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Dual-Path Convolutional Neural Network Based on Band
Interaction Block for Acoustic Scene Classification

Pengxu JIANG†a), Yang YANG†, Nonmembers, Yue XIE††, Member, Cairong ZOU†,
and Qingyun WANG††, Nonmembers

SUMMARY Convolutional neural network (CNN) is widely used in
acoustic scene classification (ASC) tasks. In most cases, local convolution
is utilized to gather time-frequency information between spectrum nodes.
It is challenging to adequately express the non-local link between frequency
domains in a finite convolution region. In this paper, we propose a dual-path
convolutional neural network based on band interaction block (DCNN-bi)
for ASC, with mel-spectrogram as the model’s input. We build two parallel
CNN paths to learn the high-frequency and low-frequency components
of the input feature. Additionally, we have created three band interaction
blocks (bi-blocks) to explore the pertinent nodes between various frequency
bands, which are connected between two paths. Combining the time-
frequency information from two paths, the bi-blocks with three distinct
designs acquire non-local information and send it back to the respective
paths. The experimental results indicate that the utilization of the bi-
block has the potential to improve the initial performance of the CNN
substantially. Specifically, when applied to the DCASE 2018 and DCASE
2020 datasets, the CNN exhibited performance improvements of 1.79% and
3.06%, respectively.
key words: acoustic scene classification, convolutional neural networks,
band interaction block, mel-spectrogram

1. Introduction

Acoustic scene classification (ASC) uses intelligent devices
to judge the sound environment, which has applications in
many fields [1]. Scholars based on acoustic scene classifi-
cation mainly focus on the Detection and Classification of
Acoustic Scenes and Events (DCASE). Early research based
on ASC focused on the extraction of hand-crafted features.
However, it is difficult to avoid the artificial selection of fea-
tures for hand-crafted features, which will lead to the limited
performance of ASC-based systems [2].

Most academics now use convolutional neural networks
(CNNs) to categorize the acoustic environment. Spectrum
is often the input for CNN-based algorithms. To enhance
the performance of the model, some studies [3], [4] combine
the first and second derivatives of the spectrum. To further
explore the nature of spectrogram, some work [4], [5] cut-
ting the frequency axis from the spectrum and entering it
into CNN, it was discovered that this might enhance ASC’s
performance. Additionally, computer vision and natural lan-
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guage processing frequently employ attention mechanisms
[6], [7]. According to the study on the attention module
built on the ASC, it can also enhance CNN’s functionality.

Even though the aforementioned work has been suc-
cessfully implemented in ASC, several issues still need to
be resolved. First off, various frequency bands need to
be addressed differently since the high-frequency and low-
frequency components of the scene audio may have distinct
physical meanings. Previous research created parallel CNN
paths for several frequency bands. This paradigm is intended
to make it easier to gather scene data in various frequency
bands. However, feature cutting will lead to incomplete
information acquisition of different branches at the cutting
point, that is, loss of some frequency information. Fur-
thermore, frequency cascades are a common feature of late
fusion based on many frequency bands. We have observed
that attention mechanism, such as the RNN-LSTM model
based on attention mechanism [8], has outstanding effects
in the feature fusion stage. It is also essential to consider
attention-based late fusion mode for the frequency band.

In view of this, this paper has designed a Dual-path con-
volutional neural network based on band interaction block
(DCNN-bi) for ASC, and the designed model is shown
in Fig. 1. Inspired by some previous work [4], [5], mel-
spectrograms and their first and second derivatives serve
as the model’s input, and these features are further sepa-
rated into high-frequency portions and low-frequency parts
to input two parallel CNNs to accommodate the demands
of the model. Additionally, we have designed three band
interaction blocks (bi-blocks) with various structural that are
positioned at the late feature fusion stage and the convolution
stage of different paths, respectively. The bi-block’s primary
objective is to gather additional time-frequency information
by combining local information from the two paths. The
bi-block α, which serves as the area where the two paths’
information interact, offers a full time-frequency receptive
field to aid in collecting time-frequency-related information
at frequency truncation in various frequency bands. The
bi-block β and bi-block γ are set at the late fusion stage,
focusing on acquiring the attention-based non-local weight
and channel weight rather than exploring the time-frequency
relationship between individual dimensions. The experi-
ment discusses the improvement of different modules on the
baseline CNN performance and verifies the superiority of
the proposed module through the two related databases.
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Fig. 1 Illustration of the proposed DCNN-bi.

2. Methods

2.1 Input Feature

We use mel-spectrogram as the input feature, the same as
most CNN-based studies [9]–[11], and mel-spectrogram is
a two-dimensional feature with frequency and time axes. In
addition, we calculate the first and second derivatives of
spectrograms to form three-dimensional features, similar to
RBG image representation. Which is expressed as:

χ ∈ RF×T×C, (1)

where F, T, and C represent frequency, time, and chan-
nels, respectively. In image recognition, the object’s lo-
cation does not influence the model’s ability to discriminate.
However, high-frequency and low-frequency features in the
mel-spectrogram may have different meanings. Therefore,
our ASC system has two input paths. The model’s inputs are
the high-frequency and low-frequency components.

2.2 Convolutional Block

We have designed three convolution modules for CNN: Con-
volutional block α, Convolutional block β, and Convolu-
tional block γ. Figure 1 depicts the convolution network’s
structural layout.

Two convolutional layers and one average pooling layer
comprise the convolutional block α. Only two convolutional
layers are present in convolutional block β. Two layers of
convolution, one layer of global average pooling (GAP), and
a SoftMax layer are all included in the convolutional block γ.
The global average pooling layer sends the average values of
each element on the feature map to the following layer. Soft-
Max gives each output categorization result in a probability
value:

z̃i , so f tmax(zi) =
ezi∑
∀ ezi

, (2)

where zi is the value of different nodes. Two CNN paths to

Fig. 2 Illustration of the bi-blocks.

learn information in different frequency bands.

2.3 Bi-Blocks

Three band interaction blocks are used in the designed
model: bi-block α, bi-block β, and bi-block γ, as shown
in Fig. 2.

First, bi-block α helps the two CNN paths obtain more
receptive fields, especially the additional time-frequency in-
formation at the frequency band connection. The inputs of
bi-block α are high-frequency component f high ∈ RF×T×C

and low-frequency component f low ∈ RF×T×C , where F, T,
and C are the dimensions of frequency, time, and number of
channels, respectively. These frequency band components
are first spliced on the frequency dimension, and the input
feature can be expressed as:

f , [ f high, f low] ∈ R2F×T×C . (3)

Then, a convolution layer with a larger convolution ker-
nel is used to extract the time-frequency correlation infor-
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mation of the global feature, and an average pooling layer
is used to match the output dimensions. The feature is then
separated into different frequency bands, and the obtained
information is appended to each path. Note that the fusion
of the output of the features from bi-block α and the original
paths uses channel merging instead of element addition.

The bi-block β captures non-local information between
two paths. First, create a global feature, the same as bi-
block α, by fusing the frequency axis of high-frequency
and low-frequency components. Then, the input feature’s
time dimension and feature dimension are combined to form
a two-dimensional tensor. These tensors gather non-local
information from the dense layer and use a Sigmoid layer to
create an attention feature map:

yβ( fi) = σ( fiWy), (4)

where Wy ∈ R
2FT×2FT is a weight vector of dense layer, σ

is the activation function sigmoid. In addition, ‘×O’ repre-
sents the element-wise Hadamard product, ‘+O’ denotes the
element-wise sum in Fig. 2. After the self-attention feature
is obtained, the convolution layer is then utilized to get addi-
tional time-frequency information, and the frequency band
is then once again split.

The main function of bi-block γ is channel attention
calculation, which is similar to CBAM [12]. First, f ∈
R2FT×C as input, the same as bi-block β. Then, the feature
is sent to the two-layer dense to generate the final channel
attention feature map:

yγ( fi) = σ( fiWθWφ), (5)

hereWθ ∈ R
C×C

r , Wφ ∈ R
C
r ×C , r is the dimension reduction

parameter. Then, a Sigmoid layer obtains the feature map
based on channel attention. In addition, the frequency band
of the input feature is no longer divided, and the global
feature is used as the module’s output.

3. Experiments

3.1 Datasets and Training Setup

We evaluate our proposed DCNN-bi on the open dataset in
the ASC task of DCASE 2018 task1A and DCASE 2020
task1A [13]. Ten scene environments from six major Euro-
pean cities are recorded in the DCASE database. Both of
them contain 10-second-long audio clips.

The audio clips of DCASE 2018 are first resampled to
48 kHz, and the audio clips of DCASE 2020 are resampled
to 44.1 kHz. Then, using a Hamming window with a length
of 2048 samples, an overlap of 1024, and 128mel bins, the
log mel-spectrograms are extracted from the audio clips. In
addition, the first and second derivatives of the spectrogram
are calculated to form a three-dimensional feature as the input
of the model. For DCASE 2018, enter the feature dimension
as 461×128×3, and 423×128×3 for DCASE 2020. Since
we need to divide the mel-spectrograms into high-frequency
bands and low-frequency bands to meet the needs of CNN,

Table 1 Our baseline DCNN-bi model for ASC.

we divide the first 64 frequency points into low-frequency
bands and the last 64 frequency points into high-frequency
bands.

Table 1 shows the proposed model baseline. Where
T × F represents the shape of the frequency dimension of
the input tensor multiplied by the time dimension. r is the
parameter reduction coefficient. In the process of model
training, we use a stochastic gradient descent optimizer with
a batch size of 64, momentum of 0.9, the learning rate is
initialized to 0.01, and a cosine-decay-restart learning rate
scheduler is used to reset the learning rate to 0.01 after 3,
7, 15, 31 and 64 epochs. In addition, we used Mixup and
spectrum augment in training, and we implemented DCNN-
bi in TensorFlow.

3.2 Experiment Results

We first analyze the influence of the three bi-blocks on the
performance of ASC. The basic system is the DCNN model
without any additional bi-blocks. Table 2 displays a perfor-
mance comparison of all experimental models. The findings
demonstrate that the performance of DCNN is significantly
improved with the increase of bi-blocks, and the recogni-
tion rates of the two acoustic scene data sets are raised by
1.79%and 3.06%, respectively. According to the experimen-
tal findings, the bi-blocks can assist the DCNN framework
in achieving more accuracy through information interaction
and late fusion of various frequency paths.

Subsequently, we proceed to examine the enhancements
in performance exhibited by the bi module when subjected
to various baseline CNN architectures. Table 3 presents the
results of comparative experiments, wherein the number of
convolutional kernels in DCNN1 is halved in comparison to
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Table 4 ASC performance (%) for each scene.

Table 2 Comparison of the recognition rate (%) of different bi-blocks.

Table 3 Comparison of the recognition rate (%) of different DCNN.

Table 5 Comparison of the recognition rate (%) of different methods.

DCNN, and DCNN2 is further adjusted to achieve a param-
eter quantity that is approximately equivalent to DCNN-bi1.
In other words, it is possible to evaluate and compare the
performance of various models by considering the same pa-
rameter quantity. The analysis of Table 3 reveals that the
incorporation of bi-modules in low-complexity CNNmodels
leads to an enhancement in the performance of the baseline
CNN. Moreover, even when considering the same parame-
ter quantity, the DCNN-bi model exhibits enhanced perfor-
mance compared to the baseline CNNmodel without relying
solely on increasing the number of parameters.

Table 4 shows the category precision of baseline and
DCNN-bi on two data sets. We can infer that DCNN-bi
has a great improvement in the class statistics, especially for
metro, public square, street pedestrian, and street traffic.

Additionally, as indicated in Table 5, we contrast the
approach we developed with some CNN-based works. The
comparative experiment mainly consists of two parts: [14]
and [15] are CNN-based ASC systems, [16]–[19] are im-
proved models based on DCASE task1a baseline CNN. In
addition, [13] is the baseline CNNmodel for DCASE task1a.

The table illustrates that the performance of the proposed
DCNN-bi surpasses the official dataset baseline by 19.96%
and 19.99% in two datasets, respectively. This improvement
is superior to themajority of comparative ASCmodels. Nev-
ertheless, we observed performance is comparatively inferior
to that reported in [16] and [17], potentially attributable to
the outdated architectural design of the baseline CNN, which
encourages us to further enhance the pertinent ASC models
in our forthcoming research endeavors.

4. Conclusion

This paper presented a dual-path convolutional neural net-
work based on a band interaction block for ASC, which has
two paths to learn the high-frequency and low-frequency
components of the input spectrum. Additionally, three bi-
blocks are further arranged in the two paths, bi-block α helps
the two DCNN paths obtain more receptive fields, bi-block β
is used to capture non-local information, and bi-block γ fo-
cuses on channel attention calculation. The outcomes of the
experiments demonstrate the effectiveness of the DCNN-bi
in enhancing system performance.
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