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Two Classes of Optimal Ternary Cyclic Codes with Minimum
Distance Four∗

Chao HE†a), Xiaoqiong RAN††b), Nonmembers, and Rong LUO††c), Member

SUMMARY Cyclic codes are a subclass of linear codes and have appli-
cations in consumer electronics, data storage systems, and communication
systems as they have efficient encoding and decoding algorithms. Let C(t ,e)
denote the cyclic code with two nonzero αt and αe , where α is a generator
of F∗3m . In this letter, we investigate the ternary cyclic codes with parame-
ters [3m − 1, 3m − 1− 2m, 4] based on some results proposed by Ding and
Helleseth in 2013. Two new classes of optimal ternary cyclic codes C(t ,e)
are presented by choosing the proper t and e and determining the solutions
of certain equations over F3m .
key words: linear codes, ternary cyclic codes, optimal codes, sphere
packing bound

1. Introduction

Let p be a prime. An [n, k, d] linear code C over the finite
field Fp is a k-dimensional subspace of Fnp with minimum
(Hamming) distance d, and is called cyclic if any cyclic shift
of a codeword is another codeword of C. By identifying
(c0, c1, · · · , cn−1) ∈ C with

c0 + c1x + c2x2 + · · · + cn−1xn−1 ∈ Fp[x]/(xn − 1),

any cyclic code C of length n over Fp corresponds to an
ideal of polynomial residue class ring Fp[x]/(xn − 1). Note
that every ideal of Fp[x]/(xn − 1) is principal. Thus, any
cyclic code C can be expressed as C = 〈g(x)〉, where g(x) is
a monic polynomial with the least degree. The polynomial
g(x) is called the generator polynomial of C.

Cyclic codes are a subclass of linear codes and have
important applications in consumer electronics, data storage
systems, and communication systems as they have efficient
encoding and decoding algorithms compared with the linear
block codes [3]. They also have applications in cryptography
[4], [5] and sequence design [6]. Let α be a generator of
F∗3m = F3m \ {0}, mαt (x) denote the minimal polynomial
of αt over F3, and C(t ,e) be the class of cyclic codes over
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F3 with the generator mαt (x) and mαe (x) where 1 ≤ e, t ≤
3m − 1. Ding and Helleseth [7] constructed several classes
of optimal ternary cyclic codes C(1,e) with parameters [3m −
1,3m−1−2m,4] byusing almost perfect nonlinearmonomials
and some other monomials over F3m . Subsequently, many
classes of optimal ternary cyclic codes C(1,e) with parameters
[3m − 1,3m − 1 − 2m,4] were constructed successively [8]–
[22].

In this letter, we will present two new classes of optimal
ternary cyclic codes with parameters [3m−1,3m−1−2m,4]
by analyzing the solutions of certain equations over F3m . It
will be shown that our results about the two classes of optimal
ternary cyclic codes are extensions of some previous results
[15].

This letter is organized as follows. Some useful lemmas
are given in Sect. 2. In Sect. 3, we presents an effective and
fast method to determine whether ternary cyclic codes C(t ,e)
with exponents (t, e) = ( 3m+1

2 ,3h +2 · 3i) are optimal. More-
over, we show that ternary cyclic codes C(t ,e) are optimal for
i = 0,1,2. Section 4 concludes the letter.

2. Preliminaries

The following lemmas will be frequently used throughout
the letter.

Lemma 1. ([7]) For any integer 1 ≤ e ≤ 3m − 2. Let Ce

be the 3-cyclotomic coset module 3m − 1 containing e. The
length of Ce is equal to m if gcd(e,3m − 1) = 2.

Lemma 2. ([16]) Let t be even and e be odd with
gcd(t, e,3m − 1) = 1. Then the minimum distance of the
cyclic code C(t ,e) is no less than 3.

Lemma 3. ([1]) An irreducible polynomial over Fpm of
degree n remains irreducible over Fpml if and only if
gcd(n, l) = 1.

Lemma 4. Let m be an odd integer and gcd(m,3) = 1. If h
is an integer such that 2h ≡ 1 (mod m), then the equation

ξ3i (ξ3i − ξ3h ) = 1 (1)

about ξ has no solution in F3m for i = 0,1,2.

Proof. Noting that ξ = ±1 and ξ = 0 are not solutions of
(1). Suppose that ξ ∈ F3m \ F3 is the solution of (1). Then

ξ3h = ξ3i −
1
ξ3i

. (2)
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Taking 3h powers on both sides of (2), we have

ξ32h
=

(
ξ3h −

1
ξ3h

)3i
. (3)

Plugging (2) into (3), we have

ξ32h
=

( ξ4 + 1
ξ3 − ξ

)32i

.

Noting that ξ32h
= ξ3, since 2h ≡ 1 (mod m). Then we have

ξ3(ξ3 − ξ)3
2i
− (ξ4 + 1)3

2i
= 0. (4)

If i = 0, we have ξ6+ξ4−1 = (ξ3+ξ2+ξ+2)(ξ3+2ξ2+ξ+1) =
0,where ξ3 + ξ2 + ξ + 2 and ξ3 + 2ξ2 + ξ + 1 are irreducible
over F3. For gcd(m,3) = 1, according to Lemma 3, we know
that the equation ξ6 + ξ4 − 1 = 0 has no solution in F3m .
Therefore, in this case, we conclude that (1) has no solution
in F3m .

If i = 1, we have

((ξ6 − ξ2 + 1)(ξ6 − ξ4 + ξ2 + 1))3 = 0, (5)

where ξ6− ξ2+1 and ξ6− ξ4+ ξ2+1 are irreducible over F3.
Nothing that gcd(m,6) = 1, sincem is odd and gcd(m,3) = 1.
By Lemma 3, ξ6−ξ2+1 and ξ6−ξ4+ξ2+1 remain irreducible
over Fm3 . Therefore (5) has no solution in F3m . Therefore,in
this case, we conclude that (1) has no solution in F3m .

If i = 2, we have

ξ3(ξ3 − ξ)3
4
− (ξ4 + 1)3

4
= 0. (6)

ByMagma computation, the Eq. (6) can be decomposed into
the product of the irreducible factors as (ξ54 + ξ50 + ξ46 +
ξ44 − ξ40 + ξ38 + ξ26 − ξ22 + ξ20 + ξ18 + ξ14 − ξ6 + ξ4 +
1)3(ξ54 − ξ50 − ξ44 + ξ42 + ξ38 − ξ32 + ξ30 + ξ28 + ξ24 + ξ22 −
ξ20 + ξ18 + ξ16 − ξ14 − ξ10 + ξ8 + ξ6 − ξ4 + 1)3 = 0. Since
m is odd and gcd(3,m) = 1, gcd(54,m) = 1. By Lemma 3,
we have that (6) has no solution in F3m . Therefore,in this
case,we conclude that (1) has no solution in F3m . �

Lemma 5. Let h be an positive integer and m = 2h − 1.
Then

1) gcd(3h + 2,3m − 1) = 1;
2) gcd(3h−1 + 2,3m − 1) = 1 if h . 3 (mod 5);
3) gcd(3h−2 + 2,3m − 1) = 1 if h . 27 (mod 53).

Proof. 1) By 3(3m − 1) − (3h − 2)(3h + 2) = 1, we have
gcd(3h + 2,3m − 1) = 1.

2) By (3m − 1) − (3h − 6)(3h−1 + 2) = 11, we have
gcd(3h−1 + 2,3m − 1) = gcd(3h−1 + 2,11). Let h − 1 =
5k + j with k is some integer and j ∈ {0,1,3,4}. Then
gcd(3h−1 + 2,11) = gcd(35k+j + 2,11) = gcd(3j + 2,11) = 1.
Hence, gcd(3h−1 + 2,3m − 1) = 1 if h . 3 (mod 5).

3) By (3m − 1) − (3h+1 − 2 · 33)(3h−2 + 2) = 107, then
gcd(3h−2 +2,3m −1) = gcd(3h−2 +2,107). It can be verified
that 353 ≡ 1 (mod 107). Let h − 2 = 53k + j with k is
some integer and j ∈ {0, · · · ,24} ∪ {26, · · · ,52}. We have

gcd(3h−2+2,107) = gcd(353k+j +2,107) = gcd(3j +2,107).
Hence, gcd(3h−2+2,3m−1) = gcd(3j+2,107) = 1 if h . 27
(mod 53). �

3. Optimal Ternary Codes with Minimum Distance 4

In this section, we consider the ternary cyclic code C(t ,e),
whose exponents t, e is in the form of

t =
3m + 1

2
, e = 3h + 2 · 3i (7)

where 0 ≤ h < m − 1,0 ≤ i < h is integers and m is odd.

Theorem 1. Let m > 1 be odd, gcd(h − i,m) = 1 and
t, e satisfying that (7). Then the ternary cyclic code C(t ,e)
has parameters [3m − 1,3m − 2m − 1,4] and is optimal if
gcd(3h−i + 2,3m − 1) = 1 and the equation

λ3i (λ3i − λ3h ) = 1 (8)

about λ has no solution in F3m .

Proof. Note that gcd(t,3m − 1) = 2 since m is odd. Thus, by
Lemma 1, we can obtain |Ct | = m. Similarly, |Ce | = m since
gcd(3h + 2 · 3i,3m − 1) = gcd(3h−i + 2,3m − 1) = 1. Then,
it can be readily verified that Ct ∩Ce = �. This implies that
the dimension of C(t ,e) is equal to 3m − 2m − 1.

We now prove that the minimum distance d is equal to
4. To this end, we need to show that C(t ,e) has no codewords
of Hamming weight ω ∈ {1,2,3}. The cyclic code C(t ,e) has
a codeword of Hamming weight ω if and only if there exist
c1, c2, · · · , cω ∈ F∗3 and ω distinct elements x1, x2, · · · , xω ∈
F∗3m such that{

c1xt1 + c2xt2 + · · · + cω xtω = 0,
c1xe1 + c2xe2 + · · · + cω xeω = 0.

(9)

Since m is odd, we have gcd( 3m+1
2 ,3m − 1) = 2. Then we

can get gcd(t, e,3m − 1) = gcd( 3m+1
2 ,3h + 2 · 3i,3m − 1) =

gcd(2,3h + 2 · 3i) = 1. By Lemma 2, we deduce that the
minimum distance d of the cyclic code C(t ,e) is no less than
3.

Next,we will show that ω , 3. The cyclic code C(t ,e)
has no codewords of Hamming weight ω = 3 if and only
if (9) has no solution over F3m for ω = 3. Let x = x1

x3
and

y = x2
x3
, we have x, y , 0,1 and x , y. The Eq. (9) becomes{
c1xt + c2y

t + c3 = 0,
c1xe + c2y

e + c3 = 0.

Due to symmetry it is sufficient to consider the following
two cases.

Case A: c1 = c2 = c3 = 1. In this case, we have{
xt + yt + 1 = 0,
xe + ye + 1 = 0.

(10)
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Recall that t = 3m+1
2 = 3m−1

2 + 1. We have αt = α if α
is a square in F∗3m and otherwise αt = −α. We distinguish
among the following four subcases to prove that (10) cannot
hold for x, y (x , y) in F∗3m .

(I) x, y are squares inF∗3m . In this subcase, (10) becomes{
x + y + 1 = 0,
xe + ye + 1 = 0.

which leads to

1 + y3h+2·3i = (y + 1)3
h+2·3i . (11)

Notice that

(y+1)3
h+2·3i = y3h+2·3i − y3h+3i + y3h + y2·3i − y3i +1.

Then the Eq. (11) turns to

(y3h − y3i )(y3i − 1) = 0.

It leads to

(y3h−i − y)3
i

(y3i − 1) = 0.

Then, we can get y3h−i = y or y3i = 1, which implies that
y ∈ F3 = {0,1,−1} since gcd(h− i,m) = 1 and (3i,3m−1) =
1. Thus y = −1 since y , 0 and y , 1, we have x = 0. This
is a contradiction to the assumption that x , 0. Therefore,
ω , 3.

(II) x is a square in F∗3m and y is a nonsquare in F∗3m .
Then (10) becomes{

x − y + 1 = 0,
xe + ye + 1 = 0.

which leads to

(y − 1)3
h+2·3i + y3h+2·3i + 1 = 0 (12)

Notice that

(y−1)3
h+2·3i = y3h+2·3i + y3h+3i + y3h − y2·3i − y3i −1.

This together with (12) yields

y3h+2·3i = (y3h − y3i )(y3i + 1).

Set a = y−1 + 1. Then we have

a3i (a3i − a3h ) = 1. (13)

By the Eqs. (8), (13) cannot hold for any a ∈ F∗3m . Therefore,
ω , 3.

(III) x is a nonsquare in F∗3m and y is a square inF∗3m .
This case is similar to subcase (II). Therefore, ω , 3.

(IV) x and y are nonsquares inF∗3m . Then (10) becomes{
−x − y + 1 = 0,
xe + ye + 1 = 0.

which leads to

(x − 1)3
h+2·3i = x3h+2·3i + 1 (14)

Notice that

(x−1)3
h+2·3i = x3h+2·3i + x3h+3i + x3h − x2·3i − x3i −1.

This together with (14) yields

(x3h − x3i )(x3i − 1) = −1.

Set b = x + 1. Then we have

b3i (b3i − b3h ) = 1. (15)

By the Eq. (8), the Eq. (15) cannot hold for any b ∈ F∗3m .
Therefore, ω , 3.

Case B: c1 = c2 = 1 and c3 = −1. In this case, we have{
xt + yt − 1 = 0,
xe + ye − 1 = 0.

(16)

Note that t is even and e is odd. Let x̄ = −x and ȳ = −y.
Then (16) becomes{

x̄t + ȳt − 1 = 0,
x̄e + ȳe + 1 = 0.

The rest of the proof of this case is similar to Case A. We
omit the details here. Hence ω , 3.

The discussion above shows that the C(t ,e) does not have
a codeword of Hamming weight ω ∈ {1,2,3}. Hence d ≥ 4.
On the other hand, according to the sphere packing bound
(see [2]), the minimum distance of any linear code of length
3m − 1 and dimension 3m − 2m − 1 should be less than or
equal to 4. Hence d = 4. The proof is complete. �

Now we will present some new cyclic codes C(t ,e) in
the sequel by choosing different values of t and e. Let h be
a positive integer and m = 2h − 1. Then

gcd(h − i,m) = 1, i = 0,1.

If m . 0 (mod 3), we have

gcd(h − 2,m) = 1.

Using Lemma 4, Lemma 5 and Theorem 1, we have the
following results.

Theorem 2. Let h > 1 be a positive integer, m = 2h− 1 and
t, e satisfying that (7). If m . 0 (mod 3) and

1) i = 0, or
2) i = 1 and h . 3 (mod 5), or
3) i = 2 and h . 27 (mod 53),

then the ternary cyclic code C(t ,e) has parameters [3m −
1,3m − 2m − 1,4].

It should be noted that e = 3h + 2 · 3i if i = 0, which is
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equivalent to e = 3h + 2.This is a special case of Ref. [15].
Let k be a positive integer. The item 2) of Theorem 2

holds if one of the following cases holds:
(i) let h = 3k + 1 and 3k . 2 (mod 5);
(ii) let h = 3k + 3 and k . 0 (mod 5).
The item 3) of Theorem 2 holds if one of the following

cases holds:
(i) let h = 3k + 1 > 1 and 3k . 26 (mod 53);
(ii) let h = 3k + 3 and k . 8 (mod 53).

The following examples from the Magma Program confirm
Theorem 2.

Example 1. Let k = 0, h = 3k+3 = 3, m = 2h−1 = 5 andω
be a generator of F∗3m with minimal polynomial x5 + 2x + 1.
Then t = 3m+1

2 = 122, e = 3h + 18 = 45. We have the
code C(t ,e) is an optimal ternary cyclic code with generator
polynomial x10 + 2x9 + x8 + x7 + x5 + x3 + x2 + x + 2 and
parameters [242,232,4].

Example 2. Let k = 1, h = 3k+1 = 4, m = 2h−1 = 7 andω
be a generator of F∗3m with minimal polynomial x7 + 2x + 1.
Then t = 3m+1

2 = 1094, e = 3h + 6 = 87. We have the
code C(t ,e) is an optimal ternary cyclic code with generator
polynomial x14 + 2x13 + 2x12 + 2x11 + 2x10 + 2x9 + 2x8 +
2x7 + 2x4 + x3 + 2 and parameters [2186,2172,4].

4. Conclusion

In the letter, inspired by the work of [15], two new classes
of optimal ternary cyclic codes were presented. It should be
noticed thatmore newoptimal ternary codesmay be obtained
from other values of e = 3h + 2 · 3i .
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