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PAPER
Cloud-Edge-Device Collaborative High Concurrency Access
Management for Massive IoT Devices in Distribution Grid

Shuai LI† ,††, Xinhong YOU† ,††a), Shidong ZHANG† ,††, Mu FANG†††, and Pengping ZHANG† ,††, Nonmembers

SUMMARY Emerging data-intensive services in distribution grid im-
pose requirements of high-concurrency access for massive internet of things
(IoT) devices. However, the lack of effective high-concurrency access
management results in severe performance degradation. To address this
challenge, we propose a cloud-edge-device collaborative high-concurrency
access management algorithm based on multi-timescale joint optimization
of channel pre-allocation and load balancing degree. We formulate an opti-
mization problem to minimize the weighted sum of edge-cloud load balanc-
ing degree and queuing delay under the constraint of access success rate.
The problem is decomposed into a large-timescale channel pre-allocation
subproblem solved by the device-edge collaborative access priority scoring
mechanism, and a small-timescale data access control subproblem solved by
the discounted empirical matching mechanism (DEM) with the perception
of high-concurrency number and queue backlog. Particularly, information
uncertainty caused by externalities is tackled by exploiting discounted em-
pirical performance which accurately captures the performance influence
of historical time points on present preference value. Simulation results
demonstrate the effectiveness of the proposed algorithm in reducing edge-
cloud load balancing degree and queuing delay.
key words: cloud-edge-device collaboration, high-concurrency access
management, multi-timescale optimization, channel pre-allocation, data
access control, discounted empirical matching

1. Introduction

The large-scale integration of renewable energy into distribu-
tion grid has spurred new types of services such as distributed
renewable energy control, intelligent load demand response,
and high-frequency electric information acquisition [1]–[5].
These services involve thousands of internet of things (IoT)
devices for data collection, transmission, and computation,
which impose high requirements on high-concurrency access
of massive data [6]–[9]. Cloud-edge-device collaboration
has provided a feasible solution by combining advantages of
edge computing and cloud computing [10]–[14]. Edge com-
puting sinks computing at the edge of the network, which
can process and analyze data faster and improve network
delay [15], [16]. Cloud computing has strong computing
power and big data analysis capability. The data collected by
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devices are pre-processed and stored on edge gateway to ad-
dress the device-cloud communication bottleneck. However,
the lack of an effective high-concurrency access manage-
ment mechanism results in severe performance degradation
of queuing delay, computation load balancing, and access
success rate when the limited capacity of communication
and computing is overwhelmed by the simultaneous access
of massive data [17]–[21]. Therefore, how to achieve cloud-
edge-device collaborative high-concurrency access manage-
ment for distribution grid remains an open issue.

The core of cloud-edge-device collaborative high-
concurrency access management for massive IoT devices
in distribution grid lies in deep-level coordination between
device-edge channel pre-allocation and edge-cloud data ac-
cess control [22], [23]. On the one hand, edge-device
channel pre-allocation is important to ensure access suc-
cess rate of high-priority device and reduce performance
deviation of edge-side data queue backlog [24], [25]. On
the other hand, edge-cloud data access control improves per-
formance of edge-cloud load balancing and queuing delay
through dynamic matching between device data queues with
cloud computing resources. It is intuitive to jointly optimize
device-edge channel pre-allocation and edge-cloud data ac-
cess control to achieve high-concurrency access manage-
ment for massive IoT devices in distribution grid. However,
the following technical challenges need to be addressed.

First, load balancing improvement and queuing delay
reduction are not necessarily consistent. The mere opti-
mization of load balancing may cause data queue backlog
to increase, and vice versa. Second, device-edge channel
pre-allocation and edge-cloud data access control are not im-
plemented in the same timescale. Device-edge channel pre-
allocation should be optimized in large timescale to reduce
communication overhead caused by frequent channel switch-
ing [26]–[28]. Conversely, edge-cloud data access control
needs to adapt with time-varying data arrival and computing
resource fluctuation, which requires small-timescale opti-
mization. Moreover, the tight coupling between them signif-
icantly increases the complexing of high-concurrency access
management. Last but not least, the data access control de-
cision for one edge gateway has an unneglectable impact
on the performance of queuing delay and load balancing of
the other edge gateways, resulting in externalities for high-
concurrency access management. This impact is uncertain
and cannot be predicted in advance, thereby leading to the
information uncertainty.

Some works have investigated issues of load balancing
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and queuing delay in cloud-edge-device collaboration. In
[29], Zhang et al. attempted to achieve load balancing by
optimizing the maximum throughput of high-concurrency
access based on device-to-device (D2D) communication re-
source allocation. In [30], Li et al. proposed a dynamic
distributed queuing-based random access approach to re-
duce the queuing delay by flexibly adjusting the number of
device queues. However, these works do not consider the
inconsistency between load balancing and queuing delay.
The unilateral optimization of one performance metric in-
evitably causes performance deterioration of the other one.
Femto-cloud was applied in the edge to jointly optimize load
balancing and queuing delay [31] by addressing the com-
munication bottleneck between device and remote cloud. In
[32], Bui et al. divided accessed devices into certain groups
and studied grouping-based access control optimization to
solve device access conflicts, reduce cloud load and queuing
delay, and improve device access efficiency. These works
have ignored the optimization of device-edge channel pre-
allocation. They are not suitable to the high-concurrency
access scenario in distribution grid where communication
resources are limited to meet the access needs of massive de-
vices. In [33], Tom et al. proposed an analysis and prediction
model based on cloud-edge computing resource attributes.
Communication resources are dynamically allocated based
on the number of access devices to maximize access channel
resource utilization. In [34], Xu et al. investigated channel
resource pre-allocation based on multi-agent deep determin-
istic policy gradient to reduce queuing delay of safety-critical
information. However, the multi-timescale joint optimiza-
tion of device-edge channel pre-allocation and edge-cloud
data access control has not been investigated.

Matching theory offers an efficient and flexible solu-
tion to combinatorial optimization problems. With its low
computational complexity, it can quickly find deterministic
solutions within a reasonable computing time. Additionally,
matching theory considers the interdependencies and rela-
tionships among elements in the combinatorial optimiza-
tion problem. By taking into account these connections,
it can identify optimal matches that maximize overall effi-
ciency or meet specific criteria. It has been widely applied
in edge-cloud collaboration [35], data offloading [36], data
access control [37], and channel allocation [38]. In [39],
Rahim et al. designed a matching theory-based idle chan-
nel allocation scheme to satisfy the users’ quality of service
(QoS) requirement. In [40], Agoun et al. proposed an entity
matching-oriented and policy-oriented method to achieve
secure access control. However, these works rely on itera-
tive comparison of preferences to derive a stable matching,
and have not considered the issue of uncertain information
caused by externalities. Since the optimization performance
of one entity is affected by matching decision of other enti-
ties, the key information required for calculating matching
preference, e.g., potential performance of load balancing
and queuing delay after matching, becomes uncertain, and
conventional preference-based matching approaches are in-
feasible. Although several studies addressed the problem

of externalities by using the swap matching methodology
[41], [42], the high computation complexity of swap match-
ing makes it difficult for real-world implementation.

In this paper, we propose a high-concurrency access
management algorithm based on multi-timescale joint opti-
mization of channel pre-allocation and load balancing degree
to address the above challenges. We formulate a cloud-edge-
device collaborative high-concurrency access management
model. The optimization objective is to jointly minimize
edge-cloud load balancing degree and queuing delay under
the constraints of pre-allocation channel numbers, device
access success rate, data queue numbers, and backlogs of
high-concurrency access. Then, we decompose the formu-
lated problem into a large-timescale device-edge channel
pre-allocation subproblem and a small-timescale edge-cloud
data access control subproblem, which are solved alternat-
ingly by the proposed algorithm. We summarize three con-
tributions as follows.
• Joint guarantee of edge-cloud load balancing de-

gree and queuing delay: We define the optimization ob-
jective as the weighted sum of edge-cloud load balancing
degree and edge-cloud queuing delay. Particularly, the load
balancing degree considers the deviations between the data
queue backlog and the average data queue backlog in both
the edge gateway and cloud server. The weighted sum is
also utilized to construct the matching preference of match-
ing options and cloud servers. This enforces higher priority
for matching option with better load balancing degree and
lower queuing delay.
•Large-timescale device-edge channel pre-allocation

based on device-edge collaborative access priority: We
construct a device-edge collaborative access priority scoring
mechanism to solve the large-timescale device-edge channel
pre-allocation subproblem. Through service classification
and comparison, the edge-side empirical data queue backlog
performance deviation and device-side access success rate
deviation are calculated based on the historical average queue
backlog, average queue input, average queue output, and av-
erage access success rate. Then, they are combined to derive
the device-edge collaborative access priority score. Access
channel pre-allocation optimization is realized based on the
access priority score under the constraint of pre-allocation
channel numbers.
• Small-timescale edge-cloud data access control

based on discounted empirical matching: We propose a
discounted empirical matching mechanism (DEM) to solve
the small-timescale edge-cloud data access control subprob-
lem. DEM exploits the historical weighted sum performance
of edge-cloud load balancing degree and queuing delay to
construct the two-sided matching preference, which effec-
tively overcomes information uncertainty caused by exter-
nalities. We adopt a discount factor to describe the influence
weight of historical performance at different points in time
for the calculation of the present preference value, ensuring
the accuracy of the present matching relationship.

The rest of this paper is organized as follows. The high-
concurrency access management model based on cloud-
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edge-device collaboration is introduced in Sect. 2. Section 3
describes the high-concurrency access management algo-
rithm based on multi-timescale joint optimization of channel
pre-allocation and load balancing degree. Simulation results
are given in Sect. 4. Section 5 provides the conclusion.

2. High-Concurrency Access Management Model
Based on Cloud-Edge-Device Collaboration

2.1 High-Concurrency Access Management Architecture
Based on Cloud-Edge-Device Collaboration

The cloud-edge-device collaborative high-concurrency ac-
cess management architecture for distribution grid is shown
in Fig. 1, including cloud layer, edge layer, and device layer.

The device layer contains M IoT devices deployed on
smart meters, distributed generators, and charging piles,
which upload the collected data to the edge gateway through
power line communication.

The edge layer contains N edge gateways for stor-
ing and uploading data, the set of which is G =

{g1, · · · , gn, · · · , gN }. The set of Mn devices within the
communication range of the edge gateway gn is defined
as Dn = {dn

1 , · · · , d
n
m, · · · , d

n
Mn
},∀Dn ∩ Dn′ = ∅,n , n′,∑N

n=1 Mn = M . gn pre-allocates access channels for Mn

devices within its communication range to upload collected
data. The uploaded data of Mn devices are stored in Mn

data queues on gn. Then, edge gateway accesses to the cloud
layer and uploads data to cloud server for processing via 5G
communication networks.

The cloud layer contains a high-concurrency access
platform andK cloud servers. The cloud server processes the
access data of edge gateway to support power services such
as distributed renewable control, load demand response con-
trol, panoramic perception, and electric information acqui-
sition. The set of cloud servers is S = {s1, · · · , sk, · · · , sK }.
The high-concurrency access platform dynamically adjusts
the edge-device channel pre-allocation strategy according to

Fig. 1 Cloud-edge-device collaborative high-concurrency access man-
agement architecture for IoT devices in distribution grid.

the edge-side empirical data queue backlog performance de-
viation and access success rate deviation. It also performs
edge-cloud data access control to realize joint minimization
of load balancing degree and queuing delay.

The total optimization duration is divided into I peri-
ods. The set is I = {1, · · · , i, · · · , I}. Each period contains
T0 slots with length τ. The set is T = {1, · · · , t, · · · ,T},
i.e., T = IT0. The device-edge channel pre-allocation is
optimized in large timescale to reduce communication over-
head caused by frequent switching of access channels, and
the edge-cloud data access control is optimized in small
timescale to adapt with rapid changes of channel states and
fluctuations of computing resources. Define xnm(i) as the
variable of large-timescale channel pre-allocation in the i-th
period. xnm(i) = 1 indicates that channel is pre-allocated to
the device dn

m for data uploading, and otherwise xnm(i) = 0.
Define yn

m,k
(t) as the indicator variable of small-timescale

edge-cloud data access in the t-th slot. yn
m,k
(t) = 1 indicates

that the edge gateway gn uploads the data of dn
m to the cloud

server sk for processing, and otherwise yn
m,k
(t) = 0.

2.2 Data Queue Backlog Model of Edge Gateway and
Cloud Server

The evolution of data queue backlog of edge gateway and
cloud server is shown in Fig. 2. Define Qn

m(t) as the data
queue backlog of the device dn

m in the edge gateway gn,
which is

Qn
m(t + 1) = Qn

m(t) −Un
m(t) + xnm(i)A

n
m(t), (1)

where An
m(t) is the amount of data uploaded to gn by dn

m in
the t-th slot, and Un

m(t) is the amount of data of dn
m which

are uploaded to the cloud server by gn. An
m(t) depends on

the device-edge data throughput and the maximum amount
of data collected by dn

m, which can be expressed as

An
m(t) = min{τRn,PLC

m (t), An,thr
m (t)}, (2)

where Rn,PLC
m (t) is the transmission rate from dn

m to gn based
on power line communication. An,thr

m (t) is the maximum
amount of data collected by dn

m. Similarly,Un
m(t) depends on

the edge-cloud data throughput and the data queue backlog
Qn

m(t) of gn, which can be expressed as

Fig. 2 The evolution of data queue backlog of edge gateway and cloud
server.
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Ln,Q
m (t) =

Qn
m(t)

1
t−1

(
i−1∑
e=1

xnm(e)
eT0∑

z=(e−1)T0+1
An
m(z) +

t−1∑
z=(i−1)T0+1

xnm(i)An
m(z)

) . (8)

Un
m(t) =

∑
sk ∈S

ynm,k(t)u
n
m,k(t) (3)

=
∑
sk ∈S

ynm,k(t)min{τRn,5G
m,k
(t),Qn

m(t)},

where Rn,5G
m,k
(t) is the transmission rate from gn to the cloud

server sk based on 5G, and un
m,k
(t) is the amount of data

of dn
m which are uploaded to the cloud server sk by gn.

yn
m,k
(t) represents the indicator variable of small-timescale

edge-cloud data access in the t-th slot.
The queue backlog of data of dn

m in sk which are up-
loaded by gn is

Wn
m,k(t + 1) = Wn

m,k(t) − En
m,k(t) + y

n
m,k(t)u

n
m,k(t), (4)

where En
m,k
(t) is the amount of data of dn

m processed by sk
in the t-th slot, i.e.,

En
m,k(t) = min{

τ f n
m,k
(t)

$n
m,k
(t)
,Wn

m,k(t)}, (5)

where f n
m,k
(t) is the amount of computing resources of sk

used to process the data of dn
m in the t-th slot. $n

m,k
(t) is the

amount of computing resources required to process single
bit data of dn

m.

2.3 Load Balancing DegreeModel between Edge Gateway
and Cloud Server

Based on [24], we use queue backlog deviation to quantify
the load balancing degree. Defined the load balancing degree
of device dn

m in edge gateway gn as φQn (t), which is quantified
as the difference between the data queue backlog Qn

m(t) and
the average queue backlog. φQn (t) is given by

φQn (t) =
1

Mn

∑
dn
m ∈Dn

ωn
m

©«Qn
m(t) −

1
Mn

∑
dn
m ∈Dn

Qn
m(t)

ª®¬,
(6)

where ωn
m is service priority of dn

m. 1
Mn

∑
dn
m ∈Dn

Qn
m(t) is

the average data queue backlog of gn. It is intuitive that the
load is more balanced if the deviation between Qn

m(t) and
the average queue backlog is smaller.

Similarly, the load balancing degree of gn in cloud
server sk is defined as

φWk (t) = (7)

1
M

∑
gn ∈G

∑
dn
m ∈Dn

ωn
m

©«Wn
m,k(t) −

1
M

∑
gn ∈G

∑
dn
m ∈Dn

Wn
m,k(t)

ª®¬.

2.4 Queuing Delay Model of Edge Gateway and Cloud
Server

Based on Little’s Law [43] the queuing delay is positively
proportional to the queue backlog and inversely proportional
to the average data arrival rate. Therefore, the uplink queuing
delay for the data of dn

m stored in gn is given in (8).

In (8),
i−1∑
e=1

xnm(e)
eT0∑

z=(e−1)T0+1
An
m(z) is the total amount of

data of dn
m uploaded to edge gateway gn in the previous i − 1

periods,
t−1∑

z=(i−1)T0+1
xnm(i)A

n
m(z) is the total amount of data of

dn
m uploaded to edge gateway gn from ((i − 1)T0 + 1)-th slot

to (t − 1)-th slot.
The uplink queuing delay for the data of dn

m which are
uploaded by gn in sk is

Ln,W
m,k
(t) =

Wn
m,k
(t)

1
t−1

t−1∑
e=1

yn
m,k
(e)un

m,k
(e)
, (9)

where 1
t−1

t−1∑
e=1

yn
m,k
(e)un

m,k
(e) is the average amount of data

of dn
m which are uploaded to the cloud server sk by gn in the

previous t − 1 slots.

2.5 Cloud-Edge-Device Collaborative High-Concurrency
Access Management Model

In order to realize the cloud-edge-device collaborative high-
concurrency access management, the channel pre-allocation
between edge gateways and devices is optimized in large
timescale, and the edge-cloud load balancing is optimized
in small timescale. The optimization objective is to jointly
minimize edge-cloud load balancing degree and queuing de-
lay.

We define ζ(t) as the weighted sum of edge-cloud load
balancing degree and edge-cloud queuing delay, i.e.,

ζ(t) =
∑
gn ∈G

∑
dn
m ∈Dn


1
N
φQn (t) + λ

1
K

∑
sk ∈S

φWk (t)
 +

λL
∑
gn ∈G

∑
dn
m ∈Dn


1
N

Ln,Q
m (t) + λ

1
K

∑
sk ∈S

Ln,W
m,k
(t)

 ,
(10)

where λ is a weight to adjust the balance between edge side
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and cloud side. λL is the weight of queuing delay in order to
unify the order of magnitude between load balancing degree
and queuing delay. Cloud-edge-device collaborative high-
concurrency access management model is formulated as

min
{xnm(i),y

n
m,k
(t)}

ζ(t)

s.t. C1 : xnm(i), y
n
m,k(t) ∈ {0,1},∀dn

m ∈ Dn,∀gn ∈ G,

∀sk ∈ S,∀i ∈ I,∀t ∈ T ,

C2 :
∑

dn
m ∈Dn

xnm(i) ≤ qn,∀i ∈ I,∀gn ∈ G,

C3 : E

[
1
I

I∑
i=1

xnm(i)

]
≥ εnm,∀dn

m ∈ Dn,∀gn ∈ G,

C4 :
∑
sk ∈S

ynm,k(t) = 1,∀gn ∈ G,∀t ∈ T ,∀dn
m ∈ Dn,

C5 :
∑
gn ∈G

∑
dn
m ∈Dn

ynm,k(t) ≤ numk,∀sk ∈ S,∀t ∈ T ,

C6 :
∑
gn ∈G

∑
dn
m ∈Dn

(
Wn

m,k(t) + y
n
m,k(t)u

n
m,k(t)

)
≤ Wmax

k ,

∀sk ∈ S,∀t ∈ T ,
(11)

where qn is the maximum number of channels that are pre-
allocatable to devices within the communication range of gn;
εnm is the required access success rate for the device dm. Wmax

k
is the maximum data queue backlog allowed by sk . numk is
the maximum number of data queues which are allowed to
access to sk .

C1 is the constraint of large-timescale device-edge chan-
nel pre-allocation variable and small-timescale edge-cloud
data access control variable. C2 is the constraint of pre-
allocation channel numbers. C3 is the constraint of device
access success rate. C4 indicates that each edge gateway can
access to only one cloud server. C5 is the constraint on the
data queue number of high-concurrency access of of cloud
server sk , i.e., at most numk data queues are allowed to ac-
cess to sk . C6 is the constraint on the data queue backlogs of
high-concurrency access of cloud server sk . A data queue
is not allowed to access to sk if the total data queue backlog
exceeds Wmax

k
.

3. High-Concurrency Access Management Algorithm
Based on Multi-Timescale Joint Optimization of
Channel Pre-Allocation and Load Balancing Degree

The problem formulated in (11) is a mixed integer non-
linear programming problem involving multiple timescales,
which is NP-hard. The optimization objective contains the
load balancing degree and queuing delay of edge servers
and cloud servers. Therefore, we ensure the load balanc-
ing degree and queuing delay performance of edge servers
by optimizing device-edge channel pre-allocation in large
timescale, and on this basis, we optimize data access con-
trol in small timescale to ensure the load balancing degree

and queuing delay performance of edge servers and cloud
servers simultaneously. Based on the above analysis, we
decompose the formulated problem into a large-timescale
device-edge channel pre-allocation subproblem and a small-
timescale edge-cloud data access control subproblem. Then,
we propose the high-concurrency access management algo-
rithm based on multi-timescale joint optimization of chan-
nel pre-allocation and load balancing degree to solve the
above subproblems, which is shown in Algorithm 1. The
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proposed algorithm solves the large-timescale device-edge
channel pre-allocation subproblem by the device-edge col-
laborative access priority scoring mechanism. According to
the large-timescale channel pre-allocation strategy, the pro-
posed algorithm addresses the small-timescale edge-cloud
data access control subproblem by the DEM with the per-
ception of high-concurrency number and queue backlog.

3.1 Large-Timescale Device-Edge Channel Pre-Allocation
Based on Device-Edge Collaborative Access Priority

We construct device-edge collaborative access priority score
to solve the large-timescale channel pre-allocation subprob-
lem. Firstly, we construct the service data feature vector
based on the unique feature fields which appear frequently.
The classification of the service carried by the device is
performed by calculating the similarity degree between the
device data traffic feature vector and the service data traffic
feature vector. Then, based on the service classification re-
sults, we calculate the edge-side empirical data queue back-
log performance deviation. Afterwards, we calculate the
device-side access success rate performance deviation. Fi-
nally, the device-edge collaborative access priority score is
derived by combining edge-side empirical data queue back-
log performance deviation and device-side access success
rate deviation. The access channel pre-allocation decision
is determined based on the access priority score and the
constraint of device-edge pre-allocation channel numbers.

3.1.1 Power Service Classification

The edge gateway determines the device access type in each
period. If dn

m is determined as a new access device, the
service similarity degree is calculated by comparing the data
traffic feature vector of dn

m with the service data traffic feature
vector to achieve service classification. Otherwise, the edge
gateway uses the historical service classification result of dn

m.
The service similarity degree between dn

m and the h-th type
service is given by

ηnm,h(i) =
1

‖ Fn
m(i) − Xh ‖2

, (12)

where Fn
m(i) is the data traffic feature vector of dn

m, and Xh

is the data feature vector of the h-th type service. When
ηn
m,h
(i) is the largest one among all types of services, the

data of device dn
m are identified as the h-th type service. dn

m

is added to the device set of the h-th type service Oh(i), i.e.,
Oh(i) = Oh(i) ∪ {dn

m}.

3.1.2 Edge-Side Empirical Data Queue Backlog Perfor-
mance Deviation

Assume dn
m ∈ Oh(i). Define ∆Qn

m(i) as the deviation be-
tween the historical average queue backlog of dn

m and the
historical average queue backlog of the h-th type service.
Define ∆An

m(i) as the deviation between the historical aver-
age queue input of dn

m and the historical average queue input

of the h-th type service. Define ∆Un
m(i) as the deviation

between the historical average queue output of dn
m and the

historical queue output of the h-th type service. ∆Qn
m(i),

∆An
m(i), and ∆Un

m(i) are given by

∆Qn
m(i) =

1
T0

(i−1)T0∑
t=(i−2)T0+1

Qn
m(t) (13)

−
1

| Oh(i) | T0

∑
dn
m ∈Oh (i)

(i−1)T0∑
t=(i−2)T0+1

Qn
m(t),

∆An
m(i) =

1
T0

(i−1)T0∑
t=(i−2)T0+1

An
m(t) (14)

−
1

| Oh(i) | T0

∑
dn
m ∈Oh (i)

(i−1)T0∑
t=(i−2)T0+1

An
m(t),

∆Un
m(i) =

1
T0

(i−1)T0∑
t=(i−2)T0+1

Un
m(t) (15)

−
1

| Oh(i) | T0

∑
dn
m ∈Oh (i)

(i−1)T0∑
t=(i−2)T0+1

Un
m(t),

where | Oh(i) | is the number of devices in the set Oh(i).

3.1.3 Device-Side Access Success Rate Deviation

The deviation between the required access success rate εnm
for dn

m and the historical average access success rate of dn
m

is defined as

∆εnm(i) = ε
n
m −

1
i − 1

i−1∑
e=1

xnm(e). (16)

3.1.4 Device-Edge Collaborative Access Priority Score

The device-edge collaborative access priority score is
calculated based on edge-side queue backlog deviation
∆Qn

m(i), queue input deviation ∆An
m(i), queue output devi-

ation ∆Un
m(i), and device-side access success rate deviation

∆εnm(i). Device-edge collaborative access priority score is
derived as

Scorenm(i) = λε∆ε
n
m(i) + ∆Un

m(i) − ∆Qn
m(i) − ∆An

m(i),
(17)

where λε is the adjustment weight of ∆εnm(i). The larger
Scorenm(i) is, the higher access priority dn

m will have in the
i-th period.

3.1.5 Access Channel Pre-Allocation Decision

Define Scoremin as the access channel pre-allocation thresh-
old. The set of devices meeting the threshold is defined
as DSco

n (i) = {dn
m | Scorenm(i) > Scoremin}. Arrange

the devices in DSco
n (i) in descending order according to
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Scorenm(i). If dn
m ranks top qn among all the devices in Dn,

gn pre-allocates a channel for dn
m, i.e., xnm(i) = 1.

3.2 Small-Timescale Edge-Cloud Collaborative Data Ac-
cess Control Algorithm Based on Discounted Empir-
ical Matching with Perception of High-Concurrency
Number and Queue Backlog

3.2.1 Matching Model

The small-timescale edge-cloud data access control subprob-
lem involves the optimization of data access control strat-
egy among data queues, edge gateways, and cloud servers.
Therefore, we model it as a three-dimensional matching
among edge gateways, data queues, and cloud servers. The
goal is to construct the matching to minimize the weighted
sum of edge-cloud load balancing degree and edge-cloud
queuing delay. Considering the high complexity, the three-
dimensional matching is reduced into a two-side matching
by combining gateways and data queues as newmatching op-
tions. DefineΘ = {θ1

1, . . . , θ
n
m, . . . , θ

N
MN
} as the set ofmatch-

ing options, where θnm represents the data backlog queue of
dn
m in edge gateway gn. The number of matching options in
Θ is |Θ| =

∑N
n=1 Mn. Some definitions are introduced as the

basis to derive the proposed algorithm.
Definition 1 (Preference relation): For each side partic-

ipating matching, the preference relation reflects the degree
of mutual preference, which is a complete, reflective and
transitive binary relation over the available participants of
the other side, i.e., “�”. It is introduced to compare the
preferences as

θnm �sk s′k ⇔ αn
m,k(t) > αn

m,k′(t), (18a)

sk �θnm θn
′

m′ ⇔ βnm,k(t) > βn
′

m′,k(t), (18b)

where θnm �sk s′
k
means that the matching option θnm prefers

to the cloud server sk more than the cloud server sk′ because
the preference value αn

m,k
(t) is larger than αn

m,k′
(t).

Definition 2 (Two-sided matching): The decision of the
edge-cloud collaborative data access control is a two-sided
matching φ, i.e.

φ
(
θnm

)
∈ S and |φ

(
θnm

)
| = 1,∀sk ∈ S, (19a)

φ
(
sk

)
⊆ Θ and |φ

(
sk

)
| = numk,∀θ

n
m ∈ Θ, (19b)

φ
(
sk

)
⊆ Θ and

∑
θnm ∈φ

(
sk

) (
Wn

m,k(t) + y
n
m,k(t)u

n
m,k(t)

)
≤ Wmax

k ,∀θnm ∈ Θ, (19c)
sk = φ

(
θnm

)
⇔ θnm ∈ φ

(
sk

)
, (19d)

where (19a) ensures that each data queue can access to only
one cloud server. (19b) indicates that numk matching options
are allowed to access to sk . (19c) indicates that matching
options are not allowed to access to sk if the total data queue
backlog exceeds Wmax

k
. (19d) means the cloud server sk is

matched to the matching option θnm if θnm is matched to sk .

Definition 3 (Rational matching): Amatching φ is indi-
vidually rational if there does not exist a cloud server which
prefers to keep unmatched compared with its current match.
This implies that the cloud server in the matching process
should not be unacceptable.

Definition 4 (Blocked): A matching θ is said to be
blocked by a pair of participants (θnm, sk) if θn

′

m′ < φ(sk),
sk �θn′

m′
φ(sk) and θnm �sk′ sk , sk′ < φ

(
θnm

)
.

Definition 5 (Stable matching): Amatching φ is said to
be stable if it is individually rational, and it is not blocked by
any pair.

3.2.2 Implementation Process of DEM

We propose a DEMmechanism to overcome information un-
certainty caused by externalities. Accordingly, the proposed
mechanism takes the discounted empirical matching perfor-
mance into accountwhen constructing the preference list. On
the one hand, the empirical matching performance avoids the
externality which rely on only historical observation. On the
other hand, a discount factor is used to describe the weight
of the influence of the historical performance on the calcu-
lation of the present preference value at different points in
time. The introduction of a discount factor enables temporal
adjustment of preference value, ensuring the accuracy of the
present matching relationship. DEM contains three steps,
i.e., initialization, discounted empirical performance-based
preference list construction, and matching iteration base on
perception of high-concurrency number and queue backlog.

• Step 1: Initialization. Define Γk(t) as the set of match-
ing options that are currently matched with sk , and de-
note |Γk(t)| as the number of matching options in Γk(t).
Denote the set of unmatched matching options as Ω,
and the set of unmatched cloud servers as Υ. Initialize
Γk(t) = �, Ω = Θ, and Υ = S.

• Step 2: Discounted empirical performance-based pref-
erence list construction. The preference value of θnm
for sk is defined as the discounted empirical weighted
sum of load balancing degree and queuing delay of gn,
which is given by

αn
m,k(t) = −

t−1∑
z=1

νt−z
[
ωn
m

(
Qn

m(z) (20)

−
1

Mn

∑
dn
m ∈Dn

Qn
m(z)

)
+ λLLn,Q

m (z)
]
.

Similarly, the preference value of sk for θnm is defined
as the discounted empirical weighted sum of load bal-
ancing degree and queuing delay of sk , which is given
by

βnm,k(t) = −
t−1∑
z=1

νt−z
[
ωn
m

(
Wn

m,k(z) (21)

−
1
M

∑
gn ∈G

∑
dn
m ∈Dn

Wn
m,k(z)

)
+ λLLn,W

m,k
(z)

]
,



LI et al.: CLOUD-EDGE-DEVICE COLLABORATIVE HIGH CONCURRENCY ACCESS MANAGEMENT FOR MASSIVE IOT DEVICES IN DISTRIBUTION GRID
953

where ν ∈ (0,1) is the discount factor used to adjust
the influence weight of the historical performance at
different points in time for the calculation of the present
preference value. The discount factor makes the slots
in the front have lower weight, ensuring the accuracy
of the present matching relationship. Define the F n

m

as the preference list of θnm for cloud servers and Fk
as the preference list of sk for matching options. Then,
matching options and cloud servers calculate preference
values based on (20) and (21), and construct preference
lists by sorting preference values in descending order.

• Step 3: Matching iteration base on perception of high-
concurrency number and queue backlog. First, θnm ∈ Ω
sends matching proposal to its most preferred cloud
server based on F n

m , e.g., sk . Afterward, sk calcu-
lates the number of received matching proposal. If
|Γk(t)| ≤ numk and

∑
θnm ∈Γk (t)

[Wn
m,k
(t) + un

m,k
(t)] ≤

Wmax
k

, sk establishes temporary matching relationship
with the matching options which have sent match pro-
posals to it, i.e. yn

m,k
(t) = 1. Otherwise, sk establishes

temporary matching relationship with the first numk

matching options in the Fk . Remove unmatched op-
tions from Γk(t). The matching option with the small-
est preference value among numk options is removed
from Γk(t) until

∑
θnm ∈Γk (t)

[Wn
m,k
(t) + un

m,k
(t)] ≤ Wmax

k
.

Thematchedmatching options are temporarily removed
from Ω. Then, sk rejects other matching options that
sendmatching proposals to sk and the rejectedmatching
option θnm updates the preference list F n

m by removing
sk . Finally, the unmatched matching options make new
proposals based on the updated preference lists.

Matching iteration ends when each matching option θnm
establishes a matching relationship with a cloud server or its
preference list F n

m = �.

3.2.3 Property Analysis

The proposed algorithm provides an effective solution for
high-concurrency access management of massive IoT de-
vices in distribution grids. It focuses on optimizing the
device-edge channel pre-allocation strategy in the large
timescale tomitigate the capacity shortage of communication
and computing resulting from high-concurrency access. Ad-
ditionally, in the small timescale, the algorithm adopts DEM
to determine the data access control strategy. This strategy
aims to optimize the load balancing degree and queuing de-
lay of edge-cloud resources in the face of high concurrency
data access from IoT devices.

The complexity of the proposed algorithm includes
preference list construction and matching iteration. Specifi-
cally, the complexity of matching options to construct pref-
erence lists is O(K +K log(K)), and the complexity of cloud
servers to construct preference lists is O(M +M log(M)). In
the matching iteration, based on constraint C5 and constraint
C6, the matching option only needs to send matching pro-
posal to the cloud server, and the cloud server establishes a

temporary matching relationship with at most numk match-
ing options, the complexity of both is O(1). At the same
time, each iteration has at least one matching options to
complete the matching, the algorithm ends for a maximum
of M iterations, so the complexity of matching iteration is
O(M). Therefore, the complexity of proposed algorithm is
O(K + K log(K))+ O(M +M log(M))+ O(M), which has a
linear logarithmic relationship with the number of matching
options. As the number of matching options increases, the
algorithm is still applicable.

4. Simulation Result

We consider the IEEE 33 node topology model for simula-
tion validation [44]. The topology contains 3 cloud servers,
10 edge gateways, and 3000 IoT devices. Each device imple-
ments one type of service. The service priority contains four
levels, i.e., the fourth-level service has the highest priority,
and the first-level service has the lowest priority. The set
of service priorities for four levels ωn

m is [0.8,0.6,0.4,0.2],
and the set of minimum expected constraints for four lev-
els εm is [0.8,0.7,0.6,0.5]. The simulation parameters are
summarized in Table 1 [45], [46].

The performance of the proposed algorithm is com-
pared with two existing algorithms, which are introduced
below.

4.1 Load-Aware Channel Allocation (LACA) Algorithm
[47]

LACA optimizes the channel pre-allocation optimization
based on edge-side load in large timescale, but ignores the
small-timescale edge-cloud data access control optimization.

4.2 Bipartite Matching-Based Edge-Cloud Collaborative
Offloading (BMECO) Algorithm [48]

BMECO pre-allocates access channels based on service pri-
ority without considering the constraint of access success
rate in large timescale, and optimizes the edge-cloud data
access control based on the bipartite matching algorithm
in small timescale, which neglects information uncertainty
caused by the problem of externalities.

Figure 3 shows the edge-cloud load balancing degree
versus time slot. The result shows that the edge-cloud load
balancing degree of the proposed algorithm is the best and
the fluctuation is the smallest. Compared with LACA and

Table 1 Simulation parameters.
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Fig. 3 The edge-cloud load balancing degree versus time slot.

Fig. 4 The edge-cloud load balancing degree for four-level services with
differentiated priorities.

Fig. 5 The edge-cloud queuing delay versus time slot.

BMECO, the edge-cloud load balancing degree of the pro-
posed algorithm is improved by 74.68% and 71.27%, respec-
tively. The reason is that the proposed algorithm performs
channel pre-allocation according to edge-side empirical data
queue backlog performance deviation and device-side ac-
cess success rate deviation in large timescale to balance the
queue backlog of different devices. At the same time, the
proposed algorithm optimizes the edge-cloud data collab-
orative data access strategy based on perception of high-
concurrency number and queue backlog, achieving greater

Fig. 6 The box plots of average edge data queue backlog.

Fig. 7 The box plots of average cloud data queue backlog.

edge-cloud load balancing degree performance.
Figure 4 shows the edge-cloud load balancing degree for

four-level services with differentiated priorities. Compared
with LACA and BMECO, the proposed algorithm increases
the load balancing degree performance of the fourth-level
service with the highest priority by 70.37% and 38.46%.
This is because the proposed algorithm considers the ser-
vice priority in both large-timescale and small-timescale op-
timizations. In large timescale, more strict constraint of
access success rate is imposed for high-priority service. In
small timescale, service priority is utilized as a weight to
construct the matching preference, which ensures that high-
priority data queues are matched to cloud servers with better
load balancing degree. LACA ignores the optimization of
edge-cloud data access and service priority, which cannot
ensure the load balancing performance of high-priority ser-
vices. BMECO performs better than LACA but worse than
the proposed algorithm. It only considers service priorities
in large-timescale channel pre-allocation but cannot achieve
service priority aware in small-timescale data access control.

Figure 5 shows the edge-cloud queuing delay versus
time slot. When t = 100, compared with LACA and
BMECO, the proposed algorithm improves the edge-cloud
queuing delay by 6.97% and 14.83%, respectively. It reduces
queuing delay by simultaneously considering the edge-side
data queue backlog performance deviation and cloud-side
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Fig. 8 Access success rate of different service priorities.

Fig. 9 Access success rate versus the number of devices.

high-concurrency number and queue backlog. LACAhas the
worst queuing delay performance due to the large cloud-side
queuing delay caused by uncoordinated high-concurrency
data access. BMECO cannot construct accurate preference
value based on edge-cloud queuing delay because of the
information uncertainty caused by externalities. The perfor-
mance of bipartite matching gets worse since matching is
implemented based on the inaccurate preference value.

Figure 6 and Fig. 7 shows the box plots of edge queue
backlog and cloud queue backlog. Compared with LACA
andBMECO, the proposed algorithm reduces the edge queue
backlog fluctuation by 76.67% and 67.19%, and the cloud
queue backlog fluctuation by 62.35% and 60.22%. The
reasons have been introduced in Fig. 5.

Figure 8 shows the access success rate of different ser-
vice priorities. The proposed algorithmmeets the constraints
of access success rate for all services. It considers the device-
side access success rate deviation in access priority scores,
which is closely related to the service priority. Channels are
pre-allocated to devices with larger deviation to increase the
access success rate. LACA cannot provide access success
rate guarantee for high-priority service because the service
priority is ignored in channel pre-allocation. BMECO only

considers the service priority but ignores the queue backlog
deviation. Channels are aggressively pre-allocated to high-
priority services, which reduces the access success rate of
low-priority services.

Figure 9 shows the access success rate versus the num-
ber of devices. As the number of devices increases from
3 × 103 to 4.5 × 103, the access success rate of the forth-
level service decreases by 9.41%, while that of the first-level
service decreases by 43.39%. With the increase of device
number, more channels are pre-allocated to high-priority
services, which achieves service priority-aware access suc-
cess guarantee under high-concurrency access of massive
devices.

5. Conclusion

In this paper, we proposed a cloud-edge-device collaborative
high-concurrency access management algorithm based on
multi-timescale joint optimization of channel pre-allocation
and load balancing degree for IoT devices in distribution
grid. The proposed algorithm achieves joint guarantee of
edge-cloud load balancing degree and queuing delay for ser-
vices with differentiated priorities. Compared with LACA
and BMECO, the proposed algorithm respectively improves
edge-cloud load balancing degree by 74.68% and 71.27%,
and edge-cloud queuing delay by 6.97% and 14.83%. In the
future, we will further investigate high-concurrency access
management from the perspective of sensing, communica-
tion, and computing integration.

Acknowledgments

This work was supported by Science and Technology Project
of State Grid Corporation of China “Key technologies re-
search on security protection for distribution cloud master
station and intelligent terminal” (52060021006L).

References

[1] H. Gao, W. Ma, S. He, L. Wang, and J. Liu, “Time-segmented multi-
level reconfiguration in distribution network: A novel cloud-edge
collaboration framework,” IEEE Trans. Smart Grid, vol.13, no.4,
pp.3319–3322, 2022.

[2] H. Huang, M. Zhou, S. Zhang, L. Zhang, G. Li, and Y. Sun, “Ex-
ploiting the operational flexibility of wind integrated hybrid AC/DC
power systems,” IEEE Trans. Power Syst., vol.36, no.1, pp.818–826,
2021.

[3] Y. Mi, C. Liu, J. Yang, H. Zhang, and Q. Wu, “Low-carbon genera-
tion expansion planning considering uncertainty of renewable energy
at multi-time scales,” Global Energy Interconnection, vol.4, no.3,
pp.261–272, 2021.

[4] Y. Xu, Z.Y. Dong, Z. Xu, K. Meng, and K.P. Wong, “An intelligent
dynamic security assessment framework for power systemswithwind
power,” IEEE Trans. Ind. Informat., vol.8, no.4, pp.995–1003, 2012.

[5] F.A. Mourinho and T.M.L. Assis, “A new approach to retrofit plans
for distributed energy resources to mitigate adverse impacts on
bulk power systems stability,” IEEE Latin Am. Trans., vol.20, no.4,
pp.669–676, 2022.

[6] Q. Li, H. Tang, Z. Liu, J. Li, X. Xu, and W. Sun, “Optimal resource
allocation of 5G machine-type communications for situation aware-
ness in active distribution networks,” IEEE Syst. J., vol.16, no.3,

http://dx.doi.org/10.1109/tsg.2022.3156433
http://dx.doi.org/10.1109/tsg.2022.3156433
http://dx.doi.org/10.1109/tsg.2022.3156433
http://dx.doi.org/10.1109/tsg.2022.3156433
https://doi.org/10.1109/TPWRS.2020.3014906
https://doi.org/10.1109/TPWRS.2020.3014906
https://doi.org/10.1109/TPWRS.2020.3014906
https://doi.org/10.1109/TPWRS.2020.3014906
http://dx.doi.org/10.1016/j.gloei.2021.07.005
http://dx.doi.org/10.1016/j.gloei.2021.07.005
http://dx.doi.org/10.1016/j.gloei.2021.07.005
http://dx.doi.org/10.1016/j.gloei.2021.07.005
http://dx.doi.org/10.1109/tii.2012.2206396
http://dx.doi.org/10.1109/tii.2012.2206396
http://dx.doi.org/10.1109/tii.2012.2206396
http://dx.doi.org/10.1109/tla.2022.9675473
http://dx.doi.org/10.1109/tla.2022.9675473
http://dx.doi.org/10.1109/tla.2022.9675473
http://dx.doi.org/10.1109/tla.2022.9675473
http://dx.doi.org/10.1109/jsyst.2021.3110502
http://dx.doi.org/10.1109/jsyst.2021.3110502
http://dx.doi.org/10.1109/jsyst.2021.3110502


956
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.7 JULY 2024

pp.4187–4197, 2022.
[7] X. Lu, J. Wang, G. Liu, W. Du, and D. Yang, “Station-and-network–

coordinated planning of integrated energy system considering in-
tegrated demand response,” Global Energy Interconnection, vol.4,
no.1, pp.39–47, 2021.

[8] Y. Huo, P. Li, H. Ji, J. Yan, G. Song, J. Wu, and C. Wang, “Data-
driven adaptive operation of soft open points in active distribution
networks,” IEEE Trans. Ind. Informat., vol.17, no.12, pp.8230–8242,
2021.

[9] H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz, A. Jolfaei, S.H.
Ahmed, and A.K. Bashir, “Learning-based context-aware resource
allocation for edge-computing-empowered industrial IoT,” IEEE In-
ternet Things J., vol.7, no.5, pp.4260–4277, 2020.

[10] Y. Sun, Z. Cai, C. Guo, G. Ma, Z. Zhang, H. Wang, J. Liu, Y. Kang,
and J. Yang, “Collaborative dynamic task allocation with demand
response in cloud-assisted multiedge system for smart grids,” IEEE
Internet Things J., vol.9, no.4, pp.3112–3124, 2022.

[11] Y. Xu, L. Chen, Z. Lu, X. Du, J. Wu, and P.C.K. Hung, “An adaptive
mechanism for dynamically collaborative computing power and task
scheduling in edge environment,” IEEE Internet Things J., vol.10,
no.4, pp.3118–3129, 2023.

[12] M. Babar, M.A. Jan, X. He, M.U. Tariq, S. Mastorakis, and R.
Alturki, “An optimized IoT-enabled big data analytics architecture
for edge–cloud computing,” IEEE Internet Things J., vol.10, no.5,
pp.3995–4005, 2023.

[13] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data pro-
cessing and sharing for hybrid cloud-edge analytics,” IEEE Trans.
Parallel Distrib. Syst., vol.29, no.9, pp.2004–2017, 2018.

[14] Z. Ji, X.Wang, and D.Wu, “Research on task scheduling and concur-
rent processing technology for energy internet operation platform,”
Global Energy Interconnection, vol.5, no.6, pp.579–589, 2022.

[15] L. Zhao, E. Zhang, S. Wan, A. Hawbani, A.Y. Al-Dubai, G. Min, and
A.Y.Zomaya, “MESON:Amobility-aware dependent task offloading
scheme for urban vehicular edge computing,” IEEE Trans. Mobile
Comput., vol.PP, no.99, pp.1–15, 2023.

[16] S. Mao, L. Liu, N. Zhang, M. Dong, J. Zhao, J. Wu, and V.C.M.
Leung, “Reconfigurable intelligent surface-assisted secure mobile
edge computing networks,” IEEE Trans. Veh. Technol., vol.71, no.6,
pp.6647–6660, 2022.

[17] Y. Dong, G. Xu, M. Zhang, and X. Meng, “A high-efficient joint
‘cloud-edge’ aware strategy for task deployment and load balancing,”
IEEE Access, vol.9, pp.12791–12802, 2021.

[18] Z. Nezami, K. Zamanifar, K. Djemame, and E. Pournaras, “Decen-
tralized edge-to-cloud load balancing: Service placement for the
internet of things,” IEEE Access, vol.9, pp.64983–65000, 2021.

[19] K. Govindarajan and T.S. Somasundaram, “A combinatorial opti-
mization algorithm for load balancing in cloud infrastructure,” 2017
Ninth International Conference on Advanced Computing (ICoAC),
pp.58–63, 2017.

[20] P. Subedi, J. Hao, I.K. Kim, and L. Ramaswamy, “AI multi-tenancy
on edge: Concurrent deep learning model executions and dynamic
model placements on edge devices,” 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD), pp.31–42, 2021.

[21] T. Shi, Z. Cai, J. Li, H. Gao, T. Qiu, and W. Qu, “An efficient
processing scheme for concurrent applications in the IoT edge,” IEEE
Trans. Mobile Comput., vol.23, no.1, pp.135–149, 2024.

[22] H. Liao, Z. Zhou, N. Liu, Y. Zhang, G. Xu, Z. Wang, and S. Mum-
taz, “Cloud-edge-device collaborative reliable and communication-
efficient digital twin for low-carbon electrical equipment manage-
ment,” IEEE Trans. Ind. Informat., vol.19, no.2, pp.1715–1724,
2023.

[23] Z. Zhou, Y. Guo, Y. He, X. Zhao, and W.M. Bazzi, “Access control
and resource allocation for M2M communications in industrial au-
tomation,” IEEE Trans. Ind. Informat., vol.15, no.5, pp.3093–3103,
2019.

[24] S. Zafar, Z. Lv, N.H. Zaydi, M. Ibrar, and X. Hu, “DSMLB: Dynamic
switch-migration based load balancing for software-defined IoT net-

work,” Computer Networks, vol.214, no.4, pp.109–145, 2022.
[25] F. Wang, H. Yao, Q. Zhang, J. Wang, R. Gao, D. Guo, and M.

Guizani, “Dynamic distributed multi-path aided load balancing for
optical data center networks,” IEEE Trans. Netw. Service Manag.,
vol.19, no.2, pp.991–1005, 2022.

[26] L. Zhao, Z. Bi, A. Hawbani, K. Yu, Y. Zhang, and M. Guizani,
“ELITE: An intelligent digital twin-based hierarchical routing
scheme for softwarized vehicular networks,” IEEE Trans. Mobile
Comput., vol.22, no.9, pp.5231–5247, 2023.

[27] Y. Ju, Y. Chen, Z. Cao, L. Liu, Q. Pei, M. Xiao, K. Ota, M. Dong, and
V.C.M. Leung, “Joint secure offloading and resource allocation for
vehicular edge computing network: A multi-agent deep reinforce-
ment learning approach,” IEEE Trans. Intell. Transp. Syst., vol.24,
no.5, pp.5555–5569, 2023.

[28] Y. Wen, L. Liu, J. Li, X. Hou, N. Zhang, M. Dong, M. Atiquzzaman,
K. Wang, and Y. Huo, “A covert jamming scheme against an intel-
ligent eavesdropper in cooperative cognitive radio networks,” IEEE
Trans. Veh. Technol., vol.72, no.10, pp.13243–13254, 2023.

[29] H. Zhang, L. Song, and Y.J. Zhang, “Load balancing for 5G
ultra-dense networks using device-to-device communications,” IEEE
Trans. Wireless Commun., vol.17, no.6, pp.4039–4050, 2018.

[30] L. Zhen, Y. Li, and K. Yu, “A dynamic distributed queueing-based
random access protocol for softwarized internet of things,” 2022
IEEE Globecom Workshops (GC Wkshps), pp.796–801, 2022.

[31] S. Shahrear Tanzil, O.N. Gharehshiran, and V. Krishnamurthy,
“Femto-cloud formation: A coalitional game-theoretic approach,”
2015 IEEE Global Communications Conference (GLOBECOM),
pp.1–6, 2015.

[32] A.-T.H. Bui, C.T. Nguyen, T.C. Thang, and A.T. Pham, “Design and
performance analysis of a novel distributed queue access protocol for
cellular-based massive M2M communications,” IEEE Access, vol.6,
pp.3008–3019, 2018.

[33] J.-D.T. Tom-Ata and D. Kyriazis, “Real-time adaptable resource al-
location for distributed data-intensive applications over cloud and
edge environments,” 2020 IEEE International Conference on Cloud
Computing in Emerging Markets (CCEM), pp.77–81, 2020.

[34] Y.-H. Xu, C.-C. Yang, M. Hua, and W. Zhou, “Deep determinis-
tic policy gradient (DDPG)-based resource allocation scheme for
NOMA vehicular communications,” IEEE Access, vol.8, pp.18797–
18807, 2020.

[35] X. Zhang, H. Zhang, X. Zhou, and D. Yuan, “Energy minimiza-
tion task offloading mechanism with edge-cloud collaboration in
IoT networks,” 2021 IEEE 93rd Vehicular Technology Conference
(VTC2021-Spring), pp.1–7, 2021.

[36] C. Swain, M.N. Sahoo, A. Satpathy, K. Muhammad, S. Bakshi,
J.J.P.C. Rodrigues, and V.H.C. de Albuquerque, “METO: Matching-
theory-based efficient task offloading in IoT-Fog interconnection net-
works,” IEEE Internet Things J., vol.8, no.16, pp.12705–12715,
2021.

[37] Y. Hou, S. Garg, L. Hui, D.N.K. Jayakody, R. Jin, and M.S. Hossain,
“A data security enhanced access control mechanism in mobile edge
computing,” IEEE Access, vol.8, pp.136119–136130, 2020.

[38] L. Cao, H. Zhao, X. Li, and J. Zhang, “Matching theory for channel
allocation in cognitive radio networks,” 2016 IEEE 83rd Vehicular
Technology Conference (VTC Spring), pp.1–5, 2016.

[39] M. Rahim, A.S. Alfakeeh, R. Hussain, M.A. Javed, A. Shakeel, Q.U.
Hasan, A. Israr, A.O. Alsayed, and S.A. Malik, “Efficient channel
allocation using matching theory for QoS provisioning in cognitive
radio networks,” Sensors, vol.20, no.7, p.1872, 2020.

[40] J. Agoun and M.-S. Hacid, “Access control based on entity matching
for secure data sharing,” Service Oriented Computing and Applica-
tions, vol.16, no.1, pp.31–44, 2022.

[41] S. Sekander, H. Tabassum, and E. Hossain, “Matching with external-
ities for decoupled uplink-downlink user association in full-duplex
small cell networks,” 2015 IEEE International WIE Conference on
Electrical andComputer Engineering (WIECON-ECE), pp.411–414,
2015.

http://dx.doi.org/10.1109/jsyst.2021.3110502
http://dx.doi.org/10.1109/jsyst.2021.3110502
http://dx.doi.org/10.1016/j.gloei.2021.03.004
http://dx.doi.org/10.1016/j.gloei.2021.03.004
http://dx.doi.org/10.1016/j.gloei.2021.03.004
http://dx.doi.org/10.1016/j.gloei.2021.03.004
http://dx.doi.org/10.1109/tii.2021.3064370
http://dx.doi.org/10.1109/tii.2021.3064370
http://dx.doi.org/10.1109/tii.2021.3064370
http://dx.doi.org/10.1109/tii.2021.3064370
http://dx.doi.org/10.1109/jiot.2019.2963371
http://dx.doi.org/10.1109/jiot.2019.2963371
http://dx.doi.org/10.1109/jiot.2019.2963371
http://dx.doi.org/10.1109/jiot.2019.2963371
http://dx.doi.org/10.1109/jiot.2021.3096979
http://dx.doi.org/10.1109/jiot.2021.3096979
http://dx.doi.org/10.1109/jiot.2021.3096979
http://dx.doi.org/10.1109/jiot.2021.3096979
http://dx.doi.org/10.1109/jiot.2021.3119181
http://dx.doi.org/10.1109/jiot.2021.3119181
http://dx.doi.org/10.1109/jiot.2021.3119181
http://dx.doi.org/10.1109/jiot.2021.3119181
http://dx.doi.org/10.1109/jiot.2022.3157552
http://dx.doi.org/10.1109/jiot.2022.3157552
http://dx.doi.org/10.1109/jiot.2022.3157552
http://dx.doi.org/10.1109/jiot.2022.3157552
http://dx.doi.org/10.1109/tpds.2018.2812177
http://dx.doi.org/10.1109/tpds.2018.2812177
http://dx.doi.org/10.1109/tpds.2018.2812177
http://dx.doi.org/10.1016/j.gloei.2022.12.001
http://dx.doi.org/10.1016/j.gloei.2022.12.001
http://dx.doi.org/10.1016/j.gloei.2022.12.001
http://dx.doi.org/10.1109/tmc.2023.3289611
http://dx.doi.org/10.1109/tmc.2023.3289611
http://dx.doi.org/10.1109/tmc.2023.3289611
http://dx.doi.org/10.1109/tmc.2023.3289611
http://dx.doi.org/10.1109/tvt.2022.3162044
http://dx.doi.org/10.1109/tvt.2022.3162044
http://dx.doi.org/10.1109/tvt.2022.3162044
http://dx.doi.org/10.1109/tvt.2022.3162044
http://dx.doi.org/10.1109/access.2021.3051672
http://dx.doi.org/10.1109/access.2021.3051672
http://dx.doi.org/10.1109/access.2021.3051672
http://dx.doi.org/10.1109/access.2021.3074962
http://dx.doi.org/10.1109/access.2021.3074962
http://dx.doi.org/10.1109/access.2021.3074962
http://dx.doi.org/10.1109/icoac.2017.8441410
http://dx.doi.org/10.1109/icoac.2017.8441410
http://dx.doi.org/10.1109/icoac.2017.8441410
http://dx.doi.org/10.1109/icoac.2017.8441410
http://dx.doi.org/10.1109/cloud53861.2021.00016
http://dx.doi.org/10.1109/cloud53861.2021.00016
http://dx.doi.org/10.1109/cloud53861.2021.00016
http://dx.doi.org/10.1109/cloud53861.2021.00016
http://dx.doi.org/10.1109/tmc.2022.3219983
http://dx.doi.org/10.1109/tmc.2022.3219983
http://dx.doi.org/10.1109/tmc.2022.3219983
http://dx.doi.org/10.1109/tii.2022.3194840
http://dx.doi.org/10.1109/tii.2022.3194840
http://dx.doi.org/10.1109/tii.2022.3194840
http://dx.doi.org/10.1109/tii.2022.3194840
http://dx.doi.org/10.1109/tii.2022.3194840
http://dx.doi.org/10.1109/tii.2019.2903100
http://dx.doi.org/10.1109/tii.2019.2903100
http://dx.doi.org/10.1109/tii.2019.2903100
http://dx.doi.org/10.1109/tii.2019.2903100
http://dx.doi.org/10.1016/j.comnet.2022.109145
http://dx.doi.org/10.1016/j.comnet.2022.109145
http://dx.doi.org/10.1016/j.comnet.2022.109145
http://dx.doi.org/10.1109/tnsm.2021.3125307
http://dx.doi.org/10.1109/tnsm.2021.3125307
http://dx.doi.org/10.1109/tnsm.2021.3125307
http://dx.doi.org/10.1109/tnsm.2021.3125307
http://dx.doi.org/10.1109/tmc.2022.3179254
http://dx.doi.org/10.1109/tmc.2022.3179254
http://dx.doi.org/10.1109/tmc.2022.3179254
http://dx.doi.org/10.1109/tmc.2022.3179254
http://dx.doi.org/10.1109/tits.2023.3242997
http://dx.doi.org/10.1109/tits.2023.3242997
http://dx.doi.org/10.1109/tits.2023.3242997
http://dx.doi.org/10.1109/tits.2023.3242997
http://dx.doi.org/10.1109/tits.2023.3242997
http://dx.doi.org/10.1109/tvt.2023.3277457
http://dx.doi.org/10.1109/tvt.2023.3277457
http://dx.doi.org/10.1109/tvt.2023.3277457
http://dx.doi.org/10.1109/tvt.2023.3277457
http://dx.doi.org/10.1109/twc.2018.2819648
http://dx.doi.org/10.1109/twc.2018.2819648
http://dx.doi.org/10.1109/twc.2018.2819648
http://dx.doi.org/10.1109/gcwkshps56602.2022.10008767
http://dx.doi.org/10.1109/gcwkshps56602.2022.10008767
http://dx.doi.org/10.1109/gcwkshps56602.2022.10008767
http://dx.doi.org/10.1109/glocom.2015.7417264
http://dx.doi.org/10.1109/glocom.2015.7417264
http://dx.doi.org/10.1109/glocom.2015.7417264
http://dx.doi.org/10.1109/glocom.2015.7417264
http://dx.doi.org/10.1109/access.2017.2786678
http://dx.doi.org/10.1109/access.2017.2786678
http://dx.doi.org/10.1109/access.2017.2786678
http://dx.doi.org/10.1109/access.2017.2786678
http://dx.doi.org/10.1109/ccem50674.2020.00026
http://dx.doi.org/10.1109/ccem50674.2020.00026
http://dx.doi.org/10.1109/ccem50674.2020.00026
http://dx.doi.org/10.1109/ccem50674.2020.00026
http://dx.doi.org/10.1109/access.2020.2968595
http://dx.doi.org/10.1109/access.2020.2968595
http://dx.doi.org/10.1109/access.2020.2968595
http://dx.doi.org/10.1109/access.2020.2968595
http://dx.doi.org/10.1109/vtc2021-spring51267.2021.9449054
http://dx.doi.org/10.1109/vtc2021-spring51267.2021.9449054
http://dx.doi.org/10.1109/vtc2021-spring51267.2021.9449054
http://dx.doi.org/10.1109/vtc2021-spring51267.2021.9449054
https://doi.org/10.1109/JIOT.2020.3025631
https://doi.org/10.1109/JIOT.2020.3025631
https://doi.org/10.1109/JIOT.2020.3025631
https://doi.org/10.1109/JIOT.2020.3025631
https://doi.org/10.1109/JIOT.2020.3025631
http://dx.doi.org/10.1109/access.2020.3011477
http://dx.doi.org/10.1109/access.2020.3011477
http://dx.doi.org/10.1109/access.2020.3011477
http://dx.doi.org/10.1109/vtcspring.2016.7504338
http://dx.doi.org/10.1109/vtcspring.2016.7504338
http://dx.doi.org/10.1109/vtcspring.2016.7504338
http://dx.doi.org/10.3390/s20071872
http://dx.doi.org/10.3390/s20071872
http://dx.doi.org/10.3390/s20071872
http://dx.doi.org/10.3390/s20071872
http://dx.doi.org/10.1007/s11761-021-00331-3
http://dx.doi.org/10.1007/s11761-021-00331-3
http://dx.doi.org/10.1007/s11761-021-00331-3
http://dx.doi.org/10.1109/wiecon-ece.2015.7443953
http://dx.doi.org/10.1109/wiecon-ece.2015.7443953
http://dx.doi.org/10.1109/wiecon-ece.2015.7443953
http://dx.doi.org/10.1109/wiecon-ece.2015.7443953
http://dx.doi.org/10.1109/wiecon-ece.2015.7443953


LI et al.: CLOUD-EDGE-DEVICE COLLABORATIVE HIGH CONCURRENCY ACCESS MANAGEMENT FOR MASSIVE IOT DEVICES IN DISTRIBUTION GRID
957

[42] B.Di, L. Song, andY. Li, “Radio resource allocation for uplink sparse
code multiple access (SCMA) networks using matching game,” 2016
IEEE International Conference on Communications (ICC), pp.1–6,
2016.

[43] J.D.C. Little, “A proof for the queuing formula: L = λW ,” Opera-
tions Research, vol.9, no.3, pp.383–387, 1961.

[44] F. Chang, Q. Zhu, S. Hu, Z. Li, Z. Zang, and R.Wang, “Fixed change-
rate matrix correction algorithm for processing PV nodes in active
distribution network power flow calculation,” 2019 IEEE Innovative
Smart Grid Technologies - Asia (ISGT Asia), pp.1473–1478, 2019.

[45] H. Liao, Z. Jia, Z. Zhou, Y. Wang, H. Zhang, and S. Mumtaz,
“Cloud-edge-end collaboration in air–ground integrated power IoT:
A semidistributed learning approach,” IEEE Trans. Ind. Informat.,
vol.18, no.11, pp.8047–8057, 2022.

[46] M. Maule, J.S. Vardakas, and C. Verikoukis, “A novel 5G-NR re-
sources partitioning framework through real-time user-provider traf-
fic demand analysis,” IEEE Syst. J., vol.16, no.4, pp.5317–5328,
2022.

[47] H. Taramit, L. Orozco-Barbosa, A. Haqiq, J.J.C. Escoto, and J.
Gomez, “Load-aware channel allocation for IEEE 802.11ah-based
networks,” IEEE Access, vol.11, pp.24484–24496, 2023.

[48] X. Zhang, H. Zhang, X. Zhou, and D. Yuan, “Energy minimiza-
tion task offloading mechanism with edge-cloud collaboration in
IoT networks,” 2021 IEEE 93rd Vehicular Technology Conference
(VTC2021-Spring), pp.1–7, 2021.

Shuai Li received his M.S. degree from
Shandong University in 2018. He is now work-
ing as a senior engineer in Distribution Technol-
ogyCenter of ShandongElectric PowerResearch
Institute of State Grid. His research direction in-
cludes cloud-edge-device collaboration and re-
source management in distribution grid.

Xinhong You is now working as a se-
nior engineer in Distribution Technology Cen-
ter of Shandong Electric Power Research Insti-
tute of State Grid. Her research direction in-
cludes cloud-edge-device collaboration and re-
source management in distribution grid.

Shidong Zhang received his Ph.D. de-
gree from Beijing University in 2012. He is
now working as a senior engineer in Distribution
Technology Center of Shandong Electric Power
Research Institute of State Grid. His research
direction includes cloud-edge-device collabora-
tion and resource management in distribution
grid.

Mu Fang received his M.S. degree from
Shandong University in 2018. He is now work-
ing as a senior engineer in State Grid Shandong
Electric Power Company. His research direction
includes cloud-edge-device collaboration and re-
source management in distribution grid.

Pengping Zhang is now working as a se-
nior engineer in Distribution Technology Cen-
ter of Shandong Electric Power Research Insti-
tute of State Grid. His research direction in-
cludes cloud-edge-device collaboration and re-
source management in distribution grid.

http://dx.doi.org/10.1109/icc.2016.7511409
http://dx.doi.org/10.1109/icc.2016.7511409
http://dx.doi.org/10.1109/icc.2016.7511409
http://dx.doi.org/10.1109/icc.2016.7511409
http://dx.doi.org/10.1287/opre.9.3.383
http://dx.doi.org/10.1287/opre.9.3.383
http://dx.doi.org/10.1109/isgt-asia.2019.8880913
http://dx.doi.org/10.1109/isgt-asia.2019.8880913
http://dx.doi.org/10.1109/isgt-asia.2019.8880913
http://dx.doi.org/10.1109/isgt-asia.2019.8880913
http://dx.doi.org/10.1109/tii.2022.3164395
http://dx.doi.org/10.1109/tii.2022.3164395
http://dx.doi.org/10.1109/tii.2022.3164395
http://dx.doi.org/10.1109/tii.2022.3164395
http://dx.doi.org/10.1109/jsyst.2021.3115896
http://dx.doi.org/10.1109/jsyst.2021.3115896
http://dx.doi.org/10.1109/jsyst.2021.3115896
http://dx.doi.org/10.1109/jsyst.2021.3115896
http://dx.doi.org/10.1109/access.2023.3251896
http://dx.doi.org/10.1109/access.2023.3251896
http://dx.doi.org/10.1109/access.2023.3251896
http://dx.doi.org/10.1109/vtc2021-spring51267.2021.9449054
http://dx.doi.org/10.1109/vtc2021-spring51267.2021.9449054
http://dx.doi.org/10.1109/vtc2021-spring51267.2021.9449054
http://dx.doi.org/10.1109/vtc2021-spring51267.2021.9449054

