (1) is statis-
tically close to U(Zp). Then, we have that F̃G generates
(cmt, cha, res) whose distribution is statistically close to that
of Sign(sk, pk,m). Thus F̃G can always win the uuf-koa
game, and the distribution of the forgery σ is statistically
close to that of honestly generated signatures.

It should be noted that the process (3) seems not to be
done in PPT, however, we will construct a meta-reduction
M which simulates the forger F̃G for R in PPT.

We fix a function G, and consider that the reduction
R invokes the forger F̃G above at most I times. For any
1 ≤ k ≤ I, we explicitly denote by F̃ (k)

G the hypothetical
forger F̃G which is invoked on k-th time. R may rewind
some k-th invocation F̃ (k)

G . However, F̃ (k)
G is deterministic,

since st is fixed by G, any hash value is determined by the
random oracle, and pk has only one secret key. Namely, the
behavior of F̃ (k)

G is identical for the same inputs.

(2) Meta-ReductionM

We depict the meta-reduction M in Fig. 3. We explain the
idea of constructing the meta-reductionM.M aims to make
R to solve the T -OM-DL problem. Recall that R can solve

the T -OM-DL problem with non-negligible probability ε if
F̃G is provided. The main point to construct M is how to
simulate F̃G for R. We now fix a k-th invocation F̃ (k)

G on a
pair

(
pkk,mk

)
. M is required to return a forgery, although

this task seems not to be in PPT in general. To overcome
the difficulty,M utilizes the honest-verifier zero-knowledge
property of the Schnorr signature and the ability to simulate
the random oracle which is allowed in the NPROM-PROM
model. In other words,M generates (cmtk, chak, resk) in the
same way as the simulator which is assumed in the honest-
verifier zero-knowledge property does. In the forgery gener-
ation, the secret key of pk is no longer needed. Then,M pro-
grams chak as the hash value of the pair (cmtk,mk). Thus,M
succeeds in simulating F̃ (k)

G by returning σk = (cmtk, resk)
as a forgery.

We now show thatM can solve the T -OM-DL problem
by ensuring thatM correctly simulates F̃ (k)

G . We now fix an
k-th invocation F̃ (k). Before showing the correctness of the
simulation, we exclude two exceptional cases on a public
key pkk = (Gk, pk, gk, ỹk) ∈ PKλ given by R. The first one
is that ỹk is the identity ek of Gk. In this case, the secret key
of pkk can be determined as 0. Hence, M likely to enable
to run F̃G as in Fig. 2 in polynomial time instead of the sim-
ulation of F̃ depicted in Fig. 3. To succeed with this idea,
we need to discuss the treatment of the function G used in
the process (1). As mentioned in the description of F̃G, G is
used to generate a random value while maintaining the de-
terministic execution of F̃G. Selecting G can be emulated
by lazily sampling st in (1) of Fig. 2 from U

(
{0, 1}2`p

)
with a

new list LG. In fact, lazy sampling algorithm samples st ac-
cording to U

(
{0, 1}2`p

)
for a newly given

(
pkk,mk

)
, whereas
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Fig. 3 Meta-reductionM(G, p, g, y1, y2, . . . , yT+1).

it returns the same st which has been already determined.
Therefore,M can run F̃G in the case where ỹk is the identity
ek of Gk.

The second case is that ỹk , ek and gk = ek. Then,
there is no secret key of pkk. This means thatM can detect
that pkk is unformed, and then abort the simulation of F̃G.
Therefore, we hereafter do not consider this case.

We finally consider the other case, i.e., gk, ỹk ∈ Gk\{ek}.
It should also be noted that M no longer uses the function
G to simulate F̃ (k)

G as depicted in Fig. 3. We now assume
that R is a black-box reduction. This implies that R can
only observe a query (cmtk,mk) to the random oracle and
a forgery (cmtk, resk) by F̃ (k)

G during the invocation of F̃ (k)
G .

In other words, R cannot detect that G is internally used by
F̃

(k)
G . Therefore, to simulate F̃ (k)

G , we only require that the
distribution of (cmtk,mk, resk) output by M is statistically
close to that of F̃ (k)

G as in conventional impossibility results
such as [5], [11], [13], [26], [31]. We show thatM indeed
simulates F̃ (k)

G in this case by the following lemmas.

Lemma 4. We fix 1 ≤ k ≤ I. Assume that the simulation
of F̃ (k)

G byM does not abort. The distribution of the output
by the simulation of F̃ (k)

G by M is statistically close to the
one of the hypothetical forger F̃ (k)

G , which is given a public
key pkk = (Gk, pk, gk, ỹk) and a message mk, if pk < 2`p and
gk, ỹk ∈ Gk \ {ek}.

Proof. We fix an index k. We consider the case where the
input

(
pkk,mk

)
for F̃ (k)

G from R is newly given at the k-th
invocation. We estimate the statistical distance between the
distributions of cmtk generated by both forgers. F̃ (k)

G gen-
erates cmtk = gstk

k for stk = G(pkk,mk) mod p in the pro-
cess (1) depicted in Fig. 2. As mentioned above, stk is statis-
tically close to U(Zpk ). Therefore, the distribution of cmtk is
statistically close to U(Gk). This is because gk , ek is a gen-
erator of the groupGk of prime order, and then the map from
x ∈ Zpk to gx

k ∈ Gk is bijective. On the other hand, the simu-
lator byM generates cmtk = gresk

k hk by lazily sampling resk

from U
(
{0, 1}2`p

)
with using the list Lres in the process (iii)

depicted in Fig. 3, where hk = ỹ−chak
k . Since

(
pkk,mk

)
is

newly given by R, this means that Lres
[
pkk,mk

]
= ⊥ before

running the process (ii) on the simulation of the k-th invo-
cation. Therefore, the lazy sampling algorithm selects resk
uniformly at random over {0, 1}2`p at this time. Lemma 2
implies that the distribution of resk is statistically close to
U(Zpk ), and then the distribution of gresk

k is statistically close
to U(Gk). This implies that cmtk = gresk

k hk is also statisti-
cally close to U(Gk). This is because the map from y ∈ Gk
to yh ∈ Gk is bijective for any h ∈ Gk. It follows from
Lemma 1 that the distribution of cmtk by F̃ (k)

G is statistically
close to the one byM. Since mk is a string given by R, the
distributions of mk for both forgers are the same.

resk is set as resk = stk + skk · chak mod pk in the pro-
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cess (4), where skk is the secret key corresponding to the
given public key pkk by F̃ (k)

G , whereas the simulation byM
lazily samples resk from U

(
{0, 1}2`p

)
as mentioned above.

Since the distribution of stk is statistically close to U(Zpk ) as
we have seen and the map x ∈ Zpk to x + a mod pk ∈ Zpk is
bijective, the distribution of resk set by F̃ (k)

G is also statisti-
cally close to U(Zpk ). On the other hand, that of resk by the
simulation is also statistically close to U

(
Zpk

)
by Lemma 2.

By Lemma 1, the distribution of the output (mk, cmtk, resk)
by the simulation is statistically close to the one by F̃ (k)

G in
the case where

(
pkk,mk

)
is newly output by R.

We note the programming of the hash value chak in
(v). By the assumption of this lemma, the simulation of F̃ (k)

G
does not abort. Then M always set chak as the hash value
of (cmtk,mk). The simulation by M lazily samples chak

from U
(
{0, 1}2`p

)
with using Lcha at (i). In the same man-

ner as resk in (ii), chak is sampled from U
(
{0, 1}2`p

)
at this

time. This is because
(
pkk,mk

)
is newly given, and hence

Lcha[pkk,mk] = ⊥. Since the random oracle also chooses
a hash value according to U

(
{0, 1}2`p

)
for a newly given

(cmtk,mk), the distribution of chak set in (v) is identical to
that of the random oracle.

We next consider the opposite case, namely
(
pkk,mk

)
is already given before the k-th invocation. More precisely,
there exists k′ < k such that R already gives

(
pkk′ ,mk′

)
=(

pkk,mk
)

at the k′-th invocation. Suppose that k′ is the mini-
mum number that satisfies the situation above. Since all the
processes of forgers are deterministic, the outputs by both
forgers are the same. On the other hand, the distribution of
the output by the simulation by M at the k′-th invocation
is guaranteed to be statistically close to that by F̃ (k′)

G from
the discussion above. Thus the distribution of the output
(mk, chak, resk) by the simulation is statistically close to the
one by F̃ (k)

G . �

Lemma 5. For any 1 ≤ k ≤ I, the simulation of F̃ (k)
G , which

is given pkk = (Gk, pk, gk, ỹk) and mk, aborts with probabil-
ity 2/pk + negl, if gk, ỹk ∈ Gk \ {ek}.

Proof. We fix an index k. The simulation of F̃ (k)
G aborts

when the event LRO [cmtk,mk] < {chak,⊥} occurs. The event
LRO [cmtk,mk] < {chak,⊥} means that the hash value of
(cmtk,mk) is already defined as the different value from chak

before the process (iv) of the simulation of F̃ (k)
G . As in Fig. 3,

such a process is only happened in either the process on Re-
questing the hash value of

(
cmt,m

)
or the process (v) on

Invoking a k-th forger F̃ (k)
G on

(
pkk,mk

)
. Namely, one can

consider these two cases that the hash value of (cmtk,mk) is
defined before the process (iv).

We now consider the case where the hash value of
(cmtk,mk) is defined in Requesting the hash value of(
cmt,m

)
. This means that R finds cmtk and then makes the

query (cmtk,mk) to the random oracle before cmtk is output
byM. As estimated in the proof of Lemma 4, the distribu-
tion of cmtk set by the simulation at (iii) is statistically close

to U(Gk). This implies that the probability that R can find
cmtk before it is given fromM is 1/pk + negl.

We next consider the other case, namely it is defined
in the process (v). This implies that for some k′ < k, the
simulation of F̃ (k′)

G defines it at (v). We focus on the situa-
tion where R invokes F̃ (k)

G with
(
pkk,mk

)
=

(
pkk′ ,mk′

)
. Ob-

serve that (cmtk′ , chak′ , resk′ ) = (cmtk, chak, resk), because
chak′ , chak, resk′ and resk are lazily sampled in (i) and (ii).
This implies that chak is already defined as the hash value of
(cmtk,mk). Thus, the simulation of F̃ (k)

G does not abort. We
next focus on the opposite situation. Namely, R invokes F̃ (k)

G
with

(
pkk,mk

)
,

(
pkk′ ,mk′

)
. Under this situation, we now

evaluate the probability that the hash value of (cmtk,mk) is
already defined. This happens if the binary representation
of (cmtk,mk) coincides with that of (cmtk′ ,mk′ ). Since the
distribution of cmtk chosen in the process (iii) is statistically
close to U(Gk) for any invocation, the simulation of F̃ (k)

G sets
cmtk so that the representation of cmtk′ coincides with cmtk
with the probability at most 1/pk + negl. Thus, M aborts
in the process (iv) with 2/pk + negl for the k-th invocation
F̃

(k)
G . �

For each k-th invocation of F̃ (k)
G with pkk =

(Gk, pk, gk, ỹk), the distribution of the output by the simu-
lation by M is identical to that of F̃ (k)

G in the case where
ỹk = ek with probability 1. On the other hand, when
gk, ỹk ∈ Gk \ {ek}, it follows from Lemmas 4 and 5 that
the distribution of the output is statistically close to that of
F̃

(k)
G except the abort probability 2/pk + negl. Therefore, we

can ensure that this distribution is statistically close to that
of F̃ (k)

G except the abort probability at most 2/pk + negl for
each k-th invocation of F̃ (k)

G . Since the number of times I
of the invocation of F̃ is polynomial, this implies that M
can make R to return the solution of the given T -OM-DL
instance with probability ε−negl, ifM does not abort in the
simulation of F̃ (k)

G for all 1 ≤ k ≤ I. Recall that the abort
probability in the simulation of F̃ (k)

G is at most 2/pk + negl
for each 1 ≤ k ≤ I. This means that the abort probabil-
ity of M is evaluated by 1 −

∏I
k=1

(
1 −

(
2/pk + negl

))
<

1 −
∏I

k=1

(
1 −

(
2/2`p + negl

))
= 1 −

(
1 −

(
2/2`p + negl

))I
≤

I
(
2/2`p + negl

)
because of pk < 2`p . Then the success prob-

ability ofM is at least ε − negl− I
(
2/2`p + negl

)
= ε − negl.

Observe thatM runs in polynomial time. Thus, the PPT al-
gorithmM can solve the T -OM-DL game with probability
ε − negl. �

The following is shown by Theorem 1 and Proposi-
tion 1.

Corollary 1. Let `p, T , I, and Qs be polynomials in λ, and
let ε be a non-negligible function. Assume that there ex-
ists a PPT fixed-parameter black-box reduction algorithm R
which solves the T -OM-DL problem with probability ε by
invoking a forger F at most I times such that F wins the Qs-
euf-cma game on a public key pkk = (Gk, pk, gk, ỹk) ∈ PKλ
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for pk < 2`p . Then there exists a PPT algorithm M which
solves the T -OM-DL problem with probability ε − negl.

Proof. Assume that there exists a PPT fixed-parameter
black-box reduction algorithm R which solves the T -OM-
DL problem with probability ε by invoking a forger F that
wins the Qs-euf-cma game at most I times. Proposition 1
implies that R can solve the T -OM-DL problem with proba-
bility ε even when a forger F that wins the uuf-koa game is
provided. Then it follows from Theorem 1 the construction
of a PPT algorithmM which solves the T -OM-DL problem
with probability ε − negl. �

4. Concluding Remarks

In this paper, we have shown that the Schnorr signature is
unprovable to be universally unforgeable against the key-
only attack (uuf-koa) from the OM-DL assumption in the
NPROM via a black-box Turing reduction as long as the
OM-DL assumption holds. We have also discussed that our
impossibility result for the uuf-koa security implies the im-
possibility of the ordinary euf-cma security.

Our result is shown by using the meta-reduction tech-
nique [23]. Namely, we have constructed a meta-reduction
Mwhich solves the OM-DL problem with the help of an as-
sumed reduction R which solves the OM-DL problem with
black-box access to a uuf-koa forger F of the Schnorr sig-
nature. In the proof of the result, we employ the NPROM-
PROM model [25] which allows a meta-reduction to simu-
late the external random oracle. It remains open whether or
not the same impossibility result holds in other models such
as the conventional NPROM-NPROM model.
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