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PAPER
New Classes of Permutation Quadrinomials Over Fq3

Changhui CHEN†a), Nonmember, Haibin KAN†† ,††† ,††††b), Member, Jie PENG†c), and Li WANG†d), Nonmembers

SUMMARY Permutation polynomials have been studied for a long time
and have important applications in cryptography, coding theory and com-
binatorial designs. In this paper, by means of the multivariate method
and the resultant, we propose four new classes of permutation quadrino-
mials over Fq3 , where q is a prime power. We also show that they are
not quasi-multiplicative equivalent to known ones. Moreover, we compare
their differential uniformity with that of some known classes of permutation
trinomials for some small q.
key words: finite field, cryptography, permutation quadrinomial, resultant,
quasi-multiplicative equivalence

1. Introduction

In this paper, let m be a positive integer, p be a prime and
q = pm. Let Fq be the finite field with q elements and
F∗q be the set of nonzero elements of Fq . A polynomial
f (x) ∈ Fq[x] is said to be a permutation polynomial over
Fq if the associated mapping f : c 7→ f (c) from Fq to
itself is a bijection. Permutation polynomials over finite
fields have important applications in many areas of science
and engineering such as coding theory, combinatorial de-
signs and cryptography [11]. For instance, in many block
ciphers, permutations defined on F2m with low differential
uniformity are utilized as their S-boxes to provide confusion.
Permutation polynomials can also be employed to construct
bent functions of the Maiorana-McFarland class, with the
form of f (x, y) = Trm(x · π(y) + g(y)) ∈ F2

2m [x, y], where
π is any permutation over F2m . More details on properties
and applications of permutation polynomials can be found
in [8]–[10].

Permutation polynomials with few terms have attracted
much attention for their simple algebraic forms. For exam-
ple, Ding [3] presented novel cyclic codes by using permuta-
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tionmonomials and permutation trinomials. For amonomial
xn, a necessary and sufficient condition for it to permute Fq is
given by gcd(n,q − 1) = 1. However, the characterization of
permutation binomials and permutation trinomials is much
more complicated, we refer to [1], [5], [6], [12], [16], [23]–
[25] for more details. Theoretically speaking, the total num-
ber of permutation polynomials over Fq is large. However, it
is hard to construct permutation polynomials with a simple
algebraic form and some additional extraordinary properties
explicitly [7]. In order to solve the Big APN (Almost Perfect
Nonlinear) Problem on the existence of APN permutations
over F2n when n ≥ 8 is even, Pasalic and Charpin investi-
gated the existence of permutation polynomials of the form
f (x) = xd + L(x) over F2n [15]. Motivated by their works,
Li and Wang [11] studied permutation polynomials over F2n

with the form of

f (x) = x2i+1 + L(x), (1)

where gcd(i,n) = 1 and L(x) is a linearized polynomial.
They proved that x2i+1 + L(x) permutes F2n if and only if n
is odd and L(x) = a2i x + ax2i , where a ∈ F2n . Then Gong
et al. [4] investigated permutation polynomials of the form
(1) with gcd(i,n) > 1. In 2021, Pang et al. [16] constructed
six classes of permutation trinomials over F23m with the
form xd + L(xs) by choosing some suitable integers d, s
and linearized polynomials L(x). Very recently, Gupta et al.
[5] presented two classes of permutation trinomials of the
form x + Ax22m−2m+1 + x22m+2m−1 and x + Ax23m−22m+2m +
x22m+2m−1 over F23m , and a class of permutation trinomials
of the form x+ Axq

2−q+1+ A2xq
2 over Fp3m , where p is odd.

Dobbertin [2] employed the multivariate method to ver-
ify the permutation property of particular types of polyno-
mials over finite fields with even characteristics. In addition,
the authors in [1], [5], [16], [25] utilized the resultant and the
multivariate method to investigate permutation polynomials
over finite fields. In this paper, we propose four classes of per-
mutation quadrinomials over Fq3 by the multivariate method
and the resultant of two polynomials. More explicitly, there
are two classes of permutation polynomials over Fq3 of the
form x+ xq+ξxq

2−q+1+ xq
2+q−1 and x+ xq+ xq

2
+ξxq

2−q+1

with p = 2, together with another two classes of the form
x ± xq + xq

2
+ xq

2−q+1 with p being odd. We also show
the quasi-multiplicative equivalence between the presented
permutation polynomials in this paper and the known ones.
Moreover, we compare the differential uniformity of ours
permutations with that of some known permutation trinomi-
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als over F26 , F212 and F36 , respectively.
The remainder of the paper is organized as follows.

Section 2 provides the definitions of the resultant of two
polynomials and quasi-multiplicative (QM) equivalence. In
Sect. 3, we present four classes of permutation quadrinomials
over Fq3 . In Sect. 4, we show that the classes of permutation
quadrinomials presented in this paper are QM inequivalent
to known ones. In Sect. 5, with the help of the computer soft-
ware, we compare the differential uniformity of our permu-
tation quadrinomials with that of some konwn permutation
trinomials. Finally, Sect. 6 concludes this paper.

2. Preliminaries

The resultant of two polynomials is a useful tool for deter-
mining whether two polynomials have a common root or
not.

Definition 2.1: [5] Let f (x) = a0xm + a1xm−1 + · · · + am,
g(x) = b0xn+b1xn−1+ · · ·+bn ∈ Fq[x] be two polynomials
of positive degree m and n, respectively. Then the resultant
of f and g with respect to x is defined by the determinant

R( f , g, x) =

������������������

a0 a1 · · · am 0 · · · · · · 0
0 a0 a1 · · · am 0 · · · 0
...

...
...

...
...

...
...

...
0 · · · 0 a0 a1 a2 · · · am
b0 b1 · · · · · · bn 0 · · · 0
0 b0 b1 · · · · · · bn · · · 0
...

...
...

...
...

...
...

...
0 · · · 0 b0 b1 · · · · · · bn

������������������
of order m + n.

It is well known that f and g have at least one common
root if and only if R( f , g, x) = 0.

It is well known that, when f (x) is a permutation poly-
nomial and g(x) is quasi-multiplicative equivalent to f (x),
then g(x) is also a permutation polynomial.

Definition 2.2: [18] Two permutation polynomials f (x) and
g(x) over Fq[x] are called quasi-multiplicative (QM) equiv-
alent, if there exists an integer 1 ≤ r ≤ q − 2 such that
gcd(r,q − 1) = 1 and f (x) = c2g(c1xr ), where c1, c2 ∈ F

∗
q .

Definition 2.3: Let f (x) ∈ Fq[x]. If for any a ∈ F∗q and
any b ∈ Fq , the equation f (x) − f (x + a) = b has at most δ
solutions in Fq , then f (x) is called differentially δ-uniform.

The S-boxes used in block ciphers should have a low
differential uniformity to allow a good resistance to differen-
tial attack.

3. Main Results

In this section, we construct four classes of permutation
quadrinomials over Fq3 .

3.1 The Case p = 2

In the following, two classes of permutation quadrinomials
with coefficients in F22 are given.

Theorem 3.1: Let q = 2m with m . 1 (mod 3) be even
and ξ be a primitive element of F22 . Then f (x) = x + xq +
ξxq

2−q+1 + xq
2+q−1 is a permutation polynomial over Fq3 .

Proof: In order to prove that f (x) permutes Fq3 , it suffices to
verify that for any a ∈ Fq3 , f (x) = a has at most one solution
in Fq3 . We first show that f (x) = 0 has a unique solution
x = 0 in Fq3 . Assume that there exists some x ∈ F∗

q3 such
that f (x) = 0, then we have

1 + xq−1 + ξxq
2−q + xq

2+q−2 = 0.

Let u = xq−1, then it becomes

1 + u + ξuq + uq+2 = 0. (2)

If ξ+u2 = 0, then (2) gives u = 1, a contradiction. Hence ξ+
u2 , 0, and (2) yields uq = u+1

ξ+u2 and uq2
=
(ξ+u2)(ξ2+u2+u)

ξu4+u2 .
Thus we have

1 = xq
3−1 = uq2+q+1 =

(u + 1)(ξ2 + u2 + u)
ξu3 + u

,

which can be rearranged as

u3 + u + 1 = 0 (3)

by using ξ2 + ξ + 1 = 0. So it holds u7 = 1. If m ≡
0 (mod 3), then q ≡ 1 (mod 7), so that uq = u. Hence we
have uq2+q+1 = u3 = 1, and thus ugcd(7,3) = u = 1, which
contradicts to (3). If m ≡ 2 (mod 3), then q ≡ 4 (mod 7),
so that uq = u4. Then from (2) we have

u6 + ξu4 + u + 1 = 0.

Since u + 1 = u3 from (3), then the above equation becomes
u6 + ξu4 + u3 = 0, and thus 0 = u3 + ξu + 1 = ξu + u = ξ2u,
which is a contradiction.

Below assume that a ∈ F∗
q3 and we show that

f (x) = x + xq + ξxq
2−q+1 + xq

2+q−1 = a (4)

has at most one solution in F∗
q3 . Let y = xq , z = yq ,

b = aq and c = bq . Then we can get the following system of
equations

x + y + ξxz
y +

yz
x = a

y + z + ξ yx
z +

xz
y = b

z + x + ξzy
x +

xy
z = c.

(5)

Let u = yz
x , v =

xz
y , and w =

xy
z . Then it is clear that

x2 = vw,
y2 = uw,
z2 = uv.
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Therefore, squaring both sides of each equation of (5) gives
u2 + ξ2v2 + vw + uw = a2

v2 + ξ2w2 + wu + vu = b2

w2 + ξ2u2 + uv + wv = c2.
(6)

Adding these equations together, one obtains that u2 + v2 +
w2 = ξ2(a2 + b2 + c2), and thus

u + v + w = ξ(a + b + c).

Let t = ξ(a + b + c) ∈ Fq . If t = 0, then u + v + w = 0,
which implies that u = ξc, v = ξa and w = ξb by (6). Thus,
we obtain that x = (vw)

1
2 = ξ(ab)

1
2 , which is the unique

solution of (4). If t , 0, we can have{
v2 + ξ2tu + ξ2tv = ξ2a2

u2 + v2 + ξ2tu + ξt2 = ξ2b2 (7)

from (6). By adding above two equations together, we have

u2 + ξ2tv + ξt2 + ξ2a2 + ξ2b2 = 0. (8)

Eliminating the indeterminate v from the second equation of
(7) and Eq. (8), we get that

u4+ξt2u2+t3u+t2b2+ξa4+ξb4=0. (9)

Recall that v = uq and t ∈ Fq , and replace u by ξtu in the
second equation of (7) and Eq. (9), one has{

u2q + u2 + ξu = c1,
ξu4 + u2 + ξu = c2,

(10)

where c1 = (
b+ξt
t )

2 and c2 =
t2b2+ξa4+ξb4

t4 . Assume that
u1 , u2 are two solutions of (10) and let U = u1 + u2, then
we have{

U2q +U2 + ξU = 0,
ξU4 +U2 + ξU = 0, (11)

which gives that

U2q + ξU4 = 0.

Note that U , 0, so we have U2q−4 = ξ, which implies that
U = ξ, since ξ2q−4 = ξ (2q − 4 ≡ 1 (mod 3)) and

gcd(2q−4,q3−1) = gcd
(
2m+1−4,23m−1

)
=2gcd(m−1,3m)−1=1

as m . 1 (mod 3). But U = ξ contradicts to (11), so that
(10) has at most one solution. Therefore, (6) has at most one
solution in F∗

q3 . This completes the proof.

Theorem 3.2. Let q = 2m, m be even and ξ be a primitive
element of F22 . Then f (x) = x + xq + xq

2
+ ξxq

2−q+1 is a
permutation polynomial over Fq3 .

Proof: We first show that f (x) = 0 has a unique solution
x = 0 in Fq3 . Suppose that there exists some x ∈ F∗

q3 such
that f (x) = 0, then we have

1 + xq−1 + xq
2−1 + ξxq

2−q = 0.

Let u = xq−1, then it becomes

1 + u + ξuq + uq+1 = 0. (12)

If ξ + u = 0, then (12) gives u = 1, which is a contradiction.
Hence (12) yields uq = u+1

ξ+u and uq2
= 1

u+ξ2 . Thus we have

1 = uq2+q+1 =
u2 + u

u2 + u + 1
,

which is equivalent to 1 = 0, a contradiction. Therefore,
f (x) = 0 has only one solution.

Below for any a ∈ F∗
q3 we show that

f (x) = x + xq + xq
2
+ ξxq

2−q+1 = a (13)

has at most one solution in F∗
q3 . Let y = xq , z = yq ,

b = aq and c = bq . Then we can get the following system of
equations

x + y + z + ξxz
y = a,

y + z + x + ξ yx
z = b,

z + x + y + ξzy
x = c,

which can be rewritten as
y2 + xy + zy + ξxz = ay,
z2 + yz + xz + ξyx = bz,
x2 + zx + yx + ξzy = cx.

(14)

Eliminating the indeterminate z in (14), one can obtain that
f1(y) :=(a+b)y2+(ξ2(a+b)x+a2+ab)y

+ξ2x3+ξ(a+b)x2+ξabx=0,
f2(y) :=ξy3+ξ(x+a)y2+(ξx2+(a+c)x)y

+ξx3+ξcx2=0.

By using the MAGMA software, the resultant of f1 and f2
with respect to y is

R( f1, f2, y) = ξx3(x + ξa)2(x4 + α),

where α = ξa2b2 + ξa3b + ξa3c + ξa2bc + ξab3 + ξab2c +
ξb3c + a2c2 + b2c2. Since f1 and f2 have a common root,
then we obtain that

R( f1, f2, y) = ξx3(x + ξa)2(x4 + α) = 0. (15)

So (13) has at most one solution in F∗
q3 if and only if (15)

has at most one solution in F∗
q3 . Note that if a = b or b = c

or a = c, then a = b = c from b = aq , c = bq and a = cq .
Therefore, we divide the discussion into the following three
cases:

Case 1: a = b = c. It is easy to get that ξx3(x+ξa)6 =
0 from (15). Therefore, x = ξa is the only possible solution
of (15).

Case 2: a , b , c and ξa + b = 0. In this case we
have ξb + c = 0 and ξc + a = 0. Thus we can deduce that
ξ2(a + b+ c) = 0, which implies a + b+ c = 0. Substituting
b for a + c in α, we obtain
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α = ξa4 + ξac3 + ξ2c4,

which is equivalent to α = ξa4 since ξc + a = 0. So (15)
can be rewritten as ξx3(x + ξa)6 = 0. Therefore, x = ξa is
the only possible solution of (15).

Case 3: a , b , c and ξa + b , 0. If x = ξa, then
y = ξb and z = ξc. Thus we obtain that

(ξa + b)(b + c) = 0

from the first equation of (14), which leads to a contradiction
that ξa + b = 0 or b + c = 0. Therefore, x = α

1
4 is the only

possible solution of (15). This completes the proof.

3.2 The Case p is Odd

In the following, we constructed two classes of permutation
quadrinomials with the form of f (x) = x±xq+xq

2
+xq

2−q+1.

Theorem 3.3: Let q = pm and p be an odd prime. Then
f (x) = x + xq + xq

2
+ xq

2−q+1 is a permutation polynomial
over Fq3 .

Proof: We first show that f (x) = 0 has a unique solution
x = 0 in Fq3 . Assume that there exists some x ∈ F∗

q3 such
that f (x) = 0. Then we have

1 + xq−1 + xq
2−1 + xq

2−q = 0. (16)

Let u = xq−1, then it becomes

1 + u + uq(u + 1) = 0. (17)

If u + 1 = 0, then u = −1, so that u1+q+q2
= −1, which

contradicts to u1+q+q2
= xq

3−1 = 1. Hence (17) yields
uq = −1, which also leads to the contradiction u = −1.

Below for any a ∈ F∗
q3 we show that

f (x) = x + xq + xq
2
+ xq

2−q+1 = a (18)

has at most one solution in F∗
q3 . Let y = xq , z = yq ,

b = aq and c = bq . Then we can get the following system of
equations

x + y + z + xz
y = a,

y + z + x + yx
z = b,

z + x + y + zy
x = c,

which can be rewritten as
y2 + xy + zy + xz = ay,
z2 + yz + xz + yx = bz,
x2 + zx + yx + zy = cx.

(19)

Eliminating the indeterminate z in (19), we can obtain that
f1(y) : = (b−a)y2+(2bx+a2−ab)y+ax2

+bx2−abx=0,
f2(y) : = y2 − ay + cx − x2 = 0.

By using the MAGMA software, the resultant of f1 and f2

with respect to y is

R( f1, f2, y)= x2(4abcx−a2b2+a2c2−2abc2+b2c2).

Since f1 and f2 have a common root, then we obtain

x2(4abcx − a2b2 + a2c2 − 2abc2 + b2c2) = 0.

Note that abc , 0 and x , 0. Therefore, x =
a2b2−a2c2+2abc2−b2c2

4abc is the only possible solution of (18).
This completes the proof.

Theorem 3.4: Let q = pm and p be an odd prime. Then
f (x) = x − xq + xq

2
+ xq

2−q+1 is a permutation polynomial
over Fq3 .

Proof: We first show that f (x) = 0 has a unique solution
x = 0 in Fq3 . Suppose that there exists some x ∈ F∗

q3 such
that f (x) = 0. Then we can get

1 − xq−1 + xq
2−1 + xq

2−q = 0. (20)

Let u = xq−1, then it becomes

1 − u + uq(u + 1) = 0. (21)

Then we have uq = u−1
u+1 and uq2

= − 1
u . Hence

1 = u1+q+q2
=

1 − u
u + 1

,

which gives that u = 0, a contradiction.
Below, for any a ∈ F∗

q3we show that

f (x) = x − xq + xq
2
+ xq

2−q+1 = a (22)

has at most one solution in F∗
q3 . Let y = xq , z = yq ,

b = aq and c = bq . Then we can get the following system of
equations

x − y + z + xz
y = a,

y − z + x + yx
z = b,

z − x + y + zy
x = c,

which can be expressed as
−y2 + xy + zy + xz = ay
−z2 + yz + xz + yx = bz
−x2 + zx + yx + zy = cx.

(23)

Eliminating the indeterminate z in (23), we can obtain that
f1(y) :=(4x−a − b)y2+(4ax−a2 − ab)y+x2a

+bx2 − abx=0,
f2(y) :=y2 + ay − cx − x2 = 0.

By using the MAGMA software, the resultant of f1 and f2
with respect to y is R( f1, f2, y) = x2(4x2+4cx−ab−bc−ac)2.
Since f1 and f2 have a common root, then we obtain

x(4x2 + 4cx − ab − bc − ac) = 0. (24)

The solutions of 4x2 + 4cx − ab − bc − ca = 0 are x =
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−c±
√
(c+a)(c+b)

2 . Note that (c+a)(c+ b) = (c+a)q
2+1, where

q2 + 1 is even, thus (c + a)(c + b) is a square. Moreover,

one can check that x1 =
−c+
√
(c+a)(c+b)

2 is a solution of (22),

while x2 =
−c−
√
(c+a)(c+b)

2 is not. This completes the proof.

4. The Quasi-Multiplicative Equivalence

In this section, we discuss the quasi-multiplicative (QM)
equivalence between the presented permutations and the
known ones.

It is clear that two QM equivalent permutations must
have the same number of terms. Thus, we only need to
compare the permutations in this paper with all known per-
mutation quadrinomials over Fq3 . To the best of the authors’
knowledge, there are only four classes of known permutation
quadrinomials over finite fields of odd characteristic in [19].

Let S mod (q3−1) = {s mod (q3 − 1) | s ∈ S}, and via the
strategy mentioned in [16] to investigate the QM inequiva-
lence of f (x) = x + a1xs1 + a2xs2 + a3xs3 in this paper and
g(x) = b1xd1 + b2xd2 + b3xd3 + b4xd4 through the following
two steps.

1. Prove that there exists no integer 1 ≤ r ≤ q − 2 such
that gcd(r,q3 − 1) = 1 and {1, s1, s2, s3} mod (q3−1) =
{d1, d2, d3, d4} mod (q3−1);

2. Compare the coefficients of c2 f (c1xr ) and g(x).

For instance, the permutations in Theorem 3.1 is QM in-
equivalent to the permutations in Theorem 3.2 from Step 1.
Otherwise, there exists an integer r such that gcd(r,q3 −
1) = 1 and {r,rq,r(q2 − q + 1),r(q2 + q − 1)} mod (q3−1) =

{1,q,q2,q2 − q + 1} mod (q3−1). Clearly, r = 1 is impossible.
If r = q, then rq = q2, r(q2−q+1) ≡ q+1−q2 mod (q3−1)
and r(q2 + q − 1) ≡ q2 − q + 1 mod (q3 − 1). If r = q2, then
rq ≡ 1 mod (q3 −1), r(q2 − q+1) ≡ q2 + q−1 mod (q3 −1)
and r(q2+q−1) ≡ q+1−q2 mod (q3−1). If r = q2−q+1,
then rq ≡ 1+ q− q2 mod (q3 − 1), r(q2 − q+ 1) ≡ 3q2 − q−
1 mod (q3 −1) and r(q2 + q−1) ≡ 3q− q2 −1 mod (q3 −1).
In conclusion, we have

{r,rq,r(q2 − q + 1),r(q2 + q − 1)} mod (q3−1)

,{1,q,q2,q2 − q + 1} mod (q3−1).

Also note that Step 2 is enough to show QM inequiva-
lence between the permutations in Theorem 3.3 and those in
Theorem 3.4. By similar discussions, it can be proved that
each permutation polynomial over finite fields of odd char-
acteristic in this paper is QM inequivalent to all permutation
quadrinomials in [19].

5. The Differential Uniformity

In this section, by using the MAGMA software, we obtain
the differential uniformity δ of some known permutation
trinomials and the permutation quadrinomials proposed in
this paper over F26 , F212 and F36 , respectively. The results

Table 1 The differential uniformity of some permutation polynomials
over F26 .

Table 2 The differential uniformity of some permutation polynomials
over F212 .

Table 3 The differential uniformity of some permutation polynomials
over F36 .

are presented in Tables 1, 2 and 3.
From the above three tables, one can see that the dif-

ferential uniformity of our permutations is good compared
with other known permutation trinomials.

6. Conclusion

In this paper, we construct two classes of permutation quadri-
nomials over Fq3 for q even and two classes of permutation
quadrinomials over Fq3 for q odd, respectively. We also
show that these permutation quadrinomials are QM inequiv-
alent to known permutation quadrinomials. Compared with
the differential uniformity of some known permutation tri-
nomials in recent papers, our permutation quadrinomials are
good.
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