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Ramsey Numbers of Trails

Masatoshi OSUMI†a), Nonmember

SUMMARY We initiate the study of Ramsey numbers of trails. Let
k ≥ 2 be a positive integer. The Ramsey number of trails with k vertices
is defined as the the smallest number n such that for every graph H with n
vertices, H or the complete H contains a trail with k vertices. We prove
that the Ramsey number of trails with k vertices is at most k and at least
2
√
k + Θ(1). This improves the trivial upper bound of b3k/2c − 1.

key words: Ramsey theory, trails, Eulerian graphs, semi-Eulerian graphs

1. Introduction

Ramsey theory is one of the topics in discrete mathematics
that has been studied over the years [1], [4]. For graphs,
the Ramsey number was first studied for complete graphs,
and later it was studied for other classes of graphs such
as paths, cycles, and trees; a good source of references is
given by Radziszowski [5]. Applications of Ramsey theory
ranges from pure mathematics such as number theory and
harmonic analysis to computer science such as approxima-
tion algorithms and complexity theory [3], [6].

For graphs G and G′, the Ramsey number of the pair
(G,G′) is the smallest number n such that for every graph H
with n vertices, H contains a copy of G or the complement H
contains a copy of G′. It is known that for every pair (G,G′)
of finite graphs, the Ramsey number of (G,G′) exists, and
the determination of the Ramsey number is the ultimate
goal. However, even for complete graphs, the exact Ramsey
number is not known: When G = G′ = K5 we only know
that the Ramsey number lies between 43 and 48 [5].

In this paper, we initiate the study of Ramsey numbers
for trails. Unlike paths, trails may have a repetition of ver-
tices. To study the Ramsey number of trails, we first fix the
number of vertices in a trail. Let k and ` be integers. Then,
the Ramsey number of trails with k vertices and ` vertices is
defined as the smallest number n such that for every graph
H with n vertices, H contains a trail with k vertices or H
contains a trail with ` vertices.

The ultimate goal is to determine the Ramsey number
of trails. Unfortunately, we are unable to provide a definite
answer. Nonetheless, we give a progress toward the ultimate
goal. We concentrate on the diagonal case, i.e., the case
where k = `. Our main theorems give an improved upper
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bound of k, and also a lower bound of roughly 2
√

k. We note
here that a trivial upper bound is b3k/2c − 1, which will be
sketched in the next section.

2. Preliminaries

In this paper, all graphs are finite, simple and undirected.
A graph G is defined as a pair (V,E) of a finite set V and
E ⊆ {{u, v} | u, v ∈ V,u , v}, where V is the set of vertices
of G and E is the set of edges of G. The degree of a
vertex v ∈ V is the number of edges incident to v, i.e.,
|{e ∈ E | v ∈ e}|.

A graph G′ = (V ′,E ′) is a subgraph of a graph G =
(V,E) if V ′ ⊆ V , E ′ ⊆ E and u, v ∈ V ′ for every e =
{u, v} ∈ E ′. For a graph G = (V,E), the complement of
G, denoted by G, is a graph with vertex set V and edge
set E = {{u, v} | u, v ∈ V,u , v, {u, v} < E}. Namely,
G = (V,E). A pair (G,H) of graphs is called complementary
if H = G.

A graph is complete if each pair of vertices is joined
by an edge. The complete graph with n vertices is denote
by Kn. A graph P = (V,E) is a path if V = {v1, v2, . . . , vn},
and E = {{vi, vi+1} | i ∈ {1,2, . . . ,n − 1}}. The path with n
vertices is denote by Pn.

Awalk is a sequence v1e1v2 . . . ek−1vk of vertices vi and
edges ei such that for 1 ≤ i ≤ k, the edge ei = {vi, vi+1}.
Here, k is the number of vertices of the walk, v1 and vk are
called endpoints of the walk. A trail is a walk in which all
the edges are different from each other. A trail that satisfies
v1 = vk is called a circuit. A graph is connected if it has a
trail from any vertex to any other vertex.

Let G be a connected graph. An Eulerian circuit of G
is a circuit of G that passes every edge exactly once. If G has
an Eulerian circuit, then G is called Eulerian. An Eulerian
trail of G is a trail of G that passes every edge exactly once.
If G has an Eulerian trail but no Eulerian circuit, then G is
called a semi-Eulerian. It is well-known and easy to prove
that a connected graph G is Eulerian if and only if the degree
of every vertex of G is even, and G is semi-Eulerian if and
only if the number of odd-degree vertices is two.

For k ≥ 1, we denote by Tk the set of connected graphs
that have an Eulerian circuit or an Eulerian trail with k
vertices (see Fig. 1). Note that in our definitions, vertices
in trails and circuits are counted multiple times if they are
passed multiple times. Therefore, some graphs in Tk may
have less than k vertices.

Let C and C′ be two graph classes, i.e., possibly infinite
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Fig. 1 Graphs in T4. Note that the right graph has only three vertices,
but it has a trail with four vertices.

Table 1 The values of R(Tk , Tk ).
k 2 3 4 5 6 7 8 9 10

R(Tk , Tk ) 2 3 4 5 6 6 6 7 7

sets of graphs. Then, the Ramsey number of C and C′ is
the smallest number n such that for every graph H with n
vertices, H contains a graph in C or H contains a graph in
C′. The Ramsey number of C and C′ is denoted by R(C,C′).
If C and C′ are singletons (i.e., contain only one graph as
C = {G} and C′ = {G′}), then the Ramsey number of C and
C′ is denoted by R(G,G′).

Gerencsér and Gyárfás [2] determined the exact value
of the Ramsey number of paths, as in the following theorem.

Lemma 1 ([2]): Let k ≥ ` ≥ 2. Then, R(Pk,P`) = k +
b`/2c − 1.

Since Pk belongs to Tk , R(Tk,Tk) ≤ R(Pk,Pk) = k +
bk/2c − 1 = b3k/2c − 1. This is the trivial upper bound
mentioned in the previous section.

To gain the first impression, we have conducted a com-
puter search of the Ramsey number R(Tk,Tk) for small values
of k. This has been performed with the following proce-
dure. For 2 ≤ n ≤ 7, we generate all graphs G with n
vertices. For each such G, we calculate t(G), which is de-
fined as the number of vertices in the longest trail in G or G.
Then, we determine value(n), which is defined as the min-
imum value of t(G) for all G with n vertices. If k satisfies
value(n − 1) < k ≤ value(n), then we know that R(Tk,Tk) is
equal to n.

The result of the computer search is summarized in
Table 1. We may observe that the upper bound of b3k/2c −1
should be improved.

3. Main Theorem: Lower Bound

We begin with a lower bound of R(Tk,Tk).

Theorem 1: Let k be a positive integer. Then,

R(Tk,Tk) ≥


k if k ≤ 6,⌈
1 +
√

16k − 7
2

⌉
if k ≥ 7.

The rest of the section is devoted to the proof of Theo-
rem 1. We first consider the case when k ≤ 6.

Let k = 2. Then, there is no graph of T2 in the complete
graph K1. Therefore, R(T2,T2) ≥ 2.

Let k = 3. Then, the complete graph K2 has only one
edge. So, there is no graph of T3 in K2. Thus, R(T3,T3) ≥ 3.

Let k = 4. Consider the complementary pair of graphs
with three vertices as shown in Fig. 2. Since those two

Fig. 2 A complementary pair of graphs that contain no elements of T4.

Fig. 3 A complementary pair of graphs that contain no elements of T5.

Fig. 4 A complementary pair of graphs that contain no elements of T6.

graphs have at most two edges, no element of T4 is contained
in either graph. Therefore, R(T4,T4) ≥ 4.

Let k = 5. Consider the complementary pair of graphs
with four vertices as shown in Fig. 3. Since those two graphs
have three edges, no element of T5 is contained in either
graph. Hence, R(T5,T5) ≥ 5.

Let k = 6. Consider the complementary pair of graphs
with five vertices as shown in Fig. 4. Those graphs have
five edges. Hence, for an element of T6 to be contained
in either of the two graphs, one of the two graphs must be
Eulerian or semi-Eulerian. However, each graph has four
odd-degree vertices. Thus, these graphs are neither Eulerian
nor semi-Eulerian, and have no elements of T6.

Next, we consider the case where k ≥ 7. To complete
the proof, we use the following two lemmas.

Lemma 2: The number of vertices of a complete graph
with m ≥ 0 edges is (1 +

√
1 + 8m)/2.

Proof. Let n ≥ 1 be the number of vertices of a complete
graph with m edges. In this case, m = n(n − 1)/2. Solving
for n ≥ 1, we have n = (1 +

√
1 + 8m)/2. �

Lemma 3: Let k ≥ 7 and let n be the number of vertices
of a complete graph with at most 2k − 2 edges. Then, there
exists a subgraph G = (V,E1) of Kn such that G and G have
no element of Tk .

Before proving Lemma 3, we finish the proof of Theo-
rem 1 using Lemmas 2 and 3.
Proof of Theorem 1 when k ≥ 7. Let k ≥ 7 and let n be the
number of vertices of a complete graph with at most 2k − 1
edges. Then, R(Tk,Tk) ≥ n from Lemma 3. Therefore, by
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Lemma 2

R(Tk,Tk) ≥

⌈
1 +

√
1 + 8(2k − 1)

2

⌉
=

⌈
1 +
√

16k − 7
2

⌉
.

�

Thus, it suffices to prove Lemma 3.
Proof of Lemma 3. We distinguish the cases |E | ≤ 2k − 4,
|E | = 2k − 3 and |E | = 2k − 2.

. Case 1: |E | ≤ 2k − 4.

Choose G = (V,E1) as any subgraph with |E1 | = d|E |/2e.
Then, since |E1 | = d|E |/2e ≤ k − 2, |E − E1 | = b|E |/2c ≤
k − 2, it follows that G and G have no element of Tk .

. Case 2: |E | = 2k − 3.

Consider a complete graph Kn with 2k − 3 edges. Then,

n =
1 +

√
1 + 8(2k − 3)

2
=

1 +
√

16k − 23
2

> 5

from Lemma 2. Let v1, . . . , vn be the vertices of Kn, and let
Ec = {{vi, vi+1} | i = 1,2, . . . ,n − 1} ∪ {vn, v1}. Then, the
graph C = (V,Ec) is a cycle contained in Kn. We construct
an Eulerian or a semi-Eulerian graph S with k + 1 edges that
contains C.

Before constructing such S, we observe that this is
enough for our purpose. Since S contains C and n ≥ 6,
there exist two edges e1, e2 of C such that S′ = S − {e1, e2}
has exactly four odd-degree vertices. Thus, S′ is neither Eu-
lerian nor semi-Eulerian. Since S′ has only k − 1 edges, S′

include no element of Tk . Further, S′ has only k − 2 edges,
and S′ includes no element of Tk , either.

To find a subgraph S with the desired properties, we
further distinguish two cases according to the parity of n.

. Case 2-1: n is odd.

Let G = (V,E − Ec). Then, G is Eulerian since the degree
of each vertex of G is even and G is connected. Thus, G
contains a trail with |E | − n + 1 = 2k − 2 − n ≥ k + 2 − n
vertices. Let T be a subgraph of G obtained by the first
k + 1 − n edges of such a trail, and let S = C ∪T . Then, S is
Eulerian or semi-Eulerian with k + 1 edges.

. Case 2-2: n is even.

Let G = (V,E−Ec−{{vi, vn/2+i} | i = 1,2, . . . ,n/2}). Then,
G is Eulerian since the degree of each vertex of G is even
and G is connected.

Thus, G contains a trail with |E | − 3n/2+ 1 = 2k − 2−
3n/2 ≥ k+2−n vertices since n > 5 and n(n−1)/2 = 2k−3.
Let T be a subgraph of G obtained by the first k +1−n edges
of such a trail, and let S = C ∪ T . Then, S is Eulerian or
semi-Eulerian with k + 1 edges.

. Case 3: |E | = 2k − 2.

This case is analogous to Case 2 where |E | = 2k − 3. Note
that for a complete graph Kn with 2k − 2 edges. we have

n = (1 +
√

1 + 8(2k − 2))/2 = (1 +
√

16k − 15)/2 > 5 from
Lemma 2.

We have to take care of the argument after constructing
S because S′ has k−1 edges andwe need a different argument
to show that S′ includes no element of Tk . Remind that S′

contains k − 1 edges from a trail of G and the edges of C.
We distinguish two cases according to the parity of n.

First, let n be odd. Then, the degree of every vertex of Kn

is even. Since S′ has four odd-degree vertices, S′ has four
odd-degree vertices, too. Thus, S′ is neither Eulerian nor
semi-Eulerian. Since S′ has only k − 1 edges, S′ includes no
element of Tk .

Next, let n be even. We first observe that n ≥ 8. We
already know that n ≥ 6, but if n = 6, then the number
of edges of Kn is 15, which is not of the form 2k − 2:
this is impossible. Therefore, S′ has at least four odd-degree
vertices since S′ has n−4 even-degree vertices and n−4 ≥ 4.
Thus, S′ is neither Eulerian nor semi-Eulerian. Since S′ has
only k − 1 edges, S′ includes no element of Tk . �

4. Main Theorem: Upper Bound

We already observed that R(Tk,Tk) ≤ b3k/2c − 1 as a trivial
upper bound. Now, we improve the upper bound in the next
theorem.

Theorem 2: For every integer k ≥ 2, it holds that
R(Tk,Tk) ≤ k.

To this end, for any graph G with k vertices, we prove
either G or its complement G contains a trail with k vertices.

We begin with the following lemma which will be used
in the proof of the theorem.

Lemma 4: Let G = (V,E) be a bipartite graph with partite
sets A and B, i.e., A ∪ B = V , A ∩ B = ∅ and each edge
of G joins a vertex of A and a vertex of B. If |A| = 3 and
the degree of every vertex of B is two, then G contains a
trail such that both endpoints belong to A and the number of
edges is 2|B |.

Proof. Denote the three elements of A by a1,a2, and a3. We
distinguish the following two cases according to the existence
of an isolated vertex (i.e., a vertex of degree zero) in A.

. Case 1: A has an isolated vertex.

Without loss of generality, assume that a3 is an isolated
vertex. Since each vertex in B has degree two, it is adjacent
to a1 and a2. Hence, the bipartite graph G′ = G − a3 is
connected. Furthermore, the number of odd-degree vertices
in G′ is zero or two since the degree of a1 and a2 is |B |, and
the degree of every vertex in B is two. Thus, G′ is Eulerian
or semi-Eulerian and has 2|B| edges. When G′ is Eulerian,
G′ contains a trail with 2|B | edges such that both endpoints
coincide with a1. When G′ is semi-Eulerian, G′ contains
a trail with 2|B | edges such that one endpoint is a1 and the
other endpoint is a2.
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. Case 2: A has no isolated vertex.

Without loss of generality, assume that there exists a vertex
b ∈ B adjacent to a1 and a2. Since there is no isolated vertex,
there is a vertex b′ ∈ B adjacent to a3. As the degree of b′

is two, b′ is adjacent to either a1 or a2. Therefore, the three
vertices of a1, a2 and a3 are connected by paths. This implies
that G is connected since every vertex in B is adjacent to one
of a1, a2 and a3. Since G is bipartite and the degree of every
vertex in B is two, the sum of the degrees of a1, a2 and a3
is even. If there are an odd number of odd-degree vertices
in A, then the sum of the degrees of a1, a2 and a3 is odd,
contradicting the fact that the sum of the degrees of a1, a2
and a3 is even. Therefore, the number of odd-degree vertices
is zero or two.

When there is no odd-degree vertex, then G is Eulerian,
and contains a trail with 2|B| edges such that both endpoints
coincide with a1. When there are two odd-degree vertices,
let them be as and at . Then,G is semi-Eulerian, and contains
a trail with 2|B | edges such that one endpoint is as and the
other endpoint is at . �

We are now ready for the proof of Theorem 2.
Proof of Theorem 2. The proof uses the induction on k.
When k ≤ 10, R(Tk,Tk) ≤ k holds from Table 1.

Now, fix an arbitrary integer k ≥ 11 and suppose that
the statement is true for k ′ < k. Consider a graph G = (V,E)
with k vertices. For a subgraphG′with k−1 vertices ofG, by
induction hypothesis, either G′ or G′ contains a trail S with
k − 1 vertices. If G′ contains S, then G contains S because
G′ is a subgraph of G. If G′ contains S, then G contains
S because G′ is a subgraph of G. Therefore, either G or G
contains S. Without loss of generality, suppose G contains
S. Let S = u1e1u2e2 . . . ek−2uk−1 where ei = {ui,ui+1} for
all i ∈ {1,2, . . . , k − 2}, U = {u1,u2, . . . ,uk−1} be the set of
vertices in S, and W = V −U. Note that the size of U can be
smaller than k − 1 since some vertices can be identical.

If there exists a vertex w ∈ W such that {u1, w} ∈ E ,
thenG contains the trailw{w,u1}Swith k vertices. Similarly,
if there exists a vertex w ∈ W such that {uk−1, w} ∈ E , then
G contains the trail S{uk−1, w}w with k vertices. If there is a
vertex u ∈ U such that {u,u1} ∈ E is not included in S, then
G contains the trail u{u,u1}S with k vertices. Similarly, if
there is a vertex u ∈ U such that {u,uk−1} ∈ E is not included
in S, then G contains the trail S{uk−1,u}u with k vertices. In
all of these cases, G contains a trail with k vertices and we
are done.

Hence, we only need to consider the cases where the
following two conditions are satisfied.

Condition 1. For every w ∈ W , {u1, w} < E and {uk−1, w} <
E . That is, {u1, w} ∈ E and {uk−1, w} ∈ E .

Condition 2. For every u ∈ U, if {u,u1} is not included S,
then {u,u1} < E . That is, {u,u1} ∈ E . If {u,uk−1} is not
included S, then {u,uk−1} < E . That is, {u,uk−1} ∈ E .

We distinguish the cases according to the “shape” of S.

. Case 1: S is a path.

Since S is a path, S contains no repeated vertex. Therefore,
|U | = k − 1 and |W | = 1. Let w be the only vertex in W .
Since S contains no repeated vertex, for 3 ≤ i ≤ k − 1, the
edges {ui,u1} are not included in S. Also, for 1 ≤ i ≤ k − 3,
the edges {ui,uk−1} are not included in S. From Condition
2, {u1,uk−1} ∈ E and for 3 ≤ i ≤ k − 3, {u1,ui} ∈ E
and {uk−1,ui} ∈ E . Consider a subgraph G′ = (V ′,E ′) of G,
whereV ′ = V−{u2,uk−2} and E ′ = {{u1,ui}, {uk−1,ui} | i ∈
{3,4, . . . , k−3}}∪{{u1, w}, {uk−1, w}, {u1,uk−1}}. Each ver-
tex ofV ′ except u1 is adjacent to u1. Hence, G′ is connected.
Further, since the degree of each vertex in V ′ except u1 and
uk−1 is two, and the degrees of u1 and uk−1 are |V | − 3, the
number of odd-degree vertices in G′ is zero or two. There-
fore, G′ is Eulerian or semi-Eulerian. Since G′ has 2k − 7
edges, G′ contains a trail T with 2k − 6 ≥ k vertices. Since
G′ is a subgraph of G, we conclude that G contains T .

. Case 2: S is a circuit.

When S is a circuit, u1 = uk−1. Therefore, |U | ≤ k − 2
and |W | = k − |U | ≥ 2. Denote the elements of W by
w1, w2, . . . , w |W | .

If there exist w ∈ W and ui ∈ U such that {w,ui} ∈ E ,
then we have a trail

T = w{w,ui}uieiui+1 . . . uk−1e1u2 . . . ui

since u1 = uk−1. Note that T has k vertices. Therefore, G
contains a trail with k vertices.

Hence, we only need to consider the situation where
{w,u} < E , i.e., {w,u} ∈ E for every w ∈ W and every u ∈
U. We distinguish two cases according to the comparison of
|U | and |W |.

. Case 2-1: |U | ≥ |W |.

Choose two vertices w1, w2 ∈ W arbitrarily, and let V ′ =
U ∪ {w1, w2} and E ′ = {{w1,u}, {w2,u} | u ∈ U} ⊆ E .
Consider the subgraph G′ = (V ′,E ′) of G. Then, G′ is
connected since every vertex in U is adjacent to w1 and w2.
The degree of every vertex in U is two, and the degree of
w1 and w2 are both |U |. Hence, the number of odd-degree
vertices in G′ is zero or two. Therefore, G′ is Eulerian or
semi-Eulerian. Since G′ has 2|U | edges, G′ contains a trail
T with 2|U |+1 ≥ |U |+ |W |+1 = |U |+ (k − |U |)+1 = k +1
vertices. Since G′ is a subgraph of G, we conclude that G
contains T .

. Case 2-2: |U | ≤ |W |.

If |U | < 2, then the number of vertices in S is less than 1,
which contradicts the fact that the number of vertices in S is
k−1 ≥ 10. Therefore, |U | ≥ 2. Choose two vertices a, b ∈ U
arbitrarily, and letV ′ = W ∪{a, b} and E ′ = {{w,a}, {w, b} |
w ∈ W} ⊆ E . Consider the subgraph G′ = (V ′,E ′) of
G. Since every vertex in W is adjacent to a and b, G′ is
connected. The degree of every vertex in W is two, and the
degree of a and b are both |W |. Hence, the number of odd-
degree vertices inG′ is zero or two. Therefore,G′ is Eulerian
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or semi-Eulerian. Since G′ has 2|W | edges, G′ contains a
trailT with 2|W |+1 ≥ |U |+|W |+1 = |U |+(k−|U |)+1 = k+1
vertices. Since G′ is a subgraph of G, we conclude that G
contains T .

. Case 3: S is not a path or a circuit.

Since S is not a path, |U | ≤ k − 2. Since S is not a circuit,
u1 , uk−1. We distinguish cases according to the size of U.

. Case 3-1: |U | = k − 2.

Since S is a trail with k − 1 vertices and |U | = k − 2, there is
only one vertex x that is used more than once in S. If x , u1
and x , uk−1, then there are at most two vertices adjacent to
either u1 or uk−1 in G. If x is u1 or uk−1, then there are at
most four vertices adjacent to either u1 or uk−1 in G.

Let U ′ be the set of elements of U − {u1,uk−1} that are
not adjacent to either u1 or uk−1 in G. Every vertex u′ ∈ U ′

satisfies {u′,u1} < E and {u′,uk−1} < E , i.e. {u′,u1} ∈ E
and {u′,uk−1} ∈ E . Further, |U ′ | ≥ |U − {u1,uk−1}| − 4 =
|U | − 2 − 4 = k − 8. From Condition 1, for each vertex
w ∈ W , we have {u1, w} ∈ E and {uk−1, w} ∈ E . Let
V ′ = U ′ ∪W ∪ {u1,uk−1}, E ′ = {{w,u1}, {w,uk−1} | w ∈
W} ∪ {{u1,u′}, {uk−1,u′} | u′ ∈ U ′} ⊆ E and consider the
subgraph G′ = (V ′,E ′) of G. Since every vertex in U ′ ∪W
is adjacent to u1 and uk−1, G′ is connected. The degree of
every vertex in U ′ ∪ W is two, and the degree of u1 and
uk−1 are both |U ′ | + |W |. Hence, the number of odd-degree
vertices in G′ is zero or two. Therefore, G′ is Eulerian or
semi-Eulerian. SinceG′ has 2(|U ′ |+ |W |) edges, G′ contains
a trailT with 2(|U ′ |+ |W |)+1 ≥ 2(k−8+2)+1 = 2k−11 ≥ k
vertices. Since G′ is a subgraph of G, we conclude that G
contains T .

. Case 3-2: |U | ≤ bk/2c.

From Condition 1, for each vertex w ∈ W , we have {u1, w} ∈
E and {uk−1, w} ∈ E . Let V ′ = W ∪ {u1,uk−1}, E ′ =
{{w,u1}, {w,uk−1} | w ∈ W} ⊆ E and consider the subgraph
G′ = (V ′,E ′) of G. Since every vertex in W is adjacent to
u1 and uk−1, G′ is connected. The degree of every vertex
in W is two, and the degree of u1 and uk−1 are both |W |.
Hence, the number of odd-degree vertices in G′ is zero or
two. Therefore, G′ is Eulerian or semi-Eulerian. Since
G′ has 2|W | edges, G′ contains a trail T with 2|W | + 1 ≥
2 dk/2e + 1 ≥ k + 1 vertices. Since G′ is a subgraph of G,
we conclude that G contains T .

. Case 3-3: bk/2c < |U | ≤ k − 3.

By the induction hypothesis, in G or G, there exists a trail
T with |W | ≥ 3 vertices such that every vertex in T is an
element of W . Let T = w1e′1w2e′2 . . . e

′
|W |−1w |W | with e′i =

{wi, wi+1}, i ∈ {1,2, . . . , |W |−1} andW ′ be the set of vertices
used in T .

We further distinguish two cases according to the con-
tainment of T in G or G.

. Case 3-3-1: T is included in G.

Assume that there exists a vertex ui ∈ U adjacent to two

Fig. 5 Two subgraphs ofG that can be constructed byw′1, w
′
2, w

′
3, ux , uy

and uz .

vertices wx, wy ∈ W ′ where wx , wy, x < y. Then, we have
a trail

S′ = u1e1u2e2 . . . ui{ui, wx}wx . . . wy
{wy,ui}uiei . . . ek−2uk−1.

The number of vertices of S′ is at least k. Thus, we only
need to consider the case where, for every vertex u ∈ U,
there exists at most one element of W ′ adjacent to u in G.

Let w ′1, w
′
2 and w

′
3 be any three different vertices of W ′.

For every vertex u ∈ U, there exists at most one element
of W ′ adjacent to u in G. Then, u is adjacent to at least
two vertices of w1,w2, and w3 in G. Therefore, G has the
following bipartite graph G′ as a subgraph:

• The partite sets of G′ are A = {w ′1, w
′
2, w
′
3} and B = U;

• The degree of each vertex in B is two.

From Lemma 4, G′ has a trail X with 2|B| edges, i.e., 2|B | +
1 = 2|U | + 1 > 2 · bk/2c + 1 ≥ k vertices. Since G′ is a
subgraph of G, G also has X .

. Case 3-3-2: T is included in G.

Let w ′1, w
′
2 and w ′3 be any three different vertices of W ′.

First, assume that in G there exist three vertices ux,uy,uz ∈
U − {u1,uk−1} that are adjacent to at least two of the vertices
w ′1, w

′
2 and w ′3. Then, one of the graphs in Fig. 5 always

appears as a subgraph of G. In both cases, there exists a
cycle C that has a vertex in U. Therefore, we have a trail
S′ = u1e1u2e2 . . . ex−1Cex . . . ek−2uk−1, and the number of
vertices of S′ is at least k.

Second, assume there are at most two elements of U −
{u1,uk−1} that are adjacent to at least two vertices of w ′1,
w ′2 and w ′3 in G. Let c and d be those two vertices of
U − {u1,uk−1}. Then, there is a subbipartite graph G′ in G:

• The partite sets of G′ are A = {w ′1, w
′
2, w
′
3} and B =

U − {u1,uk−1, c, d};
• The degree of each vertex in B is two.

FromLemma 4, G′ has a trail X with 2|B |+1 = 2(|U |−4)+1
vertices. Let s, t ∈ W ′ be the endpoints of X . We now
construct a trailT ′ with |W | vertices such that it only consists
of the vertices and edges used in T , and does not start at t.
If w1 , t, then we have T ′ = T . If w1 = t and T is a
circuit, then we have T ′ = w2e′2 . . . e

′
|W |−1w |W |e

′
1w2 since

w1 = w |W | and w1 , w2. If w1 = t and T is not a circuit,
then we have T ′ = w |W |e′|W |−1w |W |−1e′

|W |−2 . . . e
′
1w1 since

w1 , w |W | . Therefore, T ′ can be constructed.
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Since T is included in G, T ′ is also included in G. Let
w, x be the endpoints of T ′. Then, we have a trail Y =
X{t,u1}u1{u1, w}T ′{x,uk−1}uk−1 with 2|U |+ |W | −5 edges.
Hence,Y is a trail with 2|U |+ |W | −4 = 2|U |+(k− |U |)−4 =
k + |U | − 4 > k + bk/2c − 4 ≥ k vertices. �

5. Conclusion

From Theorems 1 and 2, we conclude that R(Tk,Tk) = k
when k ≤ 6 and 2

√
k + Θ(1) ≤ R(Tk,Tk) ≤ k when k ≥ 7.

Future work is to find stricter upper and lower bounds.
Another challenge is to find upper and lower bounds of
R(Tk, T̀ ) for any k and `.
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