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SUMMARY This paper reports on the details of the International Com-
petition on Graph Counting Algorithms (ICGCA) held in 2023. The graph
counting problem is to count the subgraphs satisfying specified constraints
on a given graph. The problem belongs to #P-complete, a computationally
tough class. Since many essential systems in modern society, e.g., infras-
tructure networks, are often represented as graphs, graph counting algo-
rithms are a key technology to efficiently scan all the subgraphs represent-
ing the feasible states of the system. In the ICGCA, contestants were asked
to count the paths on a graph under a length constraint. The benchmark set
included 150 challenging instances, emphasizing graphs resembling infras-
tructure networks. Eleven solvers were submitted and ranked by the num-
ber of benchmarks correctly solved within a time limit. The winning solver,
TLDC, was designed based on three fundamental approaches: backtracking
search, dynamic programming, and model counting or #SAT (a counting
version of Boolean satisfiability). Detailed analyses show that each ap-
proach has its own strengths, and one approach is unlikely to dominate
the others. The codes and papers of the participating solvers are available:
https://afsa.jp/icgca/.
key words: graph counting algorithms, algorithm competitions, and
ICGCA

1. Introduction

Complex modern societal systems, composed of various
components like infrastructure networks, are often repre-
sented as graphs to capture their underlying structures.
These systems are usually operated or controlled to satisfy
predefined constraints specific to each system, in order to
function effectively. The constraints are often represented
as a set of feasible subgraphs on the graph representation
of the system; e.g., for an infrastructure network to func-
tion properly, operators represent the network topology as a
graph and ensure the existence of a path, a subgraph con-
necting a supply source and a consumption point. Examin-
ing feasible system states, assessing their probabilities, and
searching for the optimal state require comprehensive man-
agement of the set of feasible subgraphs. As a result, the
problem of counting feasible subgraphs, known as the graph
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counting (GC) problem, emerges as the most fundamental
form of algorithms that efficiently scan all the feasible sub-
graphs [1]. Recently, GC algorithms and their variants have
found practical applications, especially in domains like in-
frastructure networks, which require examining every state
without overlooking them [2]. Examples of applications in-
clude infrastructure networks such as power [3], [4], com-
munications [5], and railroads [6]; floor planning and dis-
aster evacuation [7], [8]; propagation phenomena in social
networks [9] and epidemics [10]; internal networks of su-
percomputers [11]; and institutional design such as electoral
districting [12]. To address the growing demand for GC al-
gorithms and to further foster them, the International Com-
petition on Graph Counting Algorithms (ICGCA) was held
in 2023.

1.1 Literature Survey on Graph Counting Algorithms

The GC problem is known to be #P-complete, a computa-
tionally tough class [13]. Since the number of paths can
be exponential with respect to the graph size, efficient algo-
rithms have been enthusiastically studied for decades. This
paper highlights the following three approaches to GC algo-
rithm research.

• Backtracking (BT): Initial research on GC, which
emerged in the 1960s and 1970s, relied on pure algo-
rithmic approaches that visit and output feasible sub-
graphs one at a time, using search methods such as
backtracking [14], [15]. This approach is relevant to
the limited memory capacity available at the time and
inherently requires time proportional to the number of
feasible subgraphs. Thus, it does not scale well for in-
stances with a large number of subgraphs.

• Dynamic programming (DP): Since the end of the 20th
century, efficient counting methods using dynamic pro-
gramming on decision diagrams have been intensively
studied [16], [17]. These methods successfully handle
an astronomical number of subgraphs in a graph with
hundreds of edges. In the early stages of DP research,
algorithms were developed for specific problems like
network reliability evaluation [18] and path enumera-
tion [19]. Common features among these algorithms
were identified, and a versatile algorithmic framework
called “frontier-based search” (FBS) [20] was devel-
oped, along with publicly released implementations
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such as TdZdd† and Graphillion††[21]. Thanks to their
scalability and generality, these implementations have
been utilized for many of the above applications.

• Model Counting (MC): In the field of artificial intelli-
gence (AI), model counting is a fundamental problem
encompassing graph counting [22]. MC is sometimes
referred to as #SAT due to its counting version of the
satisfiability (SAT) problem. In MC, systems are repre-
sented as Boolean formulae, and the goal is to count the
feasible models that satisfy the given constraints. MC
algorithms can be applied to GC by representing graphs
and their constraints as Boolean formulae. Since inter-
est has been rising in counting the number of models
for practical problems, the MC competition††† [23] was
launched in 2020. Note that since MC involves several
techniques, we indicate which one is employed in each
solver.

1.2 Related Algorithm Competitions and ICGCA Goals

Competitions serve various purposes, from specific prob-
lems for industry needs to fundamental advancements for
academic research. In the former case, competitions some-
times provide large cash awards like the Netflix Prize [24].
On the other hand, mathematical problem solving like
GC usually follows the latter purpose and often lacks
specific monetary rewards. We follow a direction in
the community of mathematical problem solving where
many competitions and challenges have already been or-
ganized: SAT†††† [25] (22 editions), SMT††††† [26] (19
editions), MaxSAT†††††† [27] (18 editions), CSP∗ (16 edi-
tions), QBF∗∗ [28] (13 editions), DIMACS∗∗∗ [29] (12 edi-
tions), PACE∗∗∗∗ [30] (8 editions), MC [23] (3 editions), and
CoRe∗∗∗∗∗ (2 editions).

Despite the success of MC competition in addressing
more general problems than GC, we organized a GC com-
petition for the following reasons. GC algorithms have
features distinct from MC algorithms, enhancing computa-
tional efficiency greatly. This is implicitly supported by the
fact that GC is used instead of MC in many application ar-
eas. On the other hand, GC and MC (and BT) share several
technical features, and they could improve each other’s per-
formance through positive interactions. Unfortunately, these
approaches have been pursued relatively independently and
have had limited mutual influence.

†https://github.com/kunisura/TdZdd/
††https://github.com/takemaru/graphillion/
†††https://mccompetition.org/
††††http://www.satcompetition.org/
†††††https://smt-comp.github.io/2023/
††††††https://maxsat-evaluations.github.io/2023/

∗https://www.minizinc.org/challenge.html
∗∗http://www.qbflib.org/index eval.php
∗∗∗http://dimacs.rutgers.edu/programs/challenge/
∗∗∗∗https://pacechallenge.org/
∗∗∗∗∗https://core-challenge.github.io/2023/

ICGCA’s primary goal is to bring the three approaches
(BT, DP, and MC) onto the same platform, clarify their
strengths and weaknesses, and foster the development of
better algorithms through their interaction. The competi-
tion was carefully designed to prevent any one approach
from gaining an undue advantage. The ICGCA also aims
to identify new challenging benchmarks and promote novel
approaches. We hope that active participation, collabora-
tion, and long-term improvements will broaden the applica-
bility of GC algorithms in practice and inspire many new
applications.

The rest of this paper is organized as follows. Section 2
overviews the ICGCA and Sect. 3 describes the benchmark
set. Section 4 presents the submitted solvers and their re-
sults, which are analyzed in detail in Sect. 5. The paper is
concluded in Sect. 6.

2. ICGCA Overview

This section provides an overview of ICGCA, starting with
the following timeline. The ICGCA website was opened in
April 2023. Contestants received the benchmark set when
they registered on the ICGCA website. They developed their
solvers and submitted them to the ICGCA organizers by July
17, 2023. The solvers were evaluated by the organizers, and
the results were announced on September 7, 2023.

Section 2.1 defines the problem. Section 2.2 describes
the scoring method, and Sect. 2.3 shows the evaluation en-
vironments. Note that we have tried to keep the competition
simple since this is the first competition on GC algorithms.

2.1 Problem

The ICGCA presented two variants of path counting prob-
lems. One specifies a pair of path terminals.

Problem 1 (PCS: Path Counting for a Single pair). Given
an undirected simple graph G = (V, E), a pair of vertices
{s, t} ∈ V ×V , and a maximum path length `, count the exact
number of simple paths between s and t whose length is at
most `.

Note that the path length is defined as the number of
edges on the path.

The other variant specifies no vertex pairs and counts
the paths between all the vertex pairs.

Problem 2 (PCA: Path Counting for All pairs). Given an
undirected simple graph G = (V, E) and a maximum path
length `, count the exact number of simple paths between
all {s, t} ∈ V × V , where s , t and the path length is at most
`.

Figure 1 shows an example of a PCS instance. A ter-
minal pair (vertices 1 and 3) and a maximum path length of
two are given. Since there are two paths between the ter-
minal pair with at most two edges, the answer is two paths.
For a PCA instance (if no terminal pair were specified), the

https://github.com/kunisura/TdZdd/
https://github.com/takemaru/graphillion/
https://mccompetition.org/
http://www.satcompetition.org/
https://smt-comp.github.io/2023/
https://maxsat-evaluations.github.io/2023/
https://www.minizinc.org/challenge.html
http://www.qbflib.org/index_eval.php
http://dimacs.rutgers.edu/programs/challenge/
https://pacechallenge.org/
https://core-challenge.github.io/2023/
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Fig. 1 Example of PCS instance: terminal pair is 1 and 3, and maximum
path length is two edges.

answer is 13 paths.
We focus on undirected graphs in this competition, be-

cause infrastructure networks, a primary application of GC
algorithms, are often modeled as either undirected or bidi-
rectional graphs. In addition, past work has mainly focused
on undirected graphs, and competitions for directed graphs
are considered premature.

We also concentrate on paths as a subgraph structure to
be counted. Many other options are possible: cycles, trees,
forests (sets of trees), matchings (independent vertex/edge
sets), cliques, connected components, and partitions. How-
ever, paths are often examined in practical problems, espe-
cially for connecting supply sources and consumers in in-
frastructure networks. In addition, path counting remains
an active research area [31], suggesting substantial room for
improvement.

We impose a single constraint: maximum path length.
Although we can devise various constraints, e.g., Hamil-
tonicity and way-pointing, too many constraints could over-
whelm the contestants. On the other hand, without any con-
straints, the amount of feasible paths might also become
overwhelming, disadvantaging the BT approach whose
computational complexity strongly depends on path counts.
In practical scenarios, it is often acceptable to ignore large
detour paths, and so we chose the maximum path length as
an essential constraint.

2.2 Scoring Methods

The winner is the solver that provides correct answers for
the largest number of benchmarks. Note that each bench-
mark is allocated a time budget of 600 seconds in wallclock
time. The benchmark set includes 150 instances: 100 for
PCS and 50 for PCA.

#P problems, including GC, pose a severe challenge to
scoring methods; while NP problems can be verified in poly-
nomial time, for #P problems, an answer’s correctness can
only be verified by solving the instance itself. Although ex-
cluding hard instances from the benchmark set could resolve
the verification issue, contestants would not be encouraged
to develop a solver for hard instances. The MC competition,
which faced the same issue, treated any answer for unknown
benchmarks as “correct” [23]. The ICGCA employs a fairer
scoring method. Since wrong answers for benchmarks with
many paths are unlikely to match by chance, answers are la-
beled as “correct” if they match among multiple solvers. If
the answers do not match (either the benchmark was solved
by a single solver or the answers were split among solvers),
they are labeled “tentatively correct.” Then, the scores are

Fig. 2 Input for Fig. 1 in extended DIMACS file format.

presented with a range: [“# of correct answers,” “# includ-
ing tentatively correct answers”]. Therefore, there was a risk
that the rankings might not be uniquely fixed, but the actual
competition resulted in a uniquely fixed order. Since the
answer verification is imperfect as described, solvers with
incorrect answers were not penalized.

The ICGCA does not employ the PAR-2 system, a
well-known scoring method used in the SAT competi-
tion [25], which reflects the time required for answering
each benchmark in the rankings. This is for keeping the
competition simple, but the PAR-2 system will be used to
analyze competition results in Sect. 5.

2.3 Solver Requirements and Evaluation Environments

An instance is given in an extended DIMACS file format.
Each line begins with a letter that defines the rest of the line.
The allowed lines are as follows.

• p: The problem description must have form p edge n
m, where n is the number of nodes (numbered 1..n) and
m is the number of edges.

• e: An edge must have form e v1 v2, where v1 and v2
are the endpoints of the edge.

• l: The maximum path length must have form l len,
where len is the maximum path length.

• t: The pair of path terminals must be of form t v1
v2, where v1 and v2 are the path terminals. This line
is omitted for PCA instances.

Figure 2 shows the input for Fig. 1. Solvers are required to
output just a number of paths to stdout. The solver codes
are made public after the competition.

Solvers were evaluated on an ICGCA organizer
computer with 12 CPU cores (Intel Core i7-1260P, up
to 4.70 GHz) and 64 GB RAM, running Ubuntu Server
22.04 LTS. They were allowed to use multiple CPU cores,
and portfolio solvers implementing multiple algorithms
were also acceptable. Although the SAT competition had
separate tracks for sequential, parallel, and portfolio solvers,
the ICGCA had only a single track for parallel and portfo-
lio solvers. This decision was made to avoid excessively
restricting contestants’ strategies without hosting multiple
tracks.

To ensure correct scoring, we conducted the following
evaluation. First, the pool of solvers was narrowed down to
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the top three, which were then run through multiple rounds
of evaluation on different computers to validate the consis-
tency of their results.

3. Benchmarks

Since no benchmark set had been developed for GC compe-
titions, we first established guidelines for preparing one.

• Focus on real-world graphs and their close counter-
parts, emphasizing infrastructure networks, i.e., graphs
with at most a few thousand edges and sparse connec-
tivity.

• Avoid biasing any particular approach by conducting
preliminary experiments.

• Cover a spectrum of complexity from simple to chal-
lenging instances (those can not be easily solved by
existing solvers, but can be solved with new innova-
tions).

The preliminary experiments are described in Sect. 3.1. The
selection of benchmarks and their statistics is presented in
Sect. 3.2.

3.1 Preliminary Experiments

To measure the hardness of various instances, we conducted
preliminary experiments. We prepared test solvers for the
BT and DP approaches, although we found no MC solver
that is easily applicable to GC instances. The BT test solver
implements Yen’s k-shortest path algorithm† [32], which
visits paths in ascending order of length until the maxi-
mum path length ` is reached. The DP test solver employs
Graphillion [21], which processes edges in the order of the
path decomposition [33]. Note that these test solvers are
easy to use with reasonable computational efficiency, al-
though they are not state-of-the-art.

We prepared 1360 test instances. The graphs were
chosen from typical structures: complete graphs, 2D grid
graphs, path-like graphs, and tree-like graphs. A path-like
graph connects small cliques with a few edges in a path-like
manner. A tree-like graph is ditto. Path-/tree-like graphs
mimic infrastructure networks, where regional subnetworks
are connected by long-distance links. Note that although
complete graphs are quite different from infrastructure net-
works, we included a few to understand the performance of
the test solvers. The maximum path length ` was randomly
chosen from the range of the graph diameter to the number
of vertices (smaller values were more likely to be chosen).
For PCS instances, the most distant vertex pair, {s, t}, was se-
lected. The computer used for the preliminary experiments
had 32 GB of memory, less than for real environments. The
test solvers were run in a single thread.

Table 1 shows the results of the preliminary experi-
ments. 392 instances were solved by both the BT and DP

†https://github.com/yan-qi/k-shortest-paths-cpp-version/

Table 1 Results of preliminary experiments.

Table 2 Number of benchmarks with real and synthesized graphs for
PCS and PCA.

test solvers; 573 instances were not solved by either one.
Overall, the BT test solver was impacted by the maximum
path length, because a larger maximum path length yields
more paths. The DP test solver was affected by pathwidth,
which is a graph parameter that indicates the dissimilarity to
a path: one for a path graph and n − 1 for a complete graph
with n = |V |. The strong dependence of the DP approach on
the pathwidth was known from the literature [33].

The results were used to build a machine learning
model, which was used to select instances with diverse hard-
ness levels without favoring one approach over another. The
feature space consists of the pathwidth, `, n, and the graph’s
mean degree. The model was built using the support vector
machine.

3.2 Benchmark Selection and Statistics

We selected benchmarks from real and synthetic graphs and
show the number of selected benchmarks with real and syn-
thetic graphs in Table 2.

First, we describe the real graphs included in the
benchmark set. We collected 45 graphs, which are sparse
with at most a few thousand edges, from communica-
tion networks (TopologyZoo†† [34], RocketFuel††† [35],
SNDlib††††, and JPN48†††††) and software engineering do-
mains (Rome††††††). These graphs have been used in recent
studies of GC algorithms [36], [37]. The 45 graphs were as-
sociated with each benchmark, resulting in 45 benchmarks.
No selection based on the hardness model was made for real
graphs to include as many of them as possible in the bench-
mark set.

The remaining 105 benchmarks were created with syn-
thetic graphs. To increase the diversity of those used in the
preliminary experiments, we randomly modified them by re-
moving three or fewer edges from the graph and rewiring 25
or fewer edges. 105 synthetic benchmarks were selected
based on the hardness model. 59 benchmarks were pre-
dicted as unlikely to be solved by either the DP or BT test
solvers, which implies they are quite challenging. 73 bench-

††http://topology-zoo.org/
†††https://research.cs.washington.edu/networking/rocketfuel/
††††http://sndlib.zib.de/home.action
†††††https://www.ieice.org/cs/pn/jpn/jpnm.html
††††††http://www.graphdrawing.org/data.html

https://github.com/yan-qi/k-shortest-paths-cpp-version/
http://topology-zoo.org/
https://research.cs.washington.edu/networking/rocketfuel/
http://sndlib.zib.de/home.action
https://www.ieice.org/cs/pn/jpn/jpnm.html
http://www.graphdrawing.org/data.html
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Fig. 3 Histograms for instance parameters in PCS benchmark set.

Fig. 4 Histograms for instance parameters in PCA benchmark set.

marks were unlikely to be solved by the DP test solver, and
79 were unlikely to be solved by the BT test solver: roughly
the same number.

Next we examine the statistics of the benchmark set.
Figures 3 and 4 show the parameter distributions for the PCS
and PCA benchmark sets. The PCA benchmarks, which
count the paths for all the vertex pairs, have smaller param-
eters than the PCS benchmarks. Although all the parame-
ters are mainly distributed around smaller regions, we found
some very challenging benchmarks in the larger regions. In
particular, some PCS benchmarks with real graphs have ex-
tremely large parameters, because the hardness is not con-
trolled for real graphs. Figure 5 shows the cumulative path
counts for the 139 benchmarks that were solved by at least
one solver. The PCS benchmarks have many more paths,
1041 paths at most, due to the larger parameters. The PCA
benchmarks have fewer paths, even though the paths for all
the vertex pairs are counted.

4. Solvers and Results

Section 4.1 presents the ICGCA result, and Sect. 4.2
overviews the participating solvers.

Fig. 5 Cumulative path counts.

Table 3 Solver scores.

4.1 Results

The ICGCA received 11 solvers from four countries: Aus-
tria, Germany, Japan, and USA. Table 3 ranks them. As
noted in Sect. 2.2, the scores (the number of correctly solved
benchmarks) are denoted in square brackets if they have a
range. The best-performing solver overall on the combina-
tion of PCS and PCA benchmarks is TLDC, and the runner-
up is diodrm; diodrm solved the most instances for PCA.
Unfortunately, the bottom three solvers, dimitri, Cypher,
and PCSSPC, did not perform as expected; they crashed dur-
ing execution or yielded more wrong answers than correct
ones. Therefore, we excluded them from the following anal-
yses.

Figure 6 shows the cumulative solved benchmark plot
together with the Virtual Best Solver (VBS). The VBS is a
fictitious solver consisting of all the solvers that actually par-
ticipated in the competition and an oracle which, given an
input instance, invokes the solver that performed the best on
that instance. The VBS performance highlights a certain up-
per bound on the performance achievable by the participat-
ing solvers. For the PCS benchmark set, TLDC maintained
the lead from three seconds onward. For the PCA bench-
mark set, diodrm showed surprising performance compara-
ble to the VBS, demonstrating its overwhelming strength in
PCA. TAG showed great start-up and solved more instances
in the sub-second range. Note that the steep increase for
diodrm and Drifters at 1 and 100 seconds reflects the
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Fig. 6 Performance of top eight solvers and VBS.

fixed amount of preprocessing time spent on them.

4.2 Solvers

This subsection overviews the top eight solvers. The fol-
lowing description is based on short papers submitted by
the contestants and our glances at their code. The codes
and papers for all the solvers are available online: https:
//afsa.jp/icgca/. The approaches employed by each solver
are shown in Table 4.

• TLDC (Too Long; Didn’t Count) is a portfolio solver
consisting of all three approaches: BT, DP, and MC.
This solver performs BT in a depth-first search (DFS)
manner, but it is much more efficient than the tra-
ditional naive implementation thanks to the tech-
niques described later. It also employs FBS, a DP
method [20], with an edge processing order based on

Table 4 Solver approaches.

the tree decomposition computed by htd† [38]. This
solver has several ideas that make the solver more ef-
ficient, which are elegantly applied to both BT and
DP methods, e.g., the search space is pruned based
on the path length, and graph isomorphism tested by
nauty†† [39] reduces the cache entries. In addition,
TLDC uses MC-derived ideas, e.g., it employs an ASP
solver named Clingo††† to check whether the maximum
length of a path can be achieved. TLDC is well-designed
based on all three approaches and won the competition.

• diodrm is a portfolio solver following the BT and DP
approaches. Like TLDC, this solver also employs DFS
and FBS, but the FBS’s edge order is determined by
the community-based order. A large instance is parti-
tioned by a method called meet in the middle to facili-
tate precomputation and parallelization. diodrm over-
whelmed the other solvers for PCA by introducing the
following innovative DFS techniques. A search is per-
formed not for each vertex pair but only from each ver-
tex, which also allows easy parallelization. The search
is further accelerated by exploiting the fact that, for
a graph with small neighborhood diversity, a path is
still formed even if the vertices in an adjacent set are
swapped.

• TAG is a portfolio solver consisting of two DP methods:
FBS and HAMDP (Hamiltonian DP). FBS introduces
a pruning strategy with path length and vertex degree,
based on a traditional FBS design (implemented with
TdZdd and the edge order is determined based on path
decomposition). HAMDP is an interesting extension of
a Hamiltonian-paths algorithm and outperforms FBS
on some PCA benchmarks, according to their paper.

• Drifters implements FBS with TdZdd and utilizes
Chokudai search to perform path decomposition to de-
termine the edge processing order.

• NaPS+GPMC is an MC solver designed for path counting
problems. First, it produces Pseudo-Boolean (PB) con-
straints of a path, which are converted into CNF form
†https://github.com/mabseher/htd/
††https://pallini.di.uniroma1.it/
†††https://potassco.org/clingo/

https://afsa.jp/icgca/
https://afsa.jp/icgca/
https://github.com/mabseher/htd/
https://pallini.di.uniroma1.it/
https://potassco.org/clingo/
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using NaPS† [40]. The number of models (paths) is
counted with a variant of the projection model counting
solver GPMC††. It was modified for the path counting
by removing the time-consuming preprocessing, adopt-
ing a new variable choice strategy along with a path,
and introducing hierarchical counting strategy.

• KUT KMHT is a portfolio solver consisting of two DP
methods and another type of counting method. The
two DP methods are FBS with TdZDD and a bound-
ing algorithm originally designed for network reliabil-
ity evaluation [41]. The other method employs an exact
cover algorithm††† modified for path counting.

• asprune is an MC solver. First, this solver converts
a given instance to ASP facts with an ASP encoding
for path counting. Then, the solver enumerates all the
paths with Clingo. This indicates that even an explicit
enumeration technique could achieve this level of re-
sults.

• castella is an MC solver. For a given instance, it
generates a CSP, which is translated into a SAT in-
stance using Sugar†††† [42]. Then, the solver counts
the path with GPMC, as does NaPS+GPMC. The gap be-
tween castella and NaPS+GPMC is due to the latter’s
several techniques specialized in path counting.

The top three solvers, TLDC, diodrm, and TAG, are
all portfolio types. It is interesting that Drifters and
NaPS+GPMC implement the different approaches but they
performed equally well. In Sect. 5.6, we compare these two
approaches by considering the two solvers as representatives
of each approach. KUT KMHT and dimitri implement ap-
proaches beyond our expectations, which are categorized as
“others”. For example, dimitri employ an algebraic ap-
proach based on graph isomorphism.

5. Analyses of Results

This section provides an additional analysis of the results by
delving deeper beyond the rankings. Section 5.1 examines
the results by graph type, and Sect. 5.2 discusses the PAR-2
scores. Section 5.3 analyzes the contributions of each solver
to the VBS. Section 5.4 investigates the impact of instance
parameters, and Sect. 5.5 discusses the similarity of the par-
ticipating solvers. Section 5.6 compares the DP and MC
approaches.

5.1 Scores Per Graph Types

This subsection examines the results for real and synthetic
graphs separately (Fig. 7). The solvers are ordered on the

†https://www.trs.css.i.nagoya-u.ac.jp/projects/NaPS/
††https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/GPMC/
†††https://github.com/aaw/cover/
††††https://cspsat.gitlab.io/sugar/

Fig. 7 Number of solved benchmarks per graph type.

x-axis by their overall ranking. For all four types, com-
binations of PCS/PCA and real/synthetic graphs, the lines
decline from left to right; the rankings do not change signif-
icantly among the types. For the PCS benchmarks with real
graphs, the differences among solvers are small, because
many instances are fairly easy, except for a few (Fig. 3).
For the PCA benchmarks with real graphs, KUT KMHT per-
formed well compared to the other types. Effective tech-
niques might be found for such instances by exploring the
unique innovations of KUT KMHT.

5.2 PAR-2 Scores

This subsection ranks the solvers based on the PAR-2 scor-
ing system [25]. The PAR-2 system assigns as many points
as the amount of time (in seconds) required to answer the
instance, while it assigns twice the time limit (1,200 points)
if the instance was not solved. This means that the lower a
solver’s score is, the better its performance.

Figure 8 shows the PAR-2 scores accumulated for the
139 benchmarks solved in the competition. Compared to the
rankings by the number of solved benchmarks, Drifters’s
ranking worsened because it spent 100 seconds on prepro-
cessing for each benchmark (note that Drifters would not
have relied on a fixed-time preprocessing strategy if the
ICGCA had employed the PAR-2 system). Surprisingly,
diodrm was not penalized in the least by the PCA bench-
marks, demonstrating its overwhelming strength for PCA.
In the following analyses, the computation time for the un-
solved benchmarks is considered to be 1,200 seconds ac-
cording to the PAR-2 system.

5.3 Contributions to Virtual Best Solver

The VBS solves all the instances solved by at least one
solver with the best time. By quantifying how much each
participating solver contributes to the VBS performance, we
can identify which solver is the most important in the state-

https://www.trs.css.i.nagoya-u.ac.jp/projects/NaPS/
https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/GPMC/
https://github.com/aaw/cover/
https://cspsat.gitlab.io/sugar/
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Fig. 8 PAR-2 scores (lower is better).

of-the-art for path counting. We examine the following three
metrics derived from the notion of VBS.

• VBS-1 “The fastest takes it all”: For each solver, we
count the number of benchmarks in which it was the
fastest to solve an instance.

• VBS-2 “Time aware, but proportional”: A solver S
solving an instance I in time T S

I obtains T VBS
I /T S

I ,
where T VBS

I is the computation time of VBS on I.

• VBS-3 “Split the point for solving”: A solver S solv-
ing an instance I obtains 1/|SI |, where SI is the set of
solvers solving I.

Figure 9 plots the three metrics. For VBS-1 and
VBS-2, which both involve computation time, diodrm and
Drifters with a fixed amount of preprocessing time have
lower ranks (nevertheless, diodrm got the most points for
PCA in VBS-1). On the other hand, KUT KMHT improved
its ranking because it showed comparable performance with
the third solver (TAG), up to 10 seconds (Fig. 6). For VBS-3,
diodrm slightly outperforms TLDC because there are three
benchmarks solved only by diodrm, while just one bench-
mark was solved only by TLDC.

5.4 Impact of Instance Parameters

This subsection examines the impact of the instance param-
eters on the computation time. The parameters investigated
include the number n of vertices, the number m of edges,
the pathwidth, and the maximum path length `. VBS’s com-
putation is used as a representative for all the solvers. Ta-
ble 5 shows the Pearson correlation coefficients between the
parameters and the computation time. For the PCS bench-
mark set, the maximum path length has a significant impact,
followed by the pathwidth. This is because pruning strate-
gies based on path length, which are employed by multiple
solvers, would work effectively only for short paths. For the
PCA benchmark set, pathwidth has the largest impact, while
the maximum path length has a much weaker impact. This

Fig. 9 VBS metrics.

Table 5 Correlation between instance parameters and VBS computation
time.

could be because paths between very close vertices are less
constrained by the maximum path length.

5.5 Solver Similarity

To investigate the similarity among the solvers, we define a
similarity metric based on the computation times. We first
removed 11 benchmarks that were not solved by any solver.
For the remaining 139 benchmarks, a PAR-2 score is as-
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Fig. 10 Dendrogram based on computation-time similarity of solvers.

Table 6 Score improvement by portfolios between DP and MC solvers.

signed to each solver-benchmark pair; i.e., each solver S is
thus associated with the PAR-2 scores S 1, . . ., S 139. The
similarity of two solvers, S and S ′, normalized to the inter-
val [0, 1], is defined as,

similarity(S , S ′) = 1 −
∑
|S i − S ′i |

139 · 1200
. (1)

The solvers are clustered based on their similarity and
are illustrated as a dendrogram (Fig. 10). The height at
which two solvers or clusters is joined reflects their simi-
larity. For example, TLDC and diodrm solved most of the
benchmarks, so they are joined low in the dendrogram. The
top three solvers (diodrm, TLDC, and TAG) are clustered in
the dendrogram. Interestingly, all the DP solvers (diodrm,
TLDC, TAG, Drifters, and KUT KMHT) are classified in the
same subtree exclusively against the MC solvers, implying
that each approach has its own characteristics.

5.6 Comparison between DP and MC Solvers

This subsection examines the dissimilarity between the
DP and MC approaches by considering Drifters

and NaPS+GPMC as representatives of both approaches.
KUT KMHT, another DP solver that solved roughly an equal
number of benchmarks as both solvers, is also employed for
comparison. The three solvers, Drifters, NaPS+GPMC, and
KUT KMHT, respectively solved 110, 105, and 99 benchmarks
(Table 3).

We investigate how much the scores could be improved
by a portfolio solver that employs two of the three solvers;
the larger the score improvement, the more different char-
acteristics the solvers have. As shown in Table 6, a port-
folio of Drifters and NaPS+GPMC increases the score by
12 benchmarks, while a portfolio of DP solvers (Drifters
and KUT KMHT) increases it just by 4 benchmarks. Another
portfolio of DP and MC (NaPS+GPMC and KUT KMHT) greatly
increases the score as well, by 16 benchmarks. These results
show that the DP and MC approaches have different compe-
tencies, and that both are essential for the development of
graph counting algorithms.

6. Conclusions

This paper minutely described the first GC competition, the
ICGCA. The authors thank all the contestants for their en-
thusiasm and their strong contributions. We are pleased
that so many solvers performed so well on the challenging
benchmarks.

Since no competition on GC has ever been held be-
fore, we conducted the preliminary experiments to select the
benchmark set of reasonable hardness levels. However, the
winning solver solved more than 90% of the benchmarks, so
it could have been more challenging.

For #P problems including GC, verifying the correct-
ness of a given answer is not trivial, unlike NP problems.
Thus, the scores could be given with a range, resulting in
unfixed rankings; future competitions on #P problems must
deal with this ambiguity.

In this competition, all the contestants submitted just
a single version of their solvers, although in other competi-
tions contestants often submitted multiple versions with dif-
ferent configurations. This is because the final benchmark
set was made available online in ICGCA and the contes-
tants could adjust their configurations before submission.
The pros and cons of this decision are open to debate.

The main goal of the ICGCA was to provide a uni-
fied stage for the three independently developed approaches
and to encourage their interaction. We believe that this goal
was accomplished to some extent. Only the winning solver
TLDC implements all three approaches, suggesting that each
approach has its own potential. Our analysis showed that
both the DP and MC approaches have different strengths, so
we expect them to fuel the future development of GC algo-
rithms. On the other hand, unfortunately, no detailed analy-
sis of the BT approach was performed, because the PCSSPC
solver, which is primarily based on the BT approach, failed
to work properly. However, since experiments by the TLDC
developers showed that the most contributing approach in
TLDC is BT, we also look forward to future contributions
from this approach.

As the first competition on GC algorithms, we kept the
competition simple. In the future edition, it is worth consid-
ering to hold a main (sequential) track and a parallel track
separately, possibly along with an approximate track. It is
also worth employing the PAR-2 scoring system to reflect
the computation time in the ranking. Anyone interested in
the competition is welcome to contact us and join the dis-
cussion.
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