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SUMMARY Designing an optimum quantizer can be treated as the op-
timization problem of finding the quantization indices that minimize the
quantization error. One solution to the optimization problem, DP quan-
tization, is based on dynamic programming. Some applications, such as
bit-depth scalable codec and tone mapping, require the construction of
multiple quantizers with different quantization levels, for example, from
12bit/channel to 10bit/channel and 8bit/channel. Unfortunately, the above
mentioned DP quantization optimizes the quantizer for just one quantiza-
tion level. That is, it is unable to simultaneously optimize multiple quan-
tizers. Therefore, when DP quantization is used to design multiple quan-
tizers, there are many redundant computations in the optimization process.
This paper proposes an extended DP quantization with a complexity reduc-
tion algorithm for the optimal design of multiple quantizers. Experiments
show that the proposed algorithm reduces complexity by 20.8%, on aver-
age, compared to conventional DP quantization.
key words: quantization, dynamic programming, bit-depth scalability,
multi-layered structure

1. Introduction

Quantization [1] is a scheme that attempts to replicate dis-
crete signals by generating quantization indices based on a
given metric. If the metric of quantization permits distortion
(quantization error) to occur within the quantization process,
designing an optimal quantizer is equivalent to a minimiza-
tion problem, where the generation of quantization indices
has the goal of minimizing the quantization error. A typi-
cal quantization error expression is the sum of square error
(SSE). Quantization schemes are classified into two types
from the viewpoint of the input signal: the first type con-
verts a continuous signal into a discrete one, while the sec-
ond type converts a higher resolution discrete signal into a
coarse discrete signal. This manuscript focuses on the latter
type, and so assumes the input of high resolution discrete
signals. This functionality is common in bit-depth conver-
sion, and is required for display adaptation [2]–[4], bit-depth
scalable coding [5]–[7] and HDR video coding [8]–[11].

Two approaches are used to solve the above-mentioned
minimization problem: analytical optimization, which cal-
culates optimal solutions analytically, and numerical opti-
mization, which identifies optimal solutions based on nu-
merical computation. Analytical optimization is limited to
the case that the probability density function (PDF) of quan-
tized data can be represented in some particular paramet-
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ric forms, such as Gaussian distribution. By contrast, nu-
merical optimization methods are more common as they
do not require the PDF to follow any particular parametric
form. A representative method is the Lloyd-Max quantiza-
tion algorithm (LM quantization) [12], [13]. Unfortunately,
LM quantization cannot guarantee optimal solutions. For
designing optimal quantizers, adaptive quantization algo-
rithms based on dynamic programming (DP quantization),
which originated in Bruce’s algorithm [14], have been stud-
ied. For example, so as to reduce the complexity of DP
quantization, Sharma [15] attempts to minimize the quan-
tization error subject to a convexity constraint, Wu [16] uses
matrix search to find optimal solutions for DP quantization,
and Bandoh [17] focuses on the amplitude sparseness of sig-
nal values.

Some applications for HDR images such as SDR
display adaptation and bit-depth scalable coding need to
convert a source signal with high bit-depth into multi-
ple formats with lower bit-depths to support a wide vari-
ety of user environments. For example, while the source
signal may have been captured with 12 bits/component
(HDR image), some users can observe the signal only as
pseudo-HDR images because their legacy displays sup-
port only 10 bits/component or 8 bits/component. The for-
mats needed, including bit-depth, depend on the variety of
user environments. This triggered the release of bit-depth
scalable codecs such as HEVC/H.265 scalability extension
(SHVC) [18] and AVC/H.264 scalability extension (SVC)
[19] to support a multi-layered structure that includes a
base-layer (8 bit/component) and multiple enhancement lay-
ers (10 and 12 bit/component). The result is a processed bit-
stream that realizes SDR display adaptation.

Our target is the optimal design of a multi-level quan-
tizer that supports multiple quantization levels. A straight-
forward approach is to apply DP quantization to each quan-
tization level, simultaneously. This approach treats the
quantizers of each specific level independently. It does
not consider redundant computations between the quantiz-
ers with different quantization levels. The above mentioned
studies on complexity reduction of DP quantization follow
this approach category. To maximize the complexity reduc-
tion when optimizing a multi-level quantizer, we focus on
eliminating the redundant computations inherent in process-
ing different quantization levels, while minimizing quantiza-
tion error.

In this paper, we propose an algorithm that reduces the
complexity of DP quantization for multiple quantization lev-
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els, while well minimizing quantization error. This paper
enhances the basic study of [20] with regard to three points.
First, this paper presents a complete algorithm that reduces
the complexity of DP quantization for multiple quantization
levels, while still minimizing quantization error. Second,
this paper introduces more extensive experimental results
through evaluations on more kinds of image contents. Fi-
nally, this paper provides an analytical evaluation to assess
the complexity of the proposed algorithm.

This paper studies a layered design for multi-level
quantization as an extension of DP quantization and differs
from conventional studies on DP-based layered quantiza-
tion, as described below. Muresan [21] uses DP for design-
ing multi resolution scalar quantization (MRSQ) that gener-
ates multi-level quantizers under a restriction that requires
successive refinement of partitions. Its restriction requires
that a refined quantization have quantization bins that are
contained within those of coarse quantization. By contrast,
the proposed method in this paper assumes no such struc-
tural restriction. The proposed method challenge optimal
quantization designs to support wider ranges than MRSQ.
Khandani [22] studies the design of entropy constraint vec-
tor quantization based on DP. The study utilizes DP for hi-
erarchically constructing elements of a multi-dimensional
vector for an efficient dictionary. Note that this study takes
the position of reducing complexity at the expense of in-
crease in quantization error. Thus, its constructed quantizer
does not guarantee the global optimal design.

This paper is organized as follows. Section 2.1 formu-
lates the problem of quantizer optimization. Section 2.2 in-
troduces a DP quantization that is the key component of our
proposed algorithm. Section 2.3 elucidates optimal quan-
tizer design from the viewpoint of path search on a trellis di-
agram. Section 2.4 enhances DP quantization for designing
multi-level quantizers in terms of dropping duplicate com-
putations on adjacent quantization levels. As reference in-
formation, notations used in Sect. 2 are summarized in Ta-
ble 1. Section 3 details the results of experiments conducted
on the proposed method. Finally, Sect. 4 presents our con-
clusions.

2. Multi-Level Quantizer Design

2.1 Formulation of M-Level Quantizer Design

We formulate the design of a quantizer that translates a K-
level discrete signal into an M-level equivalent (M < K).
We realize this by processing a histogram of the signal as
the input to the quantizer. The k-th element of the histogram
is h[k] (k = 0, · · · ,K − 1), which is the frequency of sig-
nal value k. The formulated quantizer, which is called the
M-level quantizer, is defined using parameters ∆m and Lm;
∆m is the length of the m-th sub-interval of the histogram.
Lm is the upper boundary of the m-th sub-interval in the his-
togram. The boundaries are described below starting with
the parameters given by:

Fig. 1 Example of parameters used in quantization.

 Lm =

m∑
j=0

∆ j − 1 (m = 0, · · · ,M − 2)

LM−1 = K − 1
(1)

Henceforth, the m-th interval [Lm − (∆m − 1), Lm] of the his-
togram is called the m-th bin. Since each bin has at least one
element, Lm (0 ≤ m ≤ M − 2) is restricted to the following
range:

m ≤ Lm ≤ K − (M − m) (2)

Figure 1 illustrates the above-mentioned parameters for a
histogram with ten elements (K = 10) quantized into four
bins (M = 4). This figure shows that the bins contain
3(= ∆0) elements, 1(= ∆1) element, 2(= ∆2) elements, and
4(= ∆3) elements of the input histogram, and the upper
boundaries of the bins are L0 = ∆0−1 = 2, L1 = ∆0+∆1−1 =

3, L2 = ∆0+∆1+∆2−1 = 5, and L3 = ∆0+∆1+∆2+∆3−1 = 9.
Quantizer design is based on minimizing the quantiza-

tion error created by approximating all values in the m-th
bin [Lm − (∆m − 1), Lm] of the histogram with representative
value ĉ(∆m, Lm). To assess the quantization error of the m-th
bin, we use the summation of square error e(∆m, Lm) defined
as follows:

e(∆m, Lm) =

Lm∑
k=Lm−∆m+1

{k − ĉ(∆m, Lm)}2h[k] (3)

where ĉ(∆m, Lm) is the integer value that is closest to the
centroid of the m-th bin. The centroid is defined as follows:

c(∆m, Lm) =

∑Lm
k=Lm−(∆m−1) kh[k]∑Lm
k=Lm−(∆m−1) h[k]

(4)

Optimizing the quantizer means finding the parameters that
minimize the following summation of quantization error

(∆∗0, · · · ,∆
∗
M−1) = arg min

∆0,··· ,∆M−1

M−1∑
m=0

e(∆m, Lm)

 (5)

2.2 M-Level Quantizer Design Based on Dynamic Pro-
graming

Given that the quantization error e(∆m, Lm) of the m-th bin
depends on the boundary, Lm, of the m-th bin and the
length, ∆m, of the same bin, dynamic programming based
approaches (DP quantization) have been used to solve the
optimization problem represented by Eq. (5).
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Table 1 Notations.
Symbol Description

K the number of levels of input signal
M1,M2 the number of levels of quantized signal, M1 < M2 < K
h[k] the k-th element (k = 0, · · · ,K − 1) of the histogram of input signal, which is abbreviated as “the histogram” in this table
Lm the upper boundary of the m-th interval in the histogram (m = 0, · · · ,M − 1)
∆m the length of the m-th interval of the histogram (m = 0, · · · ,M − 1)
e(∆m, Lm) quantization error of the m-th interval [Lm − (∆m − 1), Lm] of the histogram
E[∆m, Lm] the (∆m, Lm)-th element of a look-up table for referring the value of e(∆m, Lm)
S m[Lm] the minimum summation of quantization error if the interval [0, Lm] of the histogram is divided into m + 1 sub-intervals
Tm−1[Lm] the optimal boundary of the m − 1-th bin which is next to the m-th bin with boundary Lm

1) Element index is an index to identify each element of the histogram.

DP quantization focuses on the recurrence relation of
quantization error. We define S m[Lm] for each Lm (m =

0, · · · ,M − 1) as the minimum summation of quantization
error

∑m
i=0 e(∆i, Li) where interval [0, Lm] of histogram h[k]

(k = 0, · · · ,K−1) is divided into m+1 bins. Since e(∆m, Lm)
depends on Lm and ∆m, S m[Lm] can be expressed using
S m−1[Lm − ∆m] given by the following recursive equation:

S m[Lm] = min
∆m
{S m−1[Lm − ∆m] + e(∆m, Lm)} (6)

where m = 1, · · · ,M − 1 and Lm = m, · · · ,K − (M − m).
Equation (6) says that computing S m[Lm] results in the se-
lection of the best parameter among the values of ∆m =

1, · · · , Lm − m + 1. Solving Eq. (6) from m = 1 up to
m = M − 1 recursively, the minimization problem of Eq. (5)
can be written as follows:

min
∆M−1
{S M−2[LM−1 − ∆M−1] + e(∆M−1, LM−1)} (7)

2.3 Interpretation of Optimal Quantizer on Trellis Transi-
tion Diagram

We use a trellis transition diagram to better explain the op-
timization process of DP quantization. This interpretation
will be useful in understanding the proposed algorithm de-
scribed in Sect. 2.4. The trellis transition diagram of Fig. 2
illustrates the quantization result for the example shown in
Fig. 1. The traversed path, indicated by the bold blue lines
in Fig. 2, corresponds to the quantization result shown in
Fig. 1. In Figd. 2, the vertical axis and the horizontal axis
represent signal values k ∈ {0, 1, · · · , 9} to be quantized and
quantization indices m ∈ {0, 1, 2, 3}, respectively. The trellis
transition diagram consists of nodes and paths. The node at
(k,m) has a state wherein the interval [0, k] in the histogram
is approximated with m + 1 levels, and the upper bound of
the m + 1-th bin is the k-th element of the histogram. The
path from node (k − ∆,m − 1) to (k,m) has quantization er-
ror of the m-th bin corresponding to interval [k − ∆ + 1, k].
Thus, the design of the optimal quantizer that translates a K-
level discrete signal into an M-level one can be represented
as optimal path search from the node at (−1,−1) to that at
(K − 1,M − 1) over the trellis transition diagram. Note that
the node at (−1,−1) is a dummy node introduced as the start
node and does not have the above-mentioned state.

Fig. 2 Traversed path corresponding to quantization shown in Fig. 1.

The transitions over the diagram need to satisfy the fol-
lowing constraints:

(A) move one step in the upward direction per transition
(B) move at least one step in the right direction per transi-

tion

Considering the above constraints, in the case of the quan-
tization example (K = 10,M = 4) shown in Fig. 1, nodes
that can be transited in the trellis transition diagram are re-
stricted to those within the region delineated by broken-lines
as shown in Fig. 2. This is generalized as follows: the nodes
on the m-th row (m = 0, · · · ,M − 2) exist in the range of
k = m, · · · ,K − M + m.

2.4 Complexity Reduction for Designing Optimal Multi-
Level Quantizers

We now turn to the design of the optimization of multiple
quantizers that support multiple quantization levels. Our ex-
ample is the optimization of an M1-level quantizer and an
M2-level quantizer that both have as their inputs the same
K-level signal (M1 < M2 < K). Note that although the
following discussion deals with just two quantization lev-
els, the same discussion applies to the general case of more
than two levels without loss of generality. A straightforward
approach to the design is to apply DP quantization to each
quantization level independently. Hereinafter, this approach
is referred to as simultaneous DP quantization. Simulta-
neous DP quantization focuses on complexity reduction for
a specific level of quantization. However, it does not ad-
dress redundant computations between quantizers with dif-
ferent quantization levels. To further reduce the complexity
of multi-level quantizers, we focus on eliminating the redun-
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Fig. 3 Trellis transition diagram for the example of M = 4 and M = 5.

dant computations permitted by simultaneous DP quantiza-
tion.

We introduce the basic concept of our proposal using
the example shown in Fig. 3. In detail, we discuss a multi-
level quantizer that quantizes a 10-level signal (K = 10) to
a 4-level signal (M1 = 4) and a 5-level signal (M2 = 5).
Figure 3 illustrates two trellis transition diagrams: one for
4-level quantization and one for 5-level. For the case of
M1 = 4, traversed nodes are restricted to the white and gray
nodes within the parallelogram area bounded by the black
broken-lines. For the case of M2 = 5, traversed nodes are
restricted to the red and gray nodes within the parallelogram
area surrounded by the red broken-lines. The accumulated
cost incurred by the gray nodes is the same for both M1 = 4
and M2 = 5. When we try to find the optimal quantizer for
M2 = 5 after obtaining the optimal one for M1 = 4, it is
not necessary to recompute the gray nodes for the case of
M2 = 5. This is because those gray nodes are identical to
those determined for M1 = 4. For the case of M2 = 5, it
is sufficient to compute just the red nodes. This suppresses
duplicate computation, which reduces complexity while re-
taining solution optimality.

Generalizing the above example, let us consider the hi-
erarchical optimization of an M1-level quantizer and an M2-
level quantizer whose inputs are the same K-level signal.
The hierarchical optimization is designed assuming an M1-
level quantizer that satisfies

(∆(1)∗

0 , · · · ,∆(1)∗

M1−1) =arg min
∆0,··· ,∆M1−1

M1−1∑
m=0

e(∆m, Lm)

 (8)

which is followed by an M2-level quantizer that satisfies

(∆(2)∗

0 , · · · ,∆(2)∗

M2−1) =arg min
∆0,··· ,∆M2−1

M2−1∑
m=0

e(∆m, Lm)

 (9)

The M1-level quantizer is generated by solving Eq. (8) with
DP quantization. The M2-level quantizer is generated by
solving Eq. (9) with our improved DP quantization proposal
that eliminates wasteful re-computation by reusing some of
the results of DP quantization for the M1-level quantizer.
Basically, the M2-level quantizer incurs accumulated costs
of S m[k] (m = 0, · · · ,M2−2, k = m, · · · ,K−M+m) based on
Eq. (6) in ascending order of m. However, it is different from
the M1-level quantizer in that not all S m[k] are computed
from scratch. Since S m[k] in the range of 0 ≤ m ≤ M1 − 2

are the same as those for the M1-level quantizer, they can be
obtained by simply reusing the values computed for the M1-
level quantizer. What needs to be computed from scratch
for the M2-level quantizer is limited to S m[k] in the range of
M1 − 1 ≤ m ≤ M2 − 1. The above approach is referred to as
layered DP quantization.

Figure 4 shows the pseudo-code of the multi-level
quantizer stated above. Instruction 2 in Fig. 4 generates a
look-up-table that stores the quantization error of every in-
terval in the histogram. This look-up-table is shared be-
tween M1-level quantizer and M2-level quantizer. Instruc-
tions 3 to 15 correspond to the design of a M1-level quan-
tizer using the DP quantization algorithm. In these pro-
cesses, instructions 3 to 8 solve the minimization problem
recursively based on Eq. (6), as described in Sect. 2.2. In-
struction 9 stores the optimal boundary of the m − 1-th bin
Lm in table Tm−1[Lm] for later reference. Instructions 10 to
14 obtain the optimal parameters (∆(1)∗

0 , · · · ,∆(1)∗

M−1) from the
following process, which is called the back-track process.
Since the possible value of LM−1 is limited to K − 1, as the
optimal value of LM−1, we have L(1)∗

M−1 = K − 1. By using
L(1)∗

M−1 = K−1 as a start point, and referring to table Tm[], we
obtain L∗M−2 = TM−2[L∗M−1] ,· · · , L∗0 = T0[L∗1]. Using these
values L(1)∗

M−1, · · · , L(1)∗

0 , we derive ∆
(1)∗

M−1 = L(1)∗

M−1−L(1)∗

M−2, ,· · · ,
∆

(1)∗

1 = L(1)∗

1 − L(1)∗

0 , ∆
(1)∗

0 = L(1)∗

0 + 1 for M1-level quantizer.
Instructions 16 to 27 design the M2-level quantizer

based on the algorithm provided in Sect. 2.4. Instruction 16
loads accumulated costs which are computed in generating
the M1-level quantizer. By reusing these accumulated costs,
instructions 17 to 21 focus on m = M1 − 1, · · · ,M2 − 1,
i.e. the nodes in the restricted range among the M1 − 1-
th row and the M2 − 1-th row of the trellis transition dia-
gram. Thus, we can eliminate the computations associated
with m = 0, · · · ,M1 − 2. Finally, the back-track process
in instructions 21 to 27 generates the optimal parameters
(∆(2)∗

0 , · · · ,∆(2)∗

M−1) for M2-level quantizer.

3. Experiments

We performed the following experiments in order to inves-
tigate the effectiveness of our quantization algorithm from
the viewpoint of complexity reduction. As the input signal
of each quantization algorithm, we used the sequences in
ITE/ARIB Ultra-high definition/wide-color-gamut standard
test sequences - Series A and Series B [23], [24]. The se-
quences employ the progressive scan format with resolution
of 3840 × 2160 pixels/frame in the RGB4:4:4 color format
defined in ITU-R Recommendation BT.2020. These signals
were sampled at 12 bit scale, so K = 4096. Green chan-
nel signals of the head frame of each sequence were used in
the following evaluation experiments. Given the existence
of legacy displays, it is often necessary to convert high bit-
depth signals into low bit-depth signals that have just ten or
eight bits/channel. Accordingly, we set M = 1024, 256 as
the number of bins. These experiments were performed on
a computer with an Intel core i7 CPU (2.8GHz) and 8GB of
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1. Load histogram h[k] (k = 0, · · · ,K − 1) of the signal values
2. Load the look-up-table E[ie − is + 1, ie] ( is ≤ ie, is = 0, · · · ,K − 1, ie = 0, · · · ,K − 1) for quantization error of each interval in histogram h[k]
3. for j = 0, · · · ,K − M1
4. S 0[ j]← E[0, j] /* for nodes in the 0-th row of the trellis transition diagram */
5. for m = 1, · · · , M1 − 1 /* for nodes in the 1-st row to M1 − 1-th row of the trellis transition diagram */
6. for Lm = m, · · · ,K − (M1 − m)
7. S m[Lm]← min

∆m=1,··· ,Lm−m+1
{S m−1[Lm − ∆m] + E[Lm − (∆m − 1), Lm, λ]}

8. ∆
(Lm)
m ← arg min

∆m=1,··· ,Lm−m+1
{S m−1[Lm − ∆m] + E[Lm − (∆m − 1), Lm, λ]}

9. Tm−1[Lm]← Lm − ∆
(Lm)
m

10. L(1)∗

M1−1 ← K − 1
11. for m = M1 − 1, · · · , 1
12. L(1)∗

m−1 ← Tm−1[L(1)∗
m ]

13. ∆
(1)∗
m ← L(1)∗

m − L(1)∗

m−1

14. ∆
(1)∗

0 ← L(1)∗

0 + 1

15. Output ∆
(1)∗
m for m = M1 − 1, · · · , 0 as optimum parameters of M1-level quantizer /*Up to here : design of M1-level quantizer */

16. Load accumulated cost S m[ j] (m = 0, · · · ,M1 − 2, j = m, · · · ,K − (M1 − m)) using DPQ with M1-level
17. for m = M1 − 1, · · · ,M2 − 1 /* for nodes in the M1 − 1-th row to M2 − 1-th row of the trellis transition diagram */
18. for Lm = m, · · · ,K − (M2 − m)
19. S m[Lm]← min

∆m=1,··· ,Lm−m+1
{S m−1[Lm − ∆m] + E[Lm − (∆m − 1), Lm, λ]}

20. ∆
(Lm)
m ← arg min

∆m=1,··· ,Lm−m+1
{S m−1[Lm − ∆m] + E[Lm − (∆m − 1), Lm, λ]}

21. Tm−1[Lm]← Lm − ∆
(Lm)
m

22. L(2)∗

M2−1 ← K − 1
23. for m = M2 − 1, · · · , 1
24. L(2)∗

m−1 ← Tm−1[L(2)∗
m ]

25. ∆
(2)∗
m ← L(2)∗

m − L(2)∗

m−1

26. ∆
(2)∗

0 ← L(2)∗

0 + 1

27. Output ∆
(2)∗
m for m = M2 − 1, · · · , 0 as optimum parameters of M2-level quantizer

Fig. 4 Optimal design of multi-level quantizer with M1/M2-level using multi-layered DP quantiza-
tion.

memory.
In order to evaluate the complexity reduction achieved

by layered DP quantization (abbreviated as LyDP-Q), we
compared LyDP-Q with simultaneous DP-quantization (ab-
breviated as SmDP-Q) in terms of running time. As we
described in 2.4, SmDP-Q designs two optimal quantizers
for M = 1024 and M = 256 by applying DP quantization
to each quantization level M = 1024, 256 independently.
By contrast, LyDP-Q supports the elimination of duplicate
computations between different quantization levels. For this
comparison, we calculated the following metric:

complexity reduction ratio =

running time of SmDP-Q − running time of LyDP-Q
running time of SmDP-Q

(10)

The results are shown as bar graphs in Fig. 5, where gray
bars and black bars represent the running time of SmDP-
Q and LyDP-Q, respectively. We confirmed that LyDP-Q
yielded a 20.8% (on average) complexity reduction over
SmDP-Q. The proposed algorithm leads to computation effi-
ciency while keeping the optimality of multi-level quantiza-
tion in terms of minimizing the total amount of quantization
error.

Furthermore, our layered approach can be incorporated
into sparse DP quantization (SDP-Q) [17] in the same way
as DP quantization. Figure 6 shows the running time of our
layered approach built on SDP-Q (abbreviated as LySDP-Q)

and the simultaneous approach built on SDP-Q (abbreviated
as SmSDP-Q). We confirmed that LySDP-Q had less com-
plexity, 16.1% on average, than SmSDP-Q. SDP-Q pays at-
tention to the amplitude sparseness of signal values for com-
plexity reduction, whereas our layered approach focuses on
inter-level redundancy. Therefore, as the above results show,
our layered approach well complements the conventional
complexity reduction scheme for DP quantization.

The proposed method with its layered strategy
achieved its complexity reduction by eliminating the follow-
ing computations:

(C1) duplicated processes to search for optimal paths for
M2-level quantization

(C2) duplicated generation of a look-up table E[] for M2-
level quantization

Further details on the complexity reduction are to be
found in Table 2. Table 2(a) shows average processing time
of SmDP-Q and LyDP-Q for all images. The figures in col-
umn “reduction ratio” in Table 2(a) were computed by ap-
plying the same concept as Eq. (10) to the candidate paths
of SmDP-Q and LyDP-Q. As a breakdown of the process-
ing time of both algorithms, Tables 2(b) and (c) give the
processing time for searching optimal path and that for gen-
erating look-up tables, respectively. As a countermeasure
to the above-mentioned “C1”, LyDP-Q reused a part of the
computations performed for M1-level quantization for opti-
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Fig. 5 Running time of LyDP-Q and SmDP-Q (“reduction ratio” is de-
fined in (10)).

mizing M2-level quantization. As a result, LyDP-Q reduced
the processing time of this process by 16.7% over SmDP-
Q, as shown in Table 2(b). This contributed to reduce the
total processing time by 14.6%. As a countermeasure to
the above-mentioned “C2”, LyDP-Q shared the look-up ta-
ble of the M1-level quantization with the M2-level quanti-
zation instead of generating look-up tables for each quan-
tization. This is because the look-up table of the M1-level
quantization includes that of the M2-level quantization. As
a result, LyDP-Q reduced the processing time of this pro-
cess by 48.4% over SmDP-Q, as shown in Table 2(c). This
contributed to reduce the total processing time by 6.2%.

Next, we analyze the complexity of the above-
mentioned “C1” and “C2” for the approach based on DP
quantization which is abbreviated as DP-Q. The complex-
ity of “C1” is related to the number of feasible paths within

Fig. 6 Running time of LySDP-Q and SmSDP-Q (“reduction ratio” is
defined by Eq. (10)).

the search range that is shared among both quantizations.
In the following, feasible paths within the search range are
abbreviated as candidate paths, and candidate paths that are
shared between both quantizations are abbreviated as shared
candidate paths. According to [17], the number of candidate
paths for DP-Q that quantizes a K-level signal into a M-level
signal is derived as follows:

Ωpath(M,K)

=
1
2

M3 −
2K + 5

2
M2 +

K2 + 7K + 4
2

M − K2 − K (11)

The number of shared candidate paths for DP-Qs that output
M1-level/M2-level signals from K-level signal is derived as
follows:

Ωshared-path(M1,M2,K)
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Table 2 Average processing time of SmDP-Q and LyDP-Q for all im-
ages (cells in the “reduction ratio” columns present the values yielded by
Eq. (10), and cells in the SD rows present standard deviations of all chan-
nels).

(a) Total processing time
Channel SmDP-Q LyDP-Q reduction ratio

[msec] [msec] [%]
R 9371 7434 20.7
G 9370 7428 20.7
B 9376 7411 21.0

Ave. 9372 7424 20.8
SD 13 58 0.7

(b) Processing time for optimal path search
Channel SmDP-Q LyDP-Q reduction ratio

[msec] [msec] [%]
R 8169 6814 16.6
G 8167 6808 16.6
B 8170 6789 16.9

Ave. 8168 6803 16.7
SD 13 62 0.7

(c) Processing time for generating look-up table
Channel SmDP-Q LyDP-Q reduction ratio

[msec] [msec] [%]
R 1202 620 48.4
G 1204 620 48.5
B 1206 622 48.4

Ave. 1204 621 48.4
SD 10 5 0.1

=

{
1 +

1
2

(K − M2 + 2)(M1 − 2)
}

(K − M2 + 1) (12)

The derivation of the above equation can be found in
Appendix.

Based on these analysis models, we found that com-
plexity reduction obtained by eliminating “C1” is evalu-
ated as Ωshared-path(M1,M2,K); it reflects the complexity-
related computations reused in searching for optimal paths
of M2-level quantization. Furthermore, the reduction ratio
which is the above complexity reduction over the complex-
ity relevant to this process in SmDP-Q is evaluated as fol-
lows:

CRpash(M1,M2,K) =
Ωshared-path(M1,M2,K)

Ωpath(M1,K) + Ωpath(M2,K)

(13)

For the case of K = 4096, M2 = 1024 and M1 = 256, the
reduction ratio is 17.9%, which is close to the simulation
results shown in the rightmost column in the “Ave.” row
of Table 2(b). Additionally, the standard deviations of the
processing time were small as shown in the “SD” row in the
table.

The complexity of “C2” is related to the number of can-
didate intervals in the input histogram, because the quanti-
zation error of each candidate interval needs to be computed
and stored in E[]. According to [17], the number of candi-
date intervals for DP-Q that quantizes a K-level signal into
a M-level signal is derived as follows:

Ωinterval(M,K) = (−M2 + M + K2 + K)/2 (14)

Based on this analysis model, we found that complex-
ity reduction obtained by eliminating “C2” is evaluated as
Ωinterval(M2,K); the complexity for generating the look-
up table of M2-level quantization. Furthermore, the reduc-
tion ratio which is the above complexity reduction over the
complexity relevant to this process in SmDP-Q is evaluated
as follows:

CRinterval(M1,M2,K)

=
Ωinterval(M2,K)

Ωinterval(M1,K) + Ωinterval(M2,K)
(15)

For the case of K = 4096, M2 = 1024 and M1 = 256, the
reduction ratio is 48.5%, which agrees well with the simu-
lation results shown in the rightmost column in the “Ave.”
row of Table 2(c). Additionally, the standard deviations of
the processing time were small as shown in the “SD” row in
the table.

The above analysis for two-layer quantization can be
generalized to two or more layers. Let L and Ml denote the
number of layers and the quantization level of the l-th layer
(l = 1, · · · , L), respectively. Note that M1 < M2 < · · · <
ML. In the case of an L-layer quantization, letting M(L) =

(M1, · · · ,ML), the reduction ratio of Eq. (13) is generalized
to

CRpath(M(L),K) =

∑L
l′=2 Ωshared-path(Ml′−1,Ml′ ,K)∑L

l=1 Ωpath(Ml,K)

The above is derived in the followings. The num-
ber of candidate paths of LyDP-Q is Ωpath(M1,K) +∑L

l′=2

{
Ωpath(Ml′ ,K) −Ωshared-path(Ml′−1,Ml′ ,K)

}
. On

the other hand, the number of candidate paths of SmDP-Q is∑L
l=1 Ωpath(Ml,K). So, the reduction of the former with re-

spect to the latter is
∑L

l′=2 Ωshared-path(Ml′−1,Ml′ ,K), and
we obtain the above reduction ratio. Similarly, the reduction
ratio of Eq. (15) is generalized to

CRinterval(M(L),K) =

∑L
l′=2 Ωinterval(Ml′ ,K)∑L
l=1 Ωinterval(Ml,K)

This is because the candidate intervals of M1 contain all can-
didate intervals of M2, · · · ,ML.

Table 3 provides comparisons between SmSDP-Q and
LySDP-Q. Table 3(a) shows average processing time of
SmSDP-Q and LySDP-Q for all images. The figures in
the column “reduction ratio” in Table 3(a) were computed
by applying the same concept as Eq. (10) to the candidate
paths of SmSDP-Q and LySDP-Q. Table 3(b) and (c) give
the processing time for searching for the optimal paths and
that for generating look-up tables, respectively. As a result,
LySDP-Q reduced the time taken by this process by 14.0%
over SmSDP-Q, as shown in Table 3(b). This contributed
to reducing the total processing time by 12.6%. LyDP-Q
reduced the processing time of this process by 33.4% over
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Table 3 Average processing time of SmSDP-Q and LySDP-Q for all
images (cells in the “reduction ratio” column present values given by
Eq. (10)).

(a) Total processing time
Channel SmSDP-Q LySDP-Q reduction ratio

[msec] [msec] [%]
R 1252 1054 15.9
G 1263 1061 16.0
B 1311 1097 16.3

Ave. 1276 1071 16.1

(b) Processing time for optimal path search
Channel SmSDP-Q LySDP-Q reduction ratio

[msec] [msec] [%]
R 1122 966 13.9
G 1131 973 14.0
B 1173 1006 14.3

Ave. 1142 982 14.0

(c) Processing time for generating look-up table
Channel SmSDP-Q LySDP-Q reduction ratio

[msec] [msec] [%]
R 130 87 32.9
G 132 88 33.1
B 138 91 34.0

Ave. 133 89 33.4

SmDP-Q, as shown in Table 3(c). This contributed to reduc-
ing the total processing time by 3.5%.

It was observed that the reduction ratio of LySDP-Q
was less than that of LyDP-Q from the perspectives of total
processing time, processing time of optimal path search, and
processing time to generate look-up table.

We consider the cause of this observation by analyz-
ing the complexity of “C1” and “C2” for approaches based
on SDP-Q. Since SDP-Q skips insignificant elements in the
histogram of the input signal, the number of insignificant
elements impacts the complexity of approaches based on
SDP-Q, such as SmSDP-Q and LySDP-Q. The number of
significant elements varies depending on channels of im-
ages used in our experiments as shown in Fig. 7. This is
why the processing times of SmSDP-Q and LySDP-Q de-
pend on images in Fig. 6. In the following, let K̃ be the
number of the significant elements. Based on the analy-
sis models of Eqs. (11) and (12), the complexity reduction
gained by eliminating “C1” is approximately evaluated as
Ωshared-path(M1,M2, K̃). The reduction ratio which is the
above complexity reduction over the complexity relevant to
this process in SmSDP-Q is approximately evaluated as fol-
lows:

Ωshared-path(M1,M2, K̃)

Ωpath(M1, K̃) + Ωpath(M2, K̃)
(16)

The number of significant elements depends on the in-
put signal. In the following, let us consider the complexity
of SmSDP-Q and LySDP-Q using the average number of
significant elements over all input signals (26 kinds of im-
ages) used in the experiments. The average number of the
significant elements was 1597. In the case of K̃ = 1597,

Fig. 7 The number of insignificant elements in each channel.

M2 = 1024 and M1 = 256, the above analytical evaluation
says that the reduction ratio would be 10.5%. This value
is less than the reduction ratio of K = 4096, M2 = 1024
and M1 = 256, which was 48.5% as stated previously. This
shows that the reduction ratio tends to decrease as the num-
ber of significant elements decreases. This trend closely re-
sembles the experimental results. There was, however, some
gap between the analytical evaluation and the simulation re-
sults shown in the rightmost column in Table 3(c). This is
because Eqs. (12) and (11) are analytical models for DP-Q
based approaches and can not exactly represent the number
of candidate paths for SDP-Q. Specifically, the analytical
models do not consider the complexity reduction achieved
by restricting the search range, see Sect. 5.2 in [17].

Based on this analysis model of Eq. (14), the complex-
ity reduction achieved by eliminating “C2” is approximately
Ωinterval(M2, K̃). The reduction ratio which is the above
complexity reduction over the complexity relevant to this
process in SmDP-Q is evaluated as follows:

Ωinterval(M2, K̃)

Ωinterval(M1, K̃) + Ωinterval(M2, K̃)
(17)

In the case of K̃ = 1597, M2 = 1024 and M1 = 256, the
above analytical evaluation says that the reduction ratio is
37.7%, which is close to simulation results shown in the
rightmost column of Table 3(c).

4. Conclusion

This paper extended DP quantization so as to significantly
reduce the complexity of multi-level quantization. The al-
gorithm proposed herein eliminates the redundant compu-
tations between different quantization levels without los-
ing the optimality of multi-level quantization. Experiments
showed that the proposed algorithm attained 20.8% and
16.1% lower complexity (on average) than simultaneous
quantization built on DP quantization and sparse DP quan-
tization, respectively.
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Appendix: Derivation of Eq. (12)

Let us consider the candidate paths shared among two DP-
Qs that output M1-level/M2-level signal from the same K-
level signal. We evaluate the shared candidate paths in two
cases:

(i) nodes in a range with m = 0
(ii) nodes in a range with m = 1, · · · ,M1 − 2

Figure A· 1 illustrates the case of K = 7, M2 = 5 and M1 =

4. The green nodes and the blue nodes represent the nodes
in class (i) and class (ii), respectively. First, let us consider
class (i). In this class, there are K − M2 + 1 kinds of nodes,
and every node has a single path. Accordingly, we find that
there are K − M2 + 1 kinds of paths. Figure A· 1 shows the
paths in this class as the green line segments. Second, let us
consider class (ii). In this class, a node (m + `,m) has ` + 1
kinds of paths. In a group of nodes located at (m + `,m)
where ` = 0, 1, · · · ,K − M2, m = 1, · · · ,M1 − 2, there are
the following number of paths:

M1−2∑
m=1

K−M2∑
`=0

(` + 1) = (M1 − 2)
K−M2∑
`=0

(` + 1)

Figure A· 1 shows the paths in this class as the blue line
segments. From the above results, we obtain the following:

Ωshared-path(M,K)

= (K − M2 + 1) + (M1 − 2)
K−M2∑
`=0

(` + 1)

= (K − M2 + 1) +
1
2

(M1 − 2)(K − M2 + 2)(K − M2 + 1)

=

{
1 +

1
2

(M1 − 2)(K − M2 + 2)
}

(K − M2 + 1)

Fig. A· 1 Shared nodes in the case of K = 7, M2 = 5 and M1 = 4.
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