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PAPER
Research on Building an ARM-Based Container Cloud Platform

Lin CHEN†a), Xueyuan YIN†b), Dandan ZHAO††, Hongwei LU††, Lu LI††, and Yixiang CHEN†††, Nonmembers

SUMMARY ARM chips with low energy consumption and low-cost in-
vestment have been rapidly applied to smart office and smart entertainment
including cloud mobile phones and cloud games. This paper first sum-
marizes key technologies and development status of the above scenarios
including CPU, memory, IO hardware virtualization characteristics, ARM
hypervisor and container, GPU virtualization, network virtualization, re-
source management and remote transmission technologies. Then, in view
of the current lack of publicly referenced ARM cloud constructing solu-
tions, this paper proposes and constructs an implementation framework for
building an ARM cloud, and successively focuses on the formal definition
of virtualization framework, Android container system and resource quota
management methods, GPU virtualization based on API remoting and GPU
pass-through, and the remote transmission technology. Finally, the experi-
mental results show that the proposed model and corresponding component
implementation methods are effective, especially, the pass-through mode
for virtualizing GPU resources has higher performance and higher paral-
lelism.
key words: cloud computing, ARM, hypervisor, containers, GPU

1. Introduction

According to latest statistics of ARM, cumulative shipments
of ARM chip partners have reached about 240 billion chips
by 2022. Due to ARM chips have rich capabilities, such as
lower energy consumption, low-cost and supporting exten-
sible design, which have been employed into diverse fields
(e.g., set-top boxes, smart phones, PCs and servers). For the
server field, by employing virtualization technologies, ARM
chips have been applied to build various cloud services in-
cluding cloud mobile phone, cloud gaming, and cloud com-
puter. Associated with it, ARM cloud involves virtualization
technologies of CPU, memory, GPU, network and storage.

Primarily, CPU and memory and IO could be virtual-
ized by employing a hypervisor (also named virtual machine
monitor, VMM) [1] or a container [2]–[4] middleware: (1)
For hypervisor model, the vital appliances including CPU,
memory, IO, interrupt, clock, etc. must have essential hard-
ware virtualization features [5], which could contribute to
the realization of hypervisor functions. A typical realiza-
tion is based on an ARM/KVM model, taking Phytium
server chips (e.g., FT-2000+/64) as examples to illustrate
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[6], whose key virtualization features are realized with the
help of corresponding hardware virtualization capabilities,
such as CPU providing a separate execution environment
EL2 for hypervisor, and memory managed by a MMU sup-
porting two-level page table transformations, and IO inte-
grating with an IOMMU to support device allocation and
access directly. Besides, on FT-2000+/64 server platform
configured with dual-cores, the Benchmark statistics show
that the average loss ratios of CPU computing and memory
access are both about 3%. Moreover, some scholars have
carried out ARM/KVM virtualization researches on ARM-
v8 platform (Firefly-RK3399). Huang et al. [7] are focus
on deploying a guest OS through the mechanism of cross
compiling UEFI, and realizing dual-screen display by mod-
ifying codes of QEMU display device. The results show that
user performance is not good, due to the constraint of low
performance hardware. Ma [8] points that ARM/KVM solu-
tion is better than docker in terms of the functional integrity
and file copy. (2) For container model, various products for
containerizing Linux or Android guest are derived. For pro-
viding Linux containers, there are LXC, Docker, LXD, Kata
containers, Linux VServer, Singularity, Rkt, gVisor. There-
into, LXC, Docker and LXD have good storage feature sup-
porting, Kata-containers has good features of isolation [9].
The comparisons between LXC, Docker and LXD as shown
in Table 1.

For offering Android containers, which can provide va-
rieties of SaaS services (e.g., cloud mobile phone, cloud
gaming, cloud testing). Typical solutions are: Ubuntu Touch
[11] is a mobile OS released by Canonical, and designed
for mobile Touch devices such as smartphones and tablets,
and its Android containers (instantiated by employing LXC
technology) run on Ubuntu. Anbox [12], [13] abstracts
hardware access and integrates core system services into a
GNU/Linux system, which uses Linux technologies (e.g.,
USER, PID, UTS, NET) to separate the Android OS from
host; moreover, a derivate solution named xDroid of An-
box is born. Huawei has launched a cloud-based mobile
phone solution named Monbox [14], which provides simu-
lation test, trial promotion, cloud gaming and mobile office.
Tencent pushes out a cloud-based Android mobile named
VMI (Virtual Mobile Infrastructure), which is composed of
a server (including Android containers and corresponding
dockdroid daemons) and a client. The Condroid project
[15]–[17] is launched by Arclab, Zhejiang University, which
employs LXC tools to containerize Android guests on an
Android host OS, and peripheral supports are implemented.
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Table 1 Feature comparisons between LXC, Docker and LXD.

Table 2 Model feature comparisons between hypervisor and container.

Inspired by Condroid, a solution named Clondroid [18] is
developed by ITRI, Taiwan. The key feature comparisons
between hypervisor and container as shown in Table 2.

Secondly, with the dramatic increase of graphical ap-
plications, GPU resources are also indispensable. For GPU
virtualization, virtual GPU (vGPU) or GPU pass-through or
API remoting technologies are leveraged usually. Huawei
Monbox provides GPU resource by employing the pass-
through technology [14], and corresponding GPU driver
must be transplanted into Android OS, thus, Android render-
ing framework needs to be adapted. The ReDroid (Remote-
anDroid) [23] provides an Android container with a GPU
acceleration function, which employs mesa3D graphics li-
brary to realize GPU acceleration. Some game manufactur-
ers use Ampere Servers and Nvidia’s vGPU technology to
build cloud game solutions.

Moreover, NV (Network Virtualization), NFV (Net-
work Function Virtualization) and SDN (Software Defined
Networking) could be leveraged to construct virtual net-
work environment; LVM (Logical Volume Manager) and
distributed storage system (e.g., Ceph, GlusterFS) cloud be
employed to provide storage resource pools; Based on NFV
and SDN, the security service property of “Encapsulate mul-
tiple security appliances into one” can be realized.

Furthermore, quota management for virtualized re-
sources is an indispensable part, after a virtual appliance
(e.g., a VM or a container) has been initialized, if its re-
source quota is not set or too many resources are config-
ured, the server will be overloaded. Contrarily, if too few
resources are allocated, resources will be wasted and the

service quality of the container will be affected. Simple re-
source quota upper limit setting makes it difficult to make
full use of server resources (e.g., OpenStack quota system,
which sets limits on resources such as amount of CPU that
a project can use).

Finally, remote transmission is an essential part of ser-
vice delivery in cloud environments. Different from the tra-
ditional simple remote-control scenario as shown in Table 3,
with the rapid development of network technologies (e.g.,
5G, fiber-optic network) and various types of cloud services,
nowadays, users are concerned about two indicators: image
quality [24] and time delay. According to statistics, the end-
to-end access delay of the Huawei Monbox solution is about
100ms. Tencent VMI transfers the display images to the
user client at a specified frame rate. (Typical representatives
of commercial transmission protocols on x86 platform are
Citrix ICA, VMWare PCoIP, Microsoft RDP, RemoteFX,
HP RGS, NoMachine NX, Huawei HDP etc.)

Overall, existing research efforts focus more on a spe-
cific segment of building ARM cloud (e.g., ARM hypervisor
model or employing Android as a host OS), and there is less
public detailed information and experience about building a
complete solution. To provide references for constructing
an ARM-based cloud, the corresponding techniques and so-
lutions are investigated, compared, and realized in Sect. 1,
which contains indicators of technology and economy as-
pects. In Sect. 2, the ARM cloud framework is formal de-
fined, and typical solutions or products are summarized.
In Sect. 3, a specific ARM-based cloud platform is imple-
mented by employing technologies of the container, GPU
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Table 3 Differences of 3 main remote application scenarios.

pass-through and API remoting, and remote transmission.
The experiments and discussions are given in Sect. 4. The
summary and a prospect to the research of this paper are
discussed in Sect. 5.

2. Virtualization Framework Formal Definition

2.1 Definition

With the goal of providing a conceptual and concise de-
scription of existing virtualization systems or solutions, and
proposing essential components of the system (at this mo-
ment, there is no discussion on the detailed states and tran-
sitions of various elements in the system), a virtualization
framework was formally designed and defined.

The framework labeled F is defined as a four-tuple for-
mally: F = (Hardware,HostOS,Middleware,GuestOS),

• Hardware: a specific type of a hardware platform (in-
cluding x86 and ARM), Hardware = {hwx86, hwARM}.

• HostOS: an OS type of the host OS (including
Linux, Android, Windows, MacOS), HostOS =

{hosLinux, hosAndroid, hosWindows, hosMacOS}.
• Middleware: a virtualization model (including hyper-

visor model such as Xen, KVM, VirtualBox etc., and
container model such as LXC, LXD, Docker etc.),
Middleware = {Hypervisor,Container}, Hypervisor =

{hXen, hKVM , hVirtualBox, hCommercial}, Container = {cLXC,
cLXD, cDocker, ccommercial}, hcommercial and ccommercial repre-
sent proprietary products of Hypervisor and Container
respectively.

• GuestOS: an OS type of the guest OS (includ-
ing Linux, Android and Windows), GuestOS ={
gosLinux, gosAndroid, gosWindows

}
.

Fig. 1 A hierarchical framework of an ARM/KVM model.

• Any element in F can be assigned as NULL, which rep-
resents that item is not assembled (e.g., partial products
without employing virtualization technologies, which
employs physical ARM clusters).

• For a specified physical server i, which satisfied the fol-
lowing specific constraints:
(a) hwi ∈ Hardware, hosi ∈ HostOS, and (hosx86)i ,
(hosARM)i.
(b) Middlewarei = {hi, ci}, hi ∈ Hypervisor, ci ∈

Container. If hi , NULL and ci , NULL, then
∃ (hi ∧ ci) , NULL, which represents that there are
compatible hypervisor virtualization technologies and
container technologies. For example, in a host environ-
ment with KVM virtualization technology, the LXC or
LXD or Docker container technology can continue to
be deployed.

According to the above definitions and specific con-
straints, the following features of F could be obtained.

(1) By employing constraint (a), Servers with different
CPU architectures can reasonably install host operating sys-
tems suitable for their own hardware (x86 or ARM), so as
to realize the basic management and resource scheduling of
the underlying hardware.

(2) By employing constraint (b), the compatibility of
different virtualization technologies can be guaranteed, en-
hancing the diversity and flexibility of server resource pool-
ing.

(3) By providing different guest systems, various busi-
ness needs can be met. Furthermore, when virtual machines
or containers are instantiated, the isolation requirements be-
tween them could be satisfied by employing the mechanism
of communication access control [19].

2.2 ARM VMM and Container Framework

According to above F definition and the typical ARM
hypervisor realization is ARM/KVM, which framework
FARM/KVM = (hwARM , {hosLinux, hosAndroid}, hKVM , {gosLinux,
gosAndroid}). The typical ARM/KVM realization as shown in
Fig. 1.

Moreover, for offering container services (e.g.,
Linux container, Android container), the framework is
F = (hwARM , {hosLinux, hosAndroid}, Container, {gosLinux,
gosAndroid}). When GuestOS = gosAndroid, F can offer cloud
mobile phone, cloud gaming service, etc.

Currently, partial representative products or (open
source) solutions of Android hypervisor, container, and farm
as shown in Table 4, which shows the essential elements of
every realization framework and important features.



CHEN et al.: RESEARCH ON BUILDING AN ARM-BASED CONTAINER CLOUD PLATFORM
657

Table 4 Keys of Android hypervisor and Android container and Android farm solutions.

3. A Containerized Android Framework

To discuss the construction process and key technologies of
ARM cloud, according to Table 1 and compatibility with
leading virtualization standards, an ARM cloud framework
for cloud Android gaming and testing is built as shown
in Fig. 2. The ARM-based container model is the best
choice with the greatest potential and Docker is chosen; and
Ubuntu Linux OS can be well compatible with mainstream
virtualization standards as the host OS, which has an ad-
vantage of integrating unified management tools easily (e.g.,
K8S); and challenges such as Binder (that is an Inter-Process
Communication mechanism provided by the Android sys-
tem) virtualization, Binder isolation, and display virtualiza-
tion are eliminated inherently.

The proposed framework consists of an ARM cloud
and terminals, which communicate with each other through
remote transmission subsystem. The cloud employs four hi-
erarchical layers: a hardware layer, a kernel layer, a mid-
dleware layer and a container layer. The physical layer pro-
vides resources of physical CPU, memory, storage, network
and GPUs. Then, a Linux kernel and middleware are built
on top of it to containerize Android instances. Besides, an
agent and a client are deployed inside an Android container
and a terminal respectively, which are responsible for trans-
mitting screen image, audio data and input events (e.g., key-
board press, screen touch) to each other.

As a whole, the ARM cloud framework can be divided
into three key parts to implement: (1) Android container
subsystem: On the ARM server, Ubuntu and Docker are
used to build a basic container environment. Then, an al-

Fig. 2 The ARM cloud framework for offering Android container ser-
vices.

gorithm suitable for dynamic adjustment of container par-
tial resources is implemented and integrated into virtualiza-
tion middleware. (2) GPU sharing subsystem: The princi-
ples, advantages and disadvantages of the two methods (API
remoting and GPU pass-through) are discussed and imple-
mented in the test environment. (3) Remote transmission
subsystem: Taking an Android terminal as an example, a re-
mote transmission subsystem composed of client and server
is implemented. At the same time, the reasons and benefits
of implementing the server and client in different levels of
Android system are analyzed.

The realization framework is formally described as:
F = (hwARM , hosLinux(Ubuntu), cDocker, gosAndroid).
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3.1 Android Container Subsystem

In addition to the usual container lifecycle management
(e.g., create, running, pause, delete) and image management
by employing Docker, for more efficient use of server re-
sources, a mechanism of resource dynamic allocation was
designed.

The mechanism contains three modules: (1) Resource
monitoring module: a statistical tool based on Telegraf, In-
luxDB and Grafana, which is responsible for collecting the
runtime load of host system and containers regularly; (2)
Resource quota module: it is responsible for calculating
container resource quota requirements and generating re-
source quota policies; (3) Quota setting module: it is re-
sponsible for delivering and executing policies.

The above three modules are realized and deployed
into the middleware layer in Fig. 2, which has benefits
of high reliability and security of the external monitoring
model. When obtaining the specific resource load informa-
tion, Telegraf can obtain the corresponding load informa-
tion of the host server by using various plug-ins (e.g., CPU,
network, disk); With the Docker plug-in (e.g., call ‘docker
stats’ API to retrieve the usage of container resources, in-
cluding CPU, Memory, Network I/O etc.), we can get the
load information of the Docker container. Afterwards, the
data is stored in InluxDB and visualized using Grafana.

The resource adjustment algorithm is described as Al-
gorithm 1, and the notations used as follows:

• CTotal: all containers (ci) running on an ARM server,
CTotal = {c1, . . . , ci, . . . , cn}.

• pci: a resource quota policy of container ci, which is
a two-tuples: pci = (crMiniReq, crCapping)ci. The two
items represent indexes of minimum resource require-
ment and resource quota capping for ci respectively.

• PTotal: a resource quota policy set of CTotal, PTotal =

{pc1, . . . , pci, . . . , pcn} = {. . . , (crMiniReq, crCapping)ci, . . .}.
• THRIdle: a determination coefficient, which is used to

determine whether the remaining resource of a server
is sufficient. According to industry experience, THRIdle
is set to 0.5.

• THREfficient: an effective resource coefficient. Accord-
ing to experience, THREfficient is set to 0.9.

• PRCapping: a resource capping of a server, PRCapping =

(PRPhysical × THREfficient), and PRPhysical represents re-
sources of a server (including CPU, memory, network
and disks).

• TInterval: an interval collection cycle of the resource
monitoring module, TInterval is set to 10 seconds.

• CRConUsage: according to TInterval, a set of the resource
usage of containers in CTotal are collected and noted as
CRConUsage = {resc1, . . . , resci, . . . , rescn}TInverval .

• CRSTInterval : according to TInterval, CTotal resource load
could be noted as CRSTInterval = (

∑n
i=1 resci)TInterval .

• The container ck without setting a value of resource
capping,in other words, (pck ⊗ crCapping) = NULL is
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Fig. 3 GPU resource sharing subsystem.

satisfied.

Taking into account user experience, in an ARM
server environment with massive resources, such as hun-
dreds of CPU cores (e.g., Dual Ampere Altra Max pro-
cessors), the idle resource determination coefficient THRIdle
can be further reduced and the effective resource coefficient
THREfficient can be further improved. When creating a con-
tainer, optional configurable resource restriction policies for
the container are available. If the container is not config-
ured with a resource usage limit (it is assigned the value to
NULL), when malicious programs within the container con-
tinuously consume resources, the corresponding resources
on the host will be exhausted, which will also affect the nor-
mal running of other containers on the same host.

3.2 GPU Sharing Subsystem

The GPU Sharing Subsystem frameworks and comparison
of the two methods (API remoting and GPU pass-through)
are shown in Fig. 3.

The GPU resources are the essential factor to ensure 3D
applications could run correctly, and video could be played
more smoothly. To provide GPU resources (using a Nvidia
or AMD GPU graphics card and corresponding drivers) to
Android container, two methods are explored: (1) API re-
moting method (labelled Method I) and GPU pass-through
method (Method II).

3.2.1 Method I: API Remoting

Based on the OpenGL ES libraries, OpenGL libraries, and
GPU Drivers, to achieve GPU resource sharing in API for-
warding mode, the following transmission process of the
instruction stream is realized: When 3D applications (e.g.,
game) are launched in an Android container, a series of in-
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Fig. 4 The API remoting processing engine.

struction streams of OpenGL ES will be encoded firstly;
then, they will be transmitted to Processing-Engine runs in-
side the host OS through a high-speed channel. Finally,
the encoded instructions will be decoded, translated into
OpenGL instructions, executed in the original sequence, and
returned execution results. Due to the requirements of deliv-
ering OpenGL ES instruction stream to the middleware at a
high speed must be satisfied, we employed the mechanism
of share memory to realize the communication channel as
shown in Fig. 4.

Specifically, when system service processes (sur-
faceflinger process, system server process, gralloc pro-
cess, etc.) inside Android and Applications are
started, the graphics-related API will be called through
libEGL.so. Then, according to Android properties set-
tings, the corresponding functions in libEGL emulation.so,
libGLESv1 CM emulation.so and libGLESv2 emulation.so
will be called. After that, the function call will be en-
coded through libOpenglSystemCommon.so, and sent to
the Processing-Engine on the Host through high-speed IPC
channel. Finally, the Processing-Engine module decodes the
function call and calls GPU driver to execute.

The advantage of method I is that a wide range of GPUs
can be supported and without risk of GPU vender lock-in,
which only depending on OpenGL features supported by
GPUs and corresponding drivers. But the intermediate layer
brings some performance loss.

3.2.2 Method II: GPU Pass-Through

The traditional x86 pass-through mainly distributes the des-
ignated GPU directly to the designated VM for independent
use; and the PCI device is directly passed to the VM, which
is responsible for the initialization, read-write and other op-
erations of the device, and the entire device is monopolized
by the VM. However, in a containerized environment, there
is no process of device initialization; every Android sys-
tem uses GPU card resources in the form of an application,
which is equivalent to multiple applications using a GPU
card at the same time to achieve resource sharing. Moreover,
by the GPU pass-through method, a GPU device is needed
to assign to an Android container by pass-through technol-
ogy, and its driver is ported into the container for interacting
with the Android’s rendering framework.

Specifically, it is similar to the API-remoting pro-
cess. Take AMD graphics card as an example, when sys-
tem service processes and Applications inside Android are
started, the corresponding functions in libEGL mesa.so, lib-
GLESv1 CM mesa.so and libGLESv2 mesa.so from Mesa
will be called through libEGL.so according to Android
properties settings, and then those functions will be per-
formed directly on AMD GPU through the matching driver.

To achieve GPU resource sharing in pass-through
mode, the following works has been done: The focus is
on compiling Mesa and installing it into the Android con-
tainer, which is from AOSP (Android Open Source Project)
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Codebase, and the stability of the program is improved (e.g.,
eliminated the issue of Android processes crashing when
running some Apps).

The approach has higher efficiency and performance
due to there is no intermediate layer for instruction redi-
rection, while it requires a corresponding driver in every
specific container. Pessimistically, the current adaptation
progress is discouraging: it needs long time for vendors to
develop and modify various GPU drivers (non-opensource).
Moreover, the method charges according to the number
of container instances, which is also an unavoidable eco-
nomic cost issue, for example, according to the investment
of NVIDIA’s vGPU (virtual GPU) in VDI scenario, the over-
all investment of an instance (including hardware and soft-
ware) is very expensive, which costs equivalent to or more
than a PC, but brings poor performance and worse user ex-
perience. It is also an important inducement for the birth of
farm solution.

3.3 Remote Transmission Subsystem

We took an Android terminal as an example to construct the
transmission subsystem, as shown in Fig. 5. The framework
has two modules: (1) An Agent:Service module running in
the container, which is responsible to capture and encode
screen images, audios, and inject control signals (e.g., key-
board, mouse, game pad); (2) An Agent:Client module run-
ning in the terminal, which is designed to decode video and
sound, and intercept above control signals.

The two modules were deployed at different layers
based on the following considerations:

(1) The Agent:Service module was deployed into An-
droid application framework layer.

• Screen image capture: the image data of desktop
or application interface could be captured in this
layer by accessing “GraphicBuffer” object and “Im-
age getLockedImage()” function, which has advan-
tages of minimal delay and is transparent to the appli-
cation layer.

• Audio capture: audio could be captured by accessing
“AudioRecorder” object directly.

Fig. 5 Remote transport system framework.

• Control signals injection: after receiving the control
signals, format conservation will be performed accord-
ing to the data format specifications among different
layers.

(2) The Agent:Client module was placed in the appli-
cation layer of terminal.

• Image display: obtain the encoded video streams for
decoding, rendering and display; there is an advantage
of optimal compatibility in this layer.

• Audio playback: get the audio streams sent by
Agent:Server and decode it.

• Control signals interception: call corresponding
classes from the system library to intercept input events
(e.g., keyboard, mouse, touch) directly, which has the
advantage of the lowest complexity.

4. Experiments

According to Fig. 2, we employ two ARM server, Gigabit
Ethernet switches, Gigabit NICs and GPUs to build an ARM
cloud platform. The key hardware and software parameters
as shown in Table 5 and Table 6. Other essential parameters
will be given in the corresponding subsections.

4.1 Container Functions

A container was initialized on Server I with Nvidia GTX
1650 card, and key parameters of the container were: 2
CPUs, 8 GB memory capacity, 256 GB disk space; the con-
tainer image quality was set to 720P@60 fps; container OS
is Android 9 (Pie). The AIDA64 was used to verify GPU
characteristics of container without/with GPU resource, as
shown in Fig. 6 and Fig. 7 respectively, the container with
GPU resources can support a higher version of OpenGL ES

Table 5 Hardware parameters of experiment platform.

Table 6 Software parameters of experiment platform.
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Fig. 6 The AIDA64 running in
the container without GPU.

Fig. 7 The AIDA64 running in
the container with GPU (API re-
moting).

(version: 3.0) and more features.
Then, AnTuTu benchmark tool was used to test con-

tainer performance, due to the version of OpenGL ES sup-
ported by the container without GPU is only 1.0, AnTuTu
was not functioning properly, while it could run in the con-
tainer with GPU properly as shown in Fig. 8 (due to com-
mercial copyright and license reasons, this section does not
discuss the detailed practices of container with NVIDIA
pass-through GPU at this stage, and taking AMD GPUs as
alternatives to discuss in Sect. 4.3.).

Moreover, the mobile game Anonymous Me for An-
droid was selected as a game sample, the terminals were
Google Pixel and Huawei mobile phones. The key encoded
parameters of video and audio are:

• Video: “Preset: ultrafast Tune: zerolatency
Profile:main Rate Control: ABR, bitrate:4000,
vbv buffer size:4000”;

• Audio: “opus 44.1khz stereo VBR”.

According to statistics, the cloud gaming consumed bit
rate was about 4 Mbps, and SSIM (Structural Similarity) and
PSNR (Peak Signal to Noise Ratio) between source images
in container and decoded images in terminal are shown in
Fig. 9 and Fig. 10. The average values of SSIM and PSNR
are about 96% and 38.3 dB respectively; the average time

Fig. 8 The AnTuTu running in the container with GPU (API remoting).

Fig. 9 The SSIM statistics.

Fig. 10 The PSNR statistics.

delay is about 50 ms in our LAN test environment.

4.2 Container Resource Adjustment

We applied the algorithm proposed in Sect. 3.1 to the follow-
ing scenario: Initialize 9 Android containers inside Server I,
and CPU quotas were configured too large and would
cause the server overload. The monitor cycle TInterval =

10 seconds; the container OS is Android 9. The container
specific parameters as shown in Table 7.

As shown in Fig. 11, all containers and the server have
run in full load by running ‘AndroidStressTest’ tool inside



CHEN et al.: RESEARCH ON BUILDING AN ARM-BASED CONTAINER CLOUD PLATFORM
663

Table 7 The CPU resource parameters of different containers.

Fig. 11 CPU load curve of Server I.

Fig. 12 CPU load curve of every container.

every container. After enabling the resource configuration
adjustment algorithm in the 30th monitoring cycle, c8 with
the largest load was chose to be migrated, and the server load
was reduced to less than 90%, and there were CPU resources
remaining as shown in Fig. 12. Furthermore, a resource
burst request event is simulated of container c1 between the
31st and 38th monitoring cycles, which needs additional 8
CPU; at this juncture, according to the proposed algorithm,
for c1, a new policy pc1 =

(
crMiniReq, crCapping + ∆crc1

)
c1

will
be generated and executed, which would allocate resources
to c1 from free resources. As shown in Fig. 12, pc1 will be
updated iteratively in a limited number of monitoring cy-
cles. The final result is: Within the 90% load range of the
server THREfficient, the resource request of c1 was satisfied
maximally.

Moreover, the setting of resource monitoring time in-
tervals needs to be comprehensively judged based on spe-
cific business applications and the user’s tolerable waiting
time, such as the different tolerate delays of three remote

Fig. 13 Four of eight instances are running concurrently on Server II
(from left to right, and from top to bottom, the terminals are Huawei Mate
20, Google Pixel 3, Huawei P40 pro and Huawei Mate 40 pro).

application scenarios in Table 3. If a very short-time inter-
val is set, it will result in more computational overhead and
worse user experience.

The current technological research focuses on single
resource bottlenecks, such as CPU resource scheduling for
compute-intensive tasks in the test case. The method can be
extended to resource scheduling for network-intensive tasks
and disk IO intensive tasks, as dynamic resource adjustment
(Scale up or scale down) does not cause container process
exceptions. However, for memory resource management,
only online memory expansion operation is generally car-
ried out. If online memory reduction is carried out, which
will trigger ‘out of memory’ exception.

According to the industrial practices, in order to reduce
the difficulty of system management, easier to plan hard-
ware, and reduce the difficulty of system fault handling, the
vast majority of cloud platform tend to deploy the same type
of computing tasks on the same server. Therefore, schedul-
ing of single type resources is the first stage of our research.
With the improvement of server performance, the compre-
hensive dynamic scheduling of multi-dimensional resources
will also be the focus of the next research.

4.3 Parallel Performance

Several Android containers were initialized on Server II
and key parameters were: 4 CPUs, 8 GB memory capacity,
256 GB disk space; container OS is Android 12 (S); the mo-
bile game ‘Anonymous Me’ for Android was selected. The
detailed data of one test case (720*1280@60 fps) as shown
in Fig. 13 and Table 8.

In the game scenario concurrency performance test,
due to higher graphical requirements, Android 12 was se-
lected as the container OS. However, for the following
factors: (1) For Pass-through mode, NVIDIA GPU lacks
drivers adapted for Android 12 that can only be provided
by NVIDIA; (2) For API remoting mode, under the host
OS environment of Ubuntu aarch64, AMD does not pro-
vide official driver; The currently available drivers are Mesa
drivers compiled by the community, which cannot meet the
realization requirements. Therefore, we choose AMD RX
590 and NVIDIA GTX 1650 with similar performance as
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Table 8 The detailed test data of Anonymous Me cloud gaming in an
Android container.

Table 9 The summarized statistics of Anonymous Me cloud gaming in
Android containers.

the GPUs for the comparative test of the two modes: Pass-
through mode uses AMD RX 590, and API remoting mode
employs NVIDIA GTX 1650. The statistics summarized as
shown in Table 9.

The test statistics show that the pass-through mode has
higher performance: due to the API remoting mode will lead
to the loss of many GPU features; and limited by the open-
ness of the graphics card manufacturer to the driver. No mat-
ter what mode is employed, to obtain higher parallelism, it
is necessary to conduct research and optimization in combi-
nation with the hardware, drivers, and 3D applications.

5. Conclusions and Future Work

Servers and terminals based on ARM have been deployed
into cloud computing industry (e.g., cloud gaming, cloud
mobile, cloud computer/cloud desktop). In this paper,
to provide a complete reference for building ARM-based
cloud, the mainstream solutions and key technologies were
investigated and compared: for general computing resource
virtualization, technologies and mainstream solutions of hy-
pervisor model (e.g., Phytium solution, ARM/KVM) and
container model (e.g., LXC, Docker, LXD, Ubuntu Touch,
Anbox, Monbox, ReDroid) were discussed; an algorithm
suitable for dynamic adjustment of partial container re-
sources was implemented, which focused on single resource
bottlenecks; for GPU virtualization, GPU pass-through and
API remoting technologies were researched. Then, the re-
mote transmission as an essential part of cloud service deliv-
ery was detailed analyzed (including scenarios of simple re-
mote control, virtual desktop infrastructure and cloud gam-
ing). Furthermore, a specific ARM-based cloud platform
was implemented by employing technologies of the con-
tainer, GPU pass-through and API remoting. Finally, the
relevant practices had been done and the statistics proved
the effectiveness of the framework and techniques.

Given that the IaaS platform is composed of indepen-

dent physical servers, using the framework and realization
methods proposed in this paper, a platform meets the re-
quirements of massive resources could be built by horizon-
tally expanding physical servers. Moreover, the division of
security domains with the capacity of defense-in-depth for
different business networks must be considered.

The formal description in the paper currently mainly
focuses on the components of the system, with the goal of
providing a conceptual and concise description of existing
systems or solutions, and proposing essential components
of the system. At present, there is no discussion on the de-
tailed states of various elements in the system. Next, we will
conduct in-depth research on the life cycle state transition
of each element in the model (such as building a finite-state
machine and state transition diagram for each element), se-
curity constraints, formal verification or reduction, etc.

Similar to the ecological development of X86 architec-
ture chips, the success of ARM-based virtualization (e.g.,
the high rate of adoption, wide range of applications)
mainly depends on the factor of cost performance (price-
performance ratio), which is determined by factors of the
device price, virtualization efficiency and number of parallel
instances, especially for GPU resources. With the support
of container technology, the parallel performance of ARM
cloud servers (the cost-effectiveness of single-channel cloud
service) is mainly limited by the management and alloca-
tion of GPU resources. For different scenarios, implement-
ing fine-grained virtualization technology from GPU cores
(CUDA cores) and GPU memory are feasible optimization
methods, so as to improve the energy efficiency and user ex-
perience for general-purpose computing and graphics ren-
dering scenes respectively, while they require the support of
graphics card manufacturers. In addition, in graphical inter-
active scenarios such as cloud gaming and cloud design, by
introducing a dedicated encoding card, the GPU only needs
to do the rendering work, then the density of ARM server
cloud services cloud be further increased. In the future, we
will carry out related research work in the above fields.
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