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LETTER
Zero-Order-Hold Triggered Control of a Chain of Integrators with
an Arbitrary Sampling Period∗

Ho-Lim CHOI†a), Member

SUMMARY We propose a zero-order-hold triggered control for a chain
of integrators with an arbitrary sampling period. We analytically show
that our control scheme globally asymptotically stabilizes the considered
system. The key feature is that the pre-specified sampling period can be
enlarged as desired by adjusting a gain-scaling factor. An example with
various simulation results is given for clear illustration.
key words: chain of integrators, zero-order-hold triggered, arbitrary sam-
pling period

1. Introduction

We consider a global asymptotic stabilization problem for a
chain of integrators by a zero-order-hold triggered (ZOHT)
control. The key feature with our control scheme is that
the pre-specified sampling period of ZOHT control can be
made arbitrarily large by utilizing a gain-scaling factor of
our controller.

Note that the ZOHT control method discretely updates
the control input at each sampling period. So, the ZOHT
control has a similar feature of the traditional event-triggered
(ET) control in the sense of discrete updates of the control
input, which leads to the similar effective usage of the com-
munication resources [2], [5], [7]–[10]. Both ZOHT and ET
control have less number of control input updates than the
continuous-time control in general.

However, our proposed ZOHT controlmethod has some
clear benefits over the traditional ET control method in the
following aspects. First, the ET control requires a somewhat
complicated design of a triggering condition which must
be engaged both in the system analysis and Zeno behavior
analysis at the same time [6]. Second, in terms of controller
implementation, the ET control requires a memory to store
some past state/output values in order to check the event-
triggering condition in real time.

Thus, our ZOHT control method is much simpler in
terms of control implementation and it does not require any
extra analytical effort to prove the avoidance of the Zeno
behavior. As the title indicates, our control method can
stabilize the considered system with an arbitrary sampling
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period. So, by setting a large sampling period, we can reduce
the number of control input updates as desired, which leads
to the same efficient usage of communication resources as
the ET control [2] with a easier implementation.

2. System and Problem Formulation

We consider a chain of integrators given by

Ûx = Ax + Bu (1)

where x = [x1, · · · , xn]T ∈ Rn is the state, u ∈ R is the input,
and (A,B) is a Brunovsky canonical pair, i.e., A = [ai j],
1 ≤ i, j ≤ n, where if j = i + 1, ai j = 1, else ai j = 0 and
B = [0, · · · ,0,1]T .

Remark 1. A chain of integrators may seem to be very
simple at first glance. However, there are two notable related
aspects: (i) in a practical aspect, a satellite attitude control
model is represented by a second-order chain of integrators
[3]; (ii) In an extensional aspect, the control results on a
chain of integrators can be extended to a class of feedforward
systems. This aspect will be briefly addressed in Sect. 4.

Regarding the system (1), we first state our control prob-
lem: Globally stabilize the system (1) by a state feedback
controller with an arbitrary sampling period T .

To introduce our controller, we define some notations:

• tk , k = 0,1, · · · : Controller update time with t0 = 0.
• T = tk+1 − tk > 0: Pre-specified sampling period.

In solving our control problem, the following ZOHT con-
troller is introduced.

u(t) = K(γ)x(tk), t ∈ [tk, tk+1) (2)

where K(γ) = [k1/γ
n, · · · , knγ], γ ≥ 1 to be chosen.

Remark 2. The proposed controller resembles the ET con-
troller [9] as the control input is updated discretely. How-
ever, unlike the ET controller [9], the proposed controller
does not require a triggering condition which means that
its implementation is simpler because any memory storage
to monitor the state deviation from the past state values
recorded at the previous execution time is not needed. More-
over, there is no additional need to check the avoidance of
Zero behavior [6] because the positive lower bound of T is
guaranteed by default.
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3. Main Results

Before we state our main theorem, we define some notations
for proof: let AK(γ) = A + BK(γ), K = K(1), AK = AK(1),
K̄ = [k2

1, · · · , k
2
n], Eγ = diag[1, γ, · · · , γn−1], I = E1, and

‖ · ‖ denotes the Euclidean norm.

Theorem 1. Suppose that K is selected such that AK is
Hurwitz. Then, the closed-loop system (1)with the controller
û in (2) is globally asymptotically stable. Moreover, the
sampling period T can be enlarged by increasing γ.

Proof. For t ∈ [tk, tk+1), the closed-loop system is

Ûx =Ax + BK(γ)x(tk)
=Ax + BK(γ)[x + x(tk) − x]
=AK(γ)x − BK(γ)[x − x(tk)]

=AK(γ)x − BK(γ)
∫ t

tk

Ûx(s)ds

=AK(γ)x − BK(γ)A
∫ t

tk

xds

− (BK(γ))2
∫ t

tk

x(tk)ds (3)

Here, similarly to the analysis in [2], we set V(x) = xT Pγx
where Pγ = EγPEγ and AT

KP + PAK = −I. Then, along the
trajectory of (3), we have

ÛV(x) = − γ−1‖Eγx‖2 − 2xT EγPEγBK(γ)A
∫ t

tk

xds

− 2xT EγPEγ(BK(γ))2
∫ t

tk

x(tk)ds (4)

Regarding the second term of (4), we have

2xT EγPEγBK(γ)A
∫ t

tk

xds

= 2xT EγP EγBK(γ)AE−1
γ︸             ︷︷             ︸

≤γ−2 ‖K ‖

∫ t

tk

Eγxds

≤ 2γ−2‖P‖‖K ‖‖Eγx‖
∫ t

t−T

‖Eγx‖ds

≤ 2γ−2‖P‖‖K ‖‖Eγx‖ · T sup
−T ≤θ≤0

‖Eγx(t + θ)‖ (5)

Regarding the third term of (4), we have

2xT EγPEγ(BK(γ))2
∫ t

tk

x(tk)ds

= 2xT EγP Eγ(BK(γ))2E−1
γ︸              ︷︷              ︸

≤γ−2 ‖K̄ ‖

∫ t

tk

Eγx(tk)ds

≤ 2γ−2‖P‖‖K̄ ‖‖Eγx‖ · T sup
−T ≤θ≤0

‖Eγx(t + θ)‖ (6)

Here, we note that the second and third terms of (4)
are upper bounded by some delayed terms. In order to treat
these terms, we utilize the Razumikhin theorem [4]. We set
V(x(t + θ)) ≤ qV(x), −T ≤ θ ≤ 0, which leads to

sup
−T ≤θ≤0

‖Eγx(t + θ)‖ ≤ q̄‖Eγx‖ (7)

where q̄ =
√

qλmax(P)/λmin(P).
Now, gathering (4)–(7) together, we have

ÛV(x) ≤ − γ−2
{
γ − 2q̄‖P‖(‖K ‖ + ‖K̄ ‖)T

}
︸                              ︷︷                              ︸

=:∆(γ,T )

‖Eγx‖2 (8)

Thus, the closed-loop system becomes globally asymptot-
ically stable when ∆(γ,T) > 0. Moreover, it is clear by
observing ∆(γ,T) that the pre-specified sampling period T
can be enlarged by increasing γ. �

Remark 3. The proposed ZOHT control method updates
the control input discretely like the ET controller [9]. More-
over, the pre-specified samapling periodT can be further en-
larged by using the gain-scaling factor γ. So, the advantage
of saving communication resource by the traditional event-
triggered control method is retained. Again, the proposed
control method does not require any triggering condition,
which leads to the simpler implementation of the controller.
Also, extra analytical effort showing the avoidance of Zeno
behavior is not necessary.

4. Extension to a Class of Feedforward Nonlinearity

Here, we briefly show that our proposed control scheme
can be extended to a more generalized nonlinear systems,
namely a class of feedforward systems. First, the system (1)
is extended as [1]

Ûx = Ax + Bu + δ(t, x,u) (9)

where δ(t, x,u) = [δ1(t, x,u), · · · , δn−1(t, x,u),0]T which sat-
isfies δi ≤ c(|xi+2 | + · · · + |xn |), i = 1, · · · ,n − 1.

Considering the derivation given in [1], without show-
ing the tedious details, the inequality (8) can be modified
into the following

ÛV(x) ≤ − γ−2
∆̄(γ,T)‖Eγx‖2 (10)

where

∆̄(γ,T) = γ − 2q̄‖P‖(‖K ‖ + ‖K̄ ‖)T − 2‖P‖c̄ (11)

where the additional term 2‖P‖c̄ is independent of γ.
Thus, the main results of Theorem 1 remain the same in

principle except some necessary changes in allowable range
of γ corresponding to T due to the additional nonlinearity.
This is just one brief sketch of many potential extensions of
our current work. There can be much more extensions such
as delays, uncertain parameters, and so forth.
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5. Illustrative Example

We consider a case of n = 2 and address the following two
cases.
Case 1: The enlargement of T by utilizing γ.

We select K = [−1,−2] which gives us ∆(γ,T) ' γ −
22T > 0. Here, we observe three cases:

(i) We let γ = 1. Then, ∆(γ,T) > 0 for 0 < T < 0.0455.
We choose T = 0.04. As shown in Fig. 1, the system is
asymptotically stabilized with 25 control input updates.

(ii) For the time-being, fix γ = 1. By increasing T further,
we observe that the system starts showing unstable be-
havior when T surpasses about 1.03 as shown in Fig. 2.

(iii) WithT = 1.03, we increase γ to be 23. Then, the system
becomes asymptotically stabilized again as shown in
Fig. 3. So, the enlargement of T by our ZOHT control
is clear shown.

Case 2: Comparison with the ET controller [2].

Fig. 1 Trajectories of states and input when γ = 1 and T = 0.4.

Fig. 2 Trajectories of states and input when γ = 1 and T = 1.03.

Following [2], their ET controller is given as

u(t) = K(γ)x(ti), ∀ ∈ [tk, tk+1), t0 = 0 (12)
tk+1 = inf{t > tk : γn |e(t)| > σ‖Eγx(t)‖} (13)

where the parameters σ and γ are to be selected from the
following sufficient condition:

1 − 2‖PBK ‖‖K ‖γ−1 − 2‖P‖σ > 0 (14)

Again, we select K = [−1,−2]. This gives us γ = 11 and
σ = 0.098. For our proposed controller, the condition is
γ − 22T > 0. So, we get γ = 11 and T = 0.499.

For both control methods, the simulations are per-
formed with the same initial conditions and obtained results
are shown in Figs. 4 and 5. The system is similarly asymp-
totically stabilized by both methods. The ET control method
updates the control input 49 times and the proposed ZOHT
control method updates the control input 60 times. Thus, our
newly proposed ZOHT controller achieves the similar per-
formance to the event-triggered controller while it is memo-
ryless(without any triggering conditions) and its number of

Fig. 3 TTrajectories of states and input when γ = 23 and T = 1.03.

Fig. 4 Trajectories of states and input by the ET control [2].
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Fig. 5 Trajectories of states and input by the proposed ZOHT control.

input dates remains similar.

6. Conclusions

We have provided a new ZOHT controller with an arbitrary
sampling period for a chain of integrators. We have shown
that our proposed control method stabilizes the considered
system. Also, we have shown that the pre-specified sampling
period can be enlarged by using a gain-scaling factor. Var-
ious simulation results confirm the advantages of the pro-

posed method over the traditional ET control method.
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