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A Frequency Estimation Algorithm for High Precision Monitoring
of Significant Space Targets

Ze Fu GAO†, Wen Ge YANG†a), and Yi Wen JIAO†b), Nonmembers

SUMMARY Space is becoming increasingly congested and contested,
which calls for effective means to conduct effective monitoring of high-
value space assets, especially in Space Situational Awareness (SSA) mis-
sions, while there are imperfections in existing methods and corresponding
algorithms. To overcome such a problem, this letter proposes an algorithm
for accurate Connected Element Interferometry (CEI) in SSA based onmore
interpolation information and iterations. Simulation results show that: (i)
after iterations, the estimated asymptotic variance of the proposed method
can basically achieve uniform convergence, and the ratio of it to ACRB is
1.00235 in δ0 ∈ [−0.5, 0.5], which is closer to 1 than the current best AM
algorithms; (ii) In the interval of SNR ∈ [−14 dB, 0 dB], the estimation
error of the proposed algorithm decreases significantly, which is basically
comparable to CRLB (maintains at 1.236 times). The research of this let-
ter could play a significant role in effective monitoring and high-precision
tracking and measurement with significant space targets during futuristic
SSA missions.
key words: frequency estimation of sinusoidal signals, space situational
awareness (SSA), connected element interferometry (CEI), high value space
targets, iteration algorithm

1. Introduction

Our society now hugely depends on space technologies and
space-based capabilities. Space, however, is becoming in-
creasingly congested due to numerous spacecraft and orbital
debris, presenting severe challenges for monitoring signifi-
cant space assets [1]. Space Situational Awareness (SSA) is
thus becoming increasingly critical in protecting space assets
and safeguarding the space environment.

At present, the most widely used methods for moni-
toring, surveillance, and observation in SSA is radar and
optical telescope [2]. Nevertheless, limited by cost, atmo-
spheric conditions, and operation locations [3], all of these
methods are inadequate and could not provide all-weather,
all-time measurement. In contrast, spacecraft monitoring
technology based on passive interferometry, especially the
Connected Element Interferometry (CEI) has the unique ad-
vantages, which is very suitable for enhancing the existing
monitoring means in SSA. If CEI is integrated with conven-
tional means such as radar and optical telescope, prominent
improvement will be achieved on the surveillance and mon-
itoring of high-value spacecraft.

Realization of high precisionmeasurement throughCEI
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requires the estimation of carrier differential phase, which
could be modeled as the frequency estimation of sinusoidal
signals, where many scholars have carried out research [4]–
[8]. Such methods can be divided into two categories: non-
iterative and iterative ones. Existing non-iterative methods
generally rely on the peak DFT coefficient and its neigh-
bors, such as Quinn [7], Candan [5] and Liang [8]. These
algorithms, however, suffer from problems like lower SNR
threshold or high computational load. Comparatively, the
AM iterative methods proposed by Aboutanios and Mul-
grew [6] have attracted many attention. The existing original
and improved AM algorithms, however, either lack compu-
tational efficiency, or could not reach the CRLB. Therefore,
a fast and accurate frequency estimation algorithm for CEI
is urgently required to enhance the capability of high-quality
monitoring and urgent measurement during SSA.

Considering the urgent need of CEI in monitoring and
measurement during SSA and the imperfection of the above
algorithms, a high precision frequency estimation algorithm
is proposed in this letter. In Sect. 2, the nominal CEI in SSA
problem is formulated as a frequency estimation problem for
sinusoidal signals. On this basis, improved AM frequency
estimation algorithm based on more interpolation informa-
tion and its iteration form is proposed accordingly in Sects. 3
and 4. Finally, in Sect. 5, the simulation is conducted to
demonstrate the performance of the proposed method.

Denotion δ0: the original estimate value; δ1: estimate
value after first iteration; δp: estimate value after pth itera-
tion.

2. System Model

The basic idea of CEI carrier differential phase estimation is
to extract the same side tone s1(t) and s2(t) from the signals
received by the two stations:{

s1(t) = e j2π f0t,S1( f ) = FFT[s1(t)]
s2(t) = s1(t − τ) = e j2π f0(t−τ),S2( f ) = FFT[s2(t)]

(1)

The above process could be modeled as a frequency
estimation problem for sinusoidal signals as:

xi(n) = S(n) + w(n) = Ae jφ0 e j2π f0n∆t + w(n) (2)

Where, i = 1,2, . . . , k correspond to stations 1,2, . . . , k re-
spectively, n = 0,1, . . . ,N − 1, N is the sampling points, A is
the signal amplitude, φ0 is the initial phase of the signal, f0
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is the signal frequency, ∆t is the sampling period, and w(n)
is the complex gaussian white noise.

For signal X , its fractional Fourier coefficient is calcu-
lated as:

Xn+p =
1
N

N−1∑
k=0

x(k)e−j2πk
n+p
N (3)

The Fourier coefficients thus obtained follow a N(0, σ2

N )

distribution. Let m be the index returned by the Maximum
Bin Search (MBS). The signal frequency f is given by:
f = (m + δ0)

fs
N . Let n = m + l, and for small x, ex =

1 + x + O(x2) ≈ 1 + x. Ignoring the serial number m, then
the fractional Fourier coefficient is: Xl+p = b0

δ0
δ0−l−p

+Wn+p ,
where b0 = −

e j2πδ0+1
j2πδ0

.
The DFT form of noiseless signal is:

S(n) =
Ae jφ

N
e j2πN f

fs − 1

e j2π
(

f
fs
− n

N

)
− 1

(4)

Thus, the residual of MBS is: |∆ f | =
��� f − m fs

N

��� ≤ fs
2N .

And the Mean Square Error (MSE) of frequency estima-

tion
∧

f is: σf
2 = var[

∧

f ] = fs
2

12N2 . Consequently, it can be
found from abovemodulation that the residual ofMBS crude
search method is O(N−1), while that of asymptotic Cramér-
Rao Lower Bound (ACRB) is O(N−

3
2 ) (which will be ana-

lyzed in detail below). Therefore, there is much room for
improvement in the residual of frequency estimation, which
lays a foundation for the high-precision frequency estimation
method of CEI signals based on interpolation.

3. Improved AM Frequency Estimation Algorithm
Based on More Interpolation Information

The ratio of the resulting asymptotic variance to the ACRB
goes to 1 as the number of samples used in the interpolation
goes to infinity [9]. Motivated by this, we increased the
number of interpolations in the original AM estimator from
2 to 4 for better estimation performance.

In the absence of noise, consider the following estima-
tor:

ψ =
1
2
(X0.5 + Xq) + (X−0.5 + X−q)
(X0.5 + Xq) − (X−0.5 + X−q)

(5)

Where δ0 ∈ [−0.5,0.5],q ∈ [0,1]. Search for such a q that
satisfies:

(δ0
2 − q2) + (δ0

2 − 0.52)

(δ0
2 − q2) + 2q(δ0

2 − 0.52)
≡ C (6)

WhereC is a constant. So thatwe couldmeet the requirement
of ψ = kδ0 to satisfy the unbiased property of the estimation.
Furthermore, the more closer C is to 1, the easier it is to
iterate in the following Algorithm 1. To solve the above
problems, we selected δ0 ∈ [−0.5,0.5] and q ∈ [−1,1] with

Fig. 1 (a)Value ofC with the variation ofq and δ0; (b) standard deviation
ofC with different q (q ∈ [−1, 1]) when δ0 changes.

0.01 intervals, and conducted 1000MonteCarlo simulations,
and the value of C varies with δ0 and q. To further study the
selection of optimal q, we solved the standard deviation of C
with different q when δ0 changes, and the above results are
shown in Fig. 1.

It is easy to find that when q = 0.51, C is mostly
approaches to 1, even with the variation of δ0. What is more,
when q = 0.51, considering the overall range of δ0 (δ0 ∈
[−0.5,0.5]), we can get the smallest std of C, which further
prove the correctness of our choice. Then the above estimator
could be converted into: ψ = δ0. Therefore, Aalgorithm 1
can be obtained.

As var(<{A}) = var(<{B}) = σ2

N , |b0 |
2 = cos2(πδ0)

(πδ0)
2 ,

σMFFCI can be given by:

σMFFCI
2

=
fs

2

2N3ρ
π2(δ0

2−0.512)
2
(δ0

2−0.52)
2

cos2(πδ0)[(δ0
2−0.512)+(δ0

2−0.52)]
2 (4δ0

2 + 1) (7)

Where fs is the sampling frequency, N is the sampling num-
ber, and the signal-to-noise ratio (SNR) ρ (in dB) of the
signal to be estimated is: ρ = 10log10(

A2

σ2 ). Where ρ and σ
are the amplitudes of signal and noise respectively.

Signal amplitude A in this letter is set as 1. When
phase and frequency are unknown, and N is large enough,
the asympototic frequency estimation CRLB(ACRB) of the
signal is: ACRB = 6 fs 2

(2π)2ρN3 . Thus, the ratio of the asymp-
totic variance of the estimator to ACRB, RMFFCI

ACRB
, is shown

as follows:

RMFFCI
ACRB

= π4

3
(δ0

2−0.512)
2
(δ0

2−0.52)
2

cos2(πδ0)[(δ0
2−0.512)+(δ0

2−0.52)]
2 (4δ0

2 + 1) (8)



1060
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.7 JULY 2024

4. Improved Fractional Fourier Coefficient Interpola-
tion Estimation Algorithm Based on Multiple Itera-
tions

The iterative implementation of an estimator aims at improv-
ing the performance by essentially making it uniform over
the entire bin. However, only those estimators that have a
maximum variance at δ0 = 0, rather than a minimum one
could be improved by iterations. In this section, we consider
the iterative implementation of the MFFCI Algorithm 2.

Firstly, consider the estimated interpolation function
h(δ), which is obtained by Algorithm 1:

h(δ) =
1
2
<

{
(X0.5 + X0.51) + (X−0.5 + X−0.51)

(X0.5 + X0.51) − (X−0.5 + X−0.51)

}
(9)

Substitute the expression for Xp, p = ±0.5,±0.51 into h(δ)
and simplify, we have: h(δ0) = [1+O(N−

1
2
√

ln N)]O(10−11).
As it can be found that: when N → ∞, h(δ0) → ∞, for the
interpolation function h(δ), applying Taylor expansion at δ0,
the iterative function ψ(δ) = δ + h(δ) can be expanded as:

ψ(δ) = δ + h(δ0) + (δ − δ0)h′(δ0)
= δ(1 + h′(δ0)) − δ0h′(δ0)

(10)

5. Simulation Results

During these simulation experiments, the hardware is set
as follows: CPU: Intel Core i7-10750H 2.60GHz; RAM
16.0GB; System type: Windows 64-bit operating system;
Matlab: 2019b. The other specific simulation parameter
setting is shown in Table 1.

As has been discussed in Sects. 1 and 2, the targets
of this letter are significant space assets in Earth orbit and
Earth-Moon space orbit that could transmit downlink sig-
nals, including Communications satellites, manned space-
craft, and deep space probes, which calls for increasingly

Table 1 Simulation parameter setting.

Fig. 2 (a) Ratio of asymptotic variances of different algorithms to ACRB
before and after iteration (SNR = 0, N = 1024); (b) comparison of fre-
quency estimation errors of different algorithms under different SNRs before
and after iteration (N = 1024).

accurate tracking, measuring and orbiting in SSA missions.

5.1 Performance Analysis and Discussion

Figure 2(a) shows that after two iterations, the estimated
asymptotic variance of the proposed algorithm (IMFFCI)
can basically achieve uniform convergence, and the ratio
of it to ACRB is 1.00235 in δ0 ∈ [−0.5,0.5], which is
closer to 1 than the current best AM algorithms [6], [10]
(FFCI, MSI, MOI, 1.0147), significantly better than Quinn
[7] (3.264), Maclcod [8] (1.678) and other algorithms whose
performance deteriorates after iteration, with a performance
improved by 1.23%, 225.63% and 67.41% respectively. Al-
though it is higher than that of QSE and HAQSE [10]
when δ0 is quite approaching 0, it performs better from
δ0 ∈ [−0.35,−0.5] and δ0 ∈ [0.35,0.5] (that of QSE
and HAQSE will finally increase to 1.0145), demonstrat-
ing the performance advantage of our algorithm after itera-
tion. Through iteration, the phenomenon that the asymptotic
variance of the proposed algorithm (MFFCI) slightly dete-
riorates before iteration (when |δ0 | > 0.3) is improved, and
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Table 2 Comparison of computational complexity.

the final frequency estimation achieve a better performance
in the whole range of δ0 ∈ [−0.5,0.5].

As Fig. 2(b) illustrates, before iteration, the estimation
error of the proposed algorithm (MFFCI) is improved to
a certain extent (only 0.7561 times of traditional AM se-
ries algorithms [6], [10] (FFCI, MOI, MSI)) within the
range of SNR ∈ [−20 dB,0 dB]. After iteration, in the
interval of SNR ∈ [−14 dB,0 dB], the estimation error of
the proposed algorithm (IMFFCI) decreases significantly,
which is basically comparable to CRLB (maintains at 1.236
times) and also slightly better than traditional AM algo-
rithms (only 0.897 times of them). Comparatively, when
SNR ∈ [−20 dB,−6 dB], that of RCTSL [9] algorithm is
substantially higher than our algorithm, up to four orders of
magnitude worse.

The above analysis proves that the proposed algorithms
(MFFCI and IMFFCI) achieve small estimation error before
and after iteration, and after iteration, the estimation error is
closer to CRLB, showing the effectiveness and superiority
of the proposed method. Compared with the existing space-
craft tracking and measurement technology such as radar
and optic telescope, CEI has the following significant ad-
vantages: (i) It only needs downlink signals, which are more
user-friendly and is easier for operation and maintenance;
(ii) It carries out high-precision monitoring and early warn-
ing on space assets, especially when the radar is limited by
geographical location or transmitting power, and the astro-
nomical telescope is hindered by atmospheric factors; (iii) Its
system can provide strong horizontal constraints and high-
precision Angle information of the target. If combined with
the distance and velocity information provided by optics and
radar, the near-real-time and high-precision orbit determina-
tion of non-cooperative targets can be realized, effectively
supporting future monitoring and cataloging missions.

5.2 Computational Complexity Analysis

Lower computational complexity is not only preferable, but
also crucial for satellite communication and monitor sys-
tems. In Table 2, 2th I stands for 2th iterations, × and

+ stand for complex multiplications and additions under
N = 1024. Compared with previous algorithms, the pro-
posed algorithms’ multiplication and addition complexity is
relatively small. As the total performing time is determined
by complex multiplication, it can be found that the proposed
algorithms significantly improve the estimation performance
without significant increase of the total operation time.

6. Conclusion

Based on more interpolation information of fractional
Fourier Coefficients, a MFFCI algorithm for accurate CEI
during SSA is proposed in this letter. The proposed algo-
rithms can estimate the frequency of sinusoidal signals with
high precision and moderate complexity. Furthermore, the
estimation accuracy of MFFCI is improved by iterations and
its convergence characteristic is proved. Simulation results
demonstrate the effectiveness of the proposed algorithms,
indicating a huge potential in futuristic high-precision space
assets monitoring of SSA missions.
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