
DOI:10.1587/transfun.2023EAP1159

Publicized:2024/12/06

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Towards Finding Better Differentials on Multiple-Branch-Based
Structures with the SAT Method

Kazuma TAKA∗a), Tatsuya ISHIKAWA∗∗b), Kosei SAKAMOTO∗∗∗c), and Takanori ISOBE∗d),

SUMMARY As low-latency designs tend to have a small number of
rounds to decrease latency, the differential-type cryptanalysis can become
a significant threat to them. In particular, since a multiple-branch-based
design, such as Orthros can have the strong clustering effect on differen-
tial attacks due to its large internal state, it is crucial to investigate the im-
pact of the clustering effect in such a design. In this paper, we present a
new SAT-based automatic search method for evaluating the clustering ef-
fect in the multiple-branch-based design. By exploiting an inherent trait of
multiple-branch-based designs, our method enables highly efficient evalua-
tions of clustering effects on this-type designs. We apply our method to the
low-latency PRF Orthros, and show a best differential distinguisher reach-
ing up to 7 rounds of Orthros with 2116.806 time/data complexity and 9-
round distinguisher for each underlying permutation which is 2 more rounds
than known longest distinguishers. Besides, we update the designer’s secu-
rity bound for differential attacks based on the lower bounds for the num-
ber of active S-boxes, and obtain the optimal differential characteristic of
Orthros, Branch 1, and Branch 2 for the first time. Consequently, we
improve the designer’s security bound from 9/12/12 to 7/10/10 rounds for
Orthros/Branch 1/Branch 2 based on a single differential characteristic.
Moreover, we define Orthros-like three-branch-based PRF in order to in-
vestigate the impact of the clustering effect when increasing the number of
branches. Based on the results of our evaluation, we show that adding one
more branch makes the clustering effect easy to happen, but is promising to
enhance the security against differential cryptanalysis.
key words: Differential cryptanalysis, Clustering effect, Multiple-branch-
based designs, Orthros, SAT-based automatic search method.

1. Introduction

The design of lightweight cryptography is one of the prime
topics in the field of symmetric cryptography, particularly
since the emergence of the first lightweight block cipher
PRESENT [1]. Many lightweight proposals tend to put ef-
fort into reducing the hardware circuit size as small as possi-
ble similar to PRESENT. Aside from minimizing the hard-
ware circuit, minimizing the latency of the overall design has
also become an area of emphasis. Since a quick response
time of encryption is desirable for some applications, such
as automotive communication, memory bus encryption, and
industrial control network, low-latency designs are recently
getting more attention.

PRINCE, proposed by Borghoff et al. [2], is the first

†University of Hyogo
†WDB KOUGAKU Co.,Ltd
†Mitsubishi Electric Corporation

a) E-mail: kazuma.taka.cpsy@gmail.com
b) E-mail: t.ishikawa037@gmail.com
c) E-mail: Sakamoto.Kosei@dc.MitsubishiElectric.co.jp
d) E-mail: takanori.isobe@ai.u-hyogo.ac.jp

low-latency design that has reflection construction based on
the substitution-permutation network (SPN). A low latency
tweakable block cipher QARMA, proposed by Avanzi [3],
follows this design strategy, and both PRINCE and QARMA
realize very small latency. MIDORI, proposed by Banik et
al. [4], is an SPN-based block cipher targeting low-energy
applications, while its latency is quite small. Since SPN-
based designs seem more promising in terms of latency than
Feistel-based design, several other low-latency designs, such
as Mantis [5], Orthros [6], SPEEDY [7] also have an SPN-
based construction.

For these low-latency designs, a thorough security anal-
ysis is essential, as these designs typically feature a small
number of rounds to achieve low latency. Among the va-
riety of attack vectors, a differential-type cryptanalysis has
emerged as the most significant threat for low-latency de-
signs because the growth of the differential probability is not
sufficient at the beginning of the rounds. In fact, the best at-
tack on the first low-latency design PRINCE is a (multiple)
differential cryptanalysis, and one variant of SPEEDY and
MANTIS are broken by the differential cryptanalysis [8],
[9]. Besides, the designers of Orthros and SPEEDY pay a
lot of effort into ensuring a resistance against the differential
cryptanalysis. Given these facts, a thorough security analy-
sis of differential-type cryptanalysis is essential for such low-
latency designs.

Among the low-latency designs, Orthros has an inter-
esting construction in which the output is computed by sum-
ming the outputs of two keyed permutations. Such two-
branch-based designs do not have a decryption function,
namely, these designs are PRF not PRP, but they can still
be applied into many popular modes, e.g., CTR, CMAC, and
GCM. The advantage of a two-branch construction in terms
of security is that it is difficult to add the key-recovery rounds
for the attacker, as discussed in [6]. This means that ad-
ditional rounds required for a security margin can be small
in these designs, which directly results in a reduction in la-
tency. Therefore, such multiple-branch-based designs seem
promising for the construction of future ultra-low-latency
PRFs.

A downside of such a two-branch-based construction is
the difficulty in evaluating their security. Specifically, Or-
thros is based on two “weak” keyed permutations, i.e., each
keyed permutation cannot be used as a standalone PRP by
itself. This makes a discussion in the context of the prov-
able security so hard that the authors of Orthros carefully
investigated the security of the sum of permutations from the

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

perspective of cryptanalysis [6]. In the designer’s analysis,
the most powerful attack on Orthros is the integral crypt-
analysis, which can distinguish up to 7 rounds. For the dif-
ferential cryptanalysis, they only presented the lower bound
for the number of active S-boxes (AS) for each branch inde-
pendently, and provide the lower bound for # AS as the sum
of them. More specifically, they independently evaluate the
lower bound for # AS in the first four rounds in a bit-wise
level and the remaining eight rounds in a nibble-wise level
for each Branch 1 and Branch 2. Then, they provide the
lower bound for # AS ofOrthros as the sum of these indepen-
dent four lower bounds. Hence, the provided security bound
is rough in their work. Additionally, they only considered
a single characteristic, not taking the clustering effect into
consideration in their work. Given that the two-branch-based
construction seems easy to happen the clustering effect due
to a large space in its internal state, evaluating the clustering
effect on such construction is of great importance.

Our Contribution. In this paper, we study how to ef-
ficiently evaluate the clustering effect on multiple-branch-
based designs such as Orthros. With the SAT-based auto-
matic search tool for differential characteristics proposed by
Sun et al. [10], we can efficiently evaluate the optimal dif-
ferential characteristic. However, evaluating the clustering
effect is challenging task, particularly for the designs with a
large state size, such as multiple-branch-based designs. To
address this issue, we propose a new method for efficiently
evaluating the clustering effect onmultiple-branch-based de-
signs by exploiting an inherent trait of these designs. Our
main contributions are as follows:

– We present a SAT-based automatic search method for
evaluating the clustering effect on multiple-branch-
based designs. This method can evaluate the cluster-
ing effect on a given pair of input and output differ-
ences, which is called differential in literature, not only
two-branch-based designs such as Orthros, but also
multiple-branch-based designs without limitation of the
number of branches. A general approach to evaluate the
clustering effect by automatic search tools is to count
the differential characteristics of the entire construc-
tion under a given differential. The drawback of the
general approach is that the computational cost will be-
come heavy due to the large size of the internal state
in a multiple-branch-based design. This drawback be-
comes more serious with the number of branches in-
creasing. To address this issue, our method indepen-
dently evaluates the clustering effect on each branch un-
der a give differential. It allows us to efficiently obtain
many differential characteristics that contribute to the
probability of a given differential. While run-time is
traditionally used as a metric to evaluate the efficiency
of automatic search tools, this metric is highly depen-
dent on the computational environment and mathemat-
ical solver used. Therefore, we introduce a new metric,
“the number of invocations of a SAT solver (#𝑆𝐴𝑇)” to
assess the efficiency of the evaluation for the clustering

effect by SAT. Since the evaluation of the clustering ef-
fect requires multiple invocations of a SAT solver, and
these invocation dominates the most part of the evalua-
tion, we can fairly assess the efficiency of each method
by #𝑆𝐴𝑇 to a certain extent.

– We improve the designer’s security bound of Orthros
against the differential cryptanalysis. We first show the
strict lower bound for # AS for the first time and up-
date the designer’s security bound based on # AS. More
specifically, in the designer’s evaluation, the 9-round
Orthros is expected to resist differential cryptanalysis
based on # AS, while we show that 8 rounds is enough.
We also improve the designer’s bound by 1 round for
Branch 1 and Branch 2, both of which are the under-
lying keyed permutations of Orthros. Furthermore, we
reveal the optimal differential characteristics for up to 7
rounds of Orthros and full rounds of each branch for the
first time. Our result shows that the distinguishing at-
tack can be applied to 6/9/9 rounds of Orthros/Branch
1/Branch 2. Table 1 summarizes these results.

– We apply our method to 7 rounds of Orthros whose the
probability of the optimal differential characteristic is
2−136. To demonstrate the efficiency of our method,
we compare our method with the general one. As a
result, our method yields a significant improvement,
raising the probability of a differential corresponding
to the optimal differential characteristic from 2−136 to
2−116.806, whereas the conventional method can only
achieve 2−127.395. Moreover, our method improves #
SAT and a practical run-time 93.6% and 99.5% in com-
parison to the general method, respectively. It should be
mentioned that our result is the best distinguishing at-
tack to Orthros. Table 2 shows the result of our method
in comparison with the previous distinguishing attack
to Orthros.

– To investigate the influence of increasing the number
of branches on the clustering effect and the security
against differential cryptanalysis, we apply our method
to Orthros-like three-branch-based PRF whose third
branch has the same security property as the branches
in Orthros. As a result, we find that increasing the num-
ber of branches certainly enhances the clustering effect
in multi-branch-based construction. However, we also
find that increasing the number of branches is reason-
able strategy to improve the security against differential
cryptanalysis although the clustering effect becomes
easy to happen as increasing the number of branches.
It is because the differential probability is rapidly de-
creasing by adding one more branch, which offsets and
outperforms the clustering effect.

As amultiple-branch-based design can dramatically de-
crease latency, it is a promising approach for the develop-
ment of ultra-low-latency designs. Therefore, we believe that
our method has the potential to be widely utilized in future
multiple-branch-based designs and aid in the examination of
the behavior of a differential in such designs.

TAKA et al.: TOWARDS FINDING BETTER DIFFERENTIALS ON MULTIPLE-BRANCH-BASED STRUCTURES WITH THE SAT METHOD
3

Table 1 Summary of our results for the AS-based evaluation and optimal differential characteristics
to Orthros, Branch 1, and Branch 2.

Lower bounds for the number of active S-boxes

Target
Rounds 1 2 3 4 5 6 7 8 9 10 11 12 Ref.(full round)

Branch 1 1 4 6 8 9 12 16 24 33 44 58 68 [6]
1 4 6 8 11 18 28 37 48 58 67 80 Sect. 4.3.1

Branch 2 1 4 5 8 9 12 16 24 33 44 59 68 [6]
1 4 5 8 10 16 26 36 49 58 70 80 Sect. 4.3.1

Orthros 2 8 12 16 18 24 36 56 84 88 117 136 [6]
2 8 12 16 22 36 58 79 98 129 188 196 Sect. 4.3.1

Weight of optimal differential characteristics
Branch 1 2 8 14 19 29 41 61 91 113 142 160 181 Sect. 4.3.2
Branch 2 2 8 13 19 26 38 58 82 117 136 163 180 Sect. 4.3.2
Orthros 4 16 29 42 59 90 136 - - - - - Sect. 4.3.2

Table 2 Summary of the distinguishing attacks to Orthros, Branch 1,
and Branch 2.

Target Round Method Time/Data Ref.

Branch1 7 Integral 2127.0 [6]
9 Differential 2113.0 Sect. 4.3.2

Branch2 7 Integral 2127.0 [6]
9 Differential 2117.0 Sect. 4.3.2

Orthros 7 Integral 2127 [6]
7 Differential 2116.8 Sect. 4.6

Outline. The organization of this paper is as follows: In
Sect. 2, we provide a brief explanation of differential crypt-
analysis and the SAT-based automatic evaluation for differ-
ential characteristics and differentials. In Sect. 3, we first
describe our target construction. We then introduce a new
metric # SAT for assessing the efficiency of the evaluation
of the clustering effect. Subsequently, we elaborate our SAT-
based automatic method for evaluating the clustering effects
in multiple-branch-based designs. In Sect. 4, we first evalu-
ate the lower bound fot # AS for Orthros and each branch in
Orthros, and search for the optimal differential characteris-
tics for them. Then, we apply our and the general method to
Orthros and compare the efficiency and probability. Addi-
tionally, we discuss the good parameters in our method and
further improve the probability with a found good parameter.
In Sect. 5, we apply our method to the three-branch-based
PRF. Lastly, we conclude this paper in Sect. 6.

2. Preliminary

2.1 Differential Cryptanalysis

The differential cryptanalysis, proposed by Biham and
Shamir, is one of the most powerful cryptanalysis techniques
for symmetric-key primitives [11]. In the differential crypt-
analysis, the attacker attempts to find a pair of input and
output differences with a high probability, i.e., 𝐸𝐾 (Δ𝑃) =
Δ𝐶, (Δ𝐶 = 𝐶 ⊕ 𝐶′,Δ𝑃 = 𝑃 ⊕ 𝑃′) occurs with high proba-
bility on a symmetric-key primitives 𝐸𝑘 , where (𝑃, 𝑃′) and
(𝐶′, 𝐶) denote a pair of plaintexts and ciphertexts, respec-
tively. A pair of input and output differences (Δ𝑃,Δ𝐶) is
called a differential in the differential cryptanalysis. The
probability of a differential, called a differential probability,

is calculated by investigating all pairs of plaintext following
Δ𝑃 = 𝑃 ⊕ 𝑃′ on 𝐸𝐾 . We define a differential and its proba-
bility on a symmetric-key primitive 𝐸𝐾 as follows.

Definition 1 (Differential): A differential is a pair of in-
put and output differences. The probability of a differential
(Δ𝑃,Δ𝐶) is calculated as follows:

DP(Δ𝑃 𝐸𝐾−−→ Δ𝐶) = Pr
𝑃
(𝐸𝐾 (𝑃) ⊕ 𝐸𝐾 (𝑃 ⊕ Δ𝑃) = Δ𝐶),

where 𝑃 are chosen from a uniformly distributed random
variable.

Generally, calculating such a probability is computa-
tionally infeasible in most symmetric-key primitives. There-
fore, a differential characteristic is usually employed to es-
timate a differential probability. Let 𝐸𝐾 be a 𝑟-round iter-
ated block cipher as 𝐸𝐾 (·) = 𝑓𝑟 (·) ◦ 𝑓𝑟−1 (·) ◦ · · · ◦ 𝑓1 (·).
A differential characteristic can be defined as a sequence of
differences over all rounds in 𝐸𝐾 , and its probability can be
estimated as a product of differential probabilities of each
round under the well-knownMarkov cipher assumption [12].
We give the definition of a differential characteristic and its
probability on a block cipher 𝐸𝐾 as follows.

Definition 2 (Differential characteristic): A differential char-
acteristic is a sequence of differences over all rounds in a
block cipher 𝐸𝐾 as follows:

C = (c0
𝑓1−→ c1

𝑓2−→ · · · 𝑓𝑟−−→ c𝒓) B (c0, c1, · · · , c𝒓),

where (c0, c1, · · · , c𝒓) denotes differences of the output of
each round, i.e., c0 and c𝒓 denote differences of a plaintext
and ciphertext, respectively. The probability of a differential
characteristic C is estimated as follows:

DP(C) =
𝑟∏
𝑖=1

DP(c𝒊−1
𝑓𝑖−→ c𝒊).

From the attacker aspect, the attacker is interested in
only a differential, that is, information about internal differ-
ences is not necessary. Hence, the attacker can construct a
differential by gathering the differential characteristics shar-
ing the same (c0, c𝒓) and try to enhance the probability of a

4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

differential (c0, c𝒓). Such an endeavor is called “considering
the clustering effect”. In that case, we can view a differen-
tial (c0, c𝒓) as a bunch of multiple differential characteris-
tics. Therefore, the probability of (c0, c𝒓) can be calculated
by sum of probabilities of all differential characteristics con-
structing (c0, c𝒓) as follows:

𝐷𝑃(c0
𝐸𝐾−−→ c𝒓) ≈

∑
C∈C𝒂𝒍𝒍

𝐷𝑃(C),

where C𝒂𝒍𝒍 denotes the set of all differential characteristics
constructing a differential (c0, c𝒓).

From the viewpoint of the designer, guaranteeing the
upper bound of 𝐷𝑃(C) is enough instead of showing the op-
timal differential characteristic. Many modern block ciphers
take an approach to constructing non-linear layers only by an
S-box. Let 𝐷𝑃𝑠 be the maximum differential probability of
an S-box, we can estimate the upper bound of 𝐷𝑃(C) by the
lower bound for # AS, i.e., 2−(𝐷𝑃𝑠×#𝐴𝑆) ≤ 2−𝑛 is sufficient
to resist against the distinguishing attack, where 𝑛 denotes
the block size. Nowadays, it is common to evaluate the opti-
mal differential characteristic and the lower bound for # AS
with automatic search tools by MILP, SAT/SMT, and CP.

Finally, We define “weight” which is frequently used to
express the probability of a differential characteristic and a
differential in this paper.

Definition 3 (Weight): Aweight𝑤 is a negative value of the
binary logarithm of the differential probability DP defined as
follows:

𝑤 = − log2 𝐷𝑃.

2.2 Automatic Search Tools for Differential Characteristics
and Differentials

Automatic search tools by MILP, SAT/SMT, and CP have
been very popular for evaluating a differential characteristic
and differential [10], [13]–[17]. The advantage of such auto-
matic search tools compared to conventional Matsui’s algo-
rithm is the simplicity of implementation and its efficiency.
As the procedure of implementing these automatic search
tools, we first convert the differential propagation over all
operations in a cipher into their languages, such as linear in-
equalities and a Conjunctive Normal Form (CNF), and then
the minimum weight can be obtained by minimizing the ob-
jective function.

Several previous works on automatic search tools try
to find a better differential not only the optimal differential
characteristic [10], [14], [18], [19]. To construct a better dif-
ferential, these works first search for the optimal differential
characteristic and then construct a differential based on it.
This strategy comes from the observation that the most con-
tributing differential characteristics to increasing the proba-
bility of a differential are the optimal one. As mentioned in
Sect. 2.1, since a differential can be seen as a bunch of mul-
tiple differential characteristics sharing the same input and

output differences, we enumerate these differential charac-
teristics by automatic search tools. Thus, the probability of
such a differential constructed by multiple differential char-
acteristics depends on the number of differential character-
istics and their probabilities (weights). Because The number
of differential characteristics that we can find highly depends
on the efficiency of a solver and how to count such differen-
tial characteristics, sophisticating a counting strategy is im-
portant for constructing a differential.

2.3 SAT-Based Automatic Search for Differential Charac-
teristics

2.3.1 Satisfiability problem

A formula consisting of only AND(∧),OR(∨),NOT(¬) is
called Boolean formulas. In a SAT problem, we judge
whether a given Boolean formula is “SAT”, which means
there is an assignment of Boolean variables satisfying a
given Boolean formula, or not. A SAT problem is widely
known as NP-complex [20], however, nowadays many SAT
solvers can solve a SAT problem efficiently thanks to numer-
ous studies on a SAT.

In a Boolean formula, we call a Boolean variable 𝑥 and
its negation ¬𝑥 as a literal. These Boolean variables con-
struct CNF by the conjunction (∧) of the disjunction (∨) on
themselves such as

∧𝑖
𝑎=0 (

∨ 𝑗𝑎
𝑏=0 𝑐𝑖, 𝑗), where 𝑐𝑖, 𝑗 is Boolean

variables. We call each disjunction
∨ 𝑗𝑎
𝑏=0 𝑐𝑖, 𝑗 in a Boolean

formula a clause. It is known that any Boolean formulas can
be expressed by CNF.

2.3.2 Overview of SAT modeling

Since our method is implemented as the real SAT method
rather than an SMT method, we construct SAT models to
depict a differential propagation over the basic operations
outlined in the work of Sun et al. [17]. A SAT model of
Orthros can be divided into 4bit S-box (nonlinear transfor-
mation), Matrix Multiplication (linear transformation) and
Boolean cardinality constraints. Therefore, we only describe
SAT models (clauses) of these operations.

2.3.3 S-box

Let (𝑎0, 𝑎1, ..., 𝑎𝑖−1) and (𝑏0, 𝑏1, ..., 𝑏𝑖−1) be the input and
output differences of an 𝑖-bit S-box, respectively. To express
the weight through an S-box, we need to introduce addi-
tional binary variables w = (𝑤0, 𝑤1, ..., 𝑤 𝑗−1) where 𝑗 is
the maximum weight of the differential propagation in an S-
box. With the above variables, we introduce a function 𝑔 as
follows:

𝑔(𝑎, 𝑏, 𝑤) =
{

1 if 𝑃𝑟 (𝑎 → 𝑏) = 2−
∑ 𝑗−1
𝑞=0 𝑤𝑞 ,

0 otherwise.

Then, we extract the set 𝐴 that contains all vectors satisfying
𝑓 (𝑥, 𝑦, 𝑧) = 0 as follows:

TAKA et al.: TOWARDS FINDING BETTER DIFFERENTIALS ON MULTIPLE-BRANCH-BASED STRUCTURES WITH THE SAT METHOD
5

𝐴 = {(𝑥, 𝑦, 𝑧) ∈ F2𝑖+ 𝑗
2 | 𝑓 (𝑥, 𝑦, 𝑧) = 0}.

Since 𝐴 is the set of invalid patterns in the S-box model, it is
excluded from the set of constituent clauses by the following
formula:
𝑖−1∨
𝑐=0
(𝑎𝑐⊕𝑥𝑐)∨

𝑖−1∨
𝑑=0
(𝑏𝑑⊕𝑦𝑑)∨

𝑗−1∨
𝑒=0
(𝑤𝑒⊕ 𝑧𝑒) = 1, (𝑥, 𝑦, 𝑧) ∈ 𝐴.

The remaining vectors are the same set of valid patterns as
𝐴̄. Thus, these clauses extract differential propagations with
corresponding weights on 𝑖-bit S-boxes. Here, |𝐴| denotes
the number of vectors in the set 𝐴, and the solution space of
the clause |𝐴| for (𝑎, 𝑏, 𝑤) in the above equation is identical
to the solution space of the function ℎ below:

ℎ(𝑎, 𝑏, 𝑤)

=
|𝐴|−1∧
𝜂=0

(
𝑖−1∨
𝑐=0
(𝑎𝑐 ⊕ 𝑥𝑐𝜂) ∨

𝑖−𝑖∨
𝑑=0
(𝑏𝑑 ⊕ 𝑦𝑑𝜂) ∨

𝑗−1∨
𝑒=0
(𝑤𝑒 ⊕ 𝑧𝑒𝜂)

)
= 1.

This Boolean function can be reformulated into a product-
of-sum expression:

ℎ(𝑎, 𝑏, 𝑤) =∧
(𝑥,𝑦,𝑧) ∈F2𝑖+ 𝑗2

©­«𝑔(𝑥, 𝑦, 𝑧) ∨
𝑖−1∨
𝑐=0
(𝑎𝑐 ⊕ 𝑥𝑐𝜂) ∨

𝑖−𝑖∨
𝑑=0
(𝑏𝑑 ⊕ 𝑦𝑑𝜂) ∨

𝑗−1∨
𝑒=0
(𝑤𝑒 ⊕ 𝑧𝑒𝜂)

ª®¬ .

The minimum number of clauses min(ℎ(𝑎, 𝑏, 𝑤)) can be
extracted using a specific software, such as Logic Friday†.
Thus, the clauses to represent the differential propagation
considering the weight of the S-box are as follows:

C𝑠𝑏𝑜𝑥𝐷𝐶 ← min(ℎ(𝑎, 𝑏, 𝑤))

When we evaluate the lower bound for # AS, we only
need to determine whether an S-box is active or not. There-
fore, we introduce a binary variable 𝑠 ∈ {0, 1} instead of w.
The rest of procedure is the same as in that for a probability
model.

2.3.4 Matrix Multiplication

We first give the clauses to represent an XOR operation since
the matrix operation can be decomposed into multiple XOR
operations.

2.3.5 XOR operation

Let (𝑎0, 𝑎1, ..., 𝑎𝑖−1) and 𝑏 be the input and output of an 𝑖
input XOR operation, respectively, i.e., 𝑎0⊕𝑎1⊕· · ·⊕𝑎𝑖−1 =
𝑏. Additionally, let 𝑋 be a set satisfying {(𝑥0, 𝑥1,, 𝑥𝑖) ∈
F𝑖+12 | (𝑥0 ⊕ 𝑥1 ⊕ . . . 𝑥𝑖) = 1}. The clauses to represent the
differential propagation of the 𝑖-input XOR operation are as
follows:

C𝑥𝑜𝑟 ← (𝑎0 ⊕ 𝑥0) ∨ (𝑎1 ⊕ 𝑥1) ∨ . . . (𝑎𝑖−1 ⊕ 𝑥𝑖−1) ∨ (𝑏 ⊕ 𝑥𝑖)
for all (𝑥0, 𝑥1, . . . , 𝑥𝑖) ∈ 𝑋

For a matrix multiplication, we can decompose it into sev-
eral XOR operations. For example, the binary matrix used
†https://web.archive.org/web/20131022021257/http:

//www.sontrak.com/

in Orthros can be decomposed as follows:

©­­­«
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

ª®®®¬
©­­­«
𝑥0
𝑥1
𝑥2
𝑥3

ª®®®¬ =
©­­­«
𝑥1 ⊕ 𝑥2 ⊕ 𝑥3
𝑥0 ⊕ 𝑥2 ⊕ 𝑥3
𝑥0 ⊕ 𝑥1 ⊕ 𝑥3
𝑥0 ⊕ 𝑥1 ⊕ 𝑥2

ª®®®¬ .
Since we can view a matrix multiplication as several XOR
operations from the above example, the clauses to represent
a matrix operation are as follows:

C𝑚𝑎𝑡𝑟𝑖𝑥 ← C𝑥𝑜𝑟 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑋𝑂𝑅𝑠 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑 𝑓 𝑟𝑜𝑚 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥.

2.3.6 Boolean Cardinality Constraints

To evaluate the lower bound for # AS and the total weight
of a differential characteristic, we need to sum all variables
to express the weight or AS over an entire model. Boolean
cardinality constraints are widely used to implement such a
function.

Let 𝑋𝑛 = (𝑥0, 𝑥1, ..., 𝑥𝑛−1) where 𝑥𝑖 ∈ {0, 1} be a se-
quence of literals, in which 1 and 0 denote true and false,
respectively. The following equation is called a Boolean car-
dinality constraint on 𝑋𝑛:

𝑛−1∑
𝑖=0

𝑥𝑖 ≤ 𝑘,

where 𝑘 is an integer value.
We employ Totalizer [21] to realize Boolean cardinal-

ity constraints. In this paper, we use C𝑠𝑢𝑚(𝑘) as the clauses
to represent

∑𝑛−1
𝑖=0 𝑥𝑖 ≤ 𝑘 . Besides, we use C𝑠𝑢𝑚(𝑘) as the

clauses to represent
∑𝑛−1
𝑖=0 𝑥𝑖 ≥ 𝑘 .

2.3.7 Joint SAT models

We need to remove the obvious differential propagation such
that all input differences are zero. Let (𝑎0, 𝑎1, ..., 𝑎𝑖−1)
be Boolean variables to express the input differences. We
can remove such a differential propagation by the following
clauses:

C𝑖𝑛𝑝𝑢𝑡 ← 𝑎0 ∨ 𝑎1 ∨ · · · ∨ 𝑎𝑖−1.

With the clauses to represent each operation described so far,
we can construct an entire SAT modelM𝑆𝐴𝑇 as follows:

M𝑆𝐴𝑇 ← (C𝑠𝑏𝑜𝑥𝐷𝐶 , C𝑚𝑎𝑡𝑖𝑟 𝑥 , C𝑖𝑛𝑝𝑢𝑡 , C𝑠𝑢𝑚(𝑘)).

If a solver returns “UNSAT”, there are no assignments satis-
fyingM𝑆𝐴𝑇 , i.e., the lower bound for # AS or the minimum
weight outnumbers 𝑘 . In this case, we increment 𝑘 and re-
peat this procedure until a solver returns “SAT”. If a solver
returns “SAT”, there are assignments satisfyingM𝑆𝐴𝑇 , i.e.,
we find the lower bound for # AS or the minimum weight 𝑘 .

2.3.8 Construct a differential

Function Solver(): The function accepts an input in the

6
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Algorithm 1: Basic functions for the construction
of a differential
1 Function Solver(M)
2 begin
3 if M = “SAT” then
4 return (“SAT′′ ,M𝑣𝑎𝑟)
5 else
6 return (“UNSAT′′ , ∅)

7 Function SETmodel (𝑘)
8 begin
9 M𝑆𝐴𝑇 ← (C𝑠𝑏𝑜𝑥𝐷𝐶 , C𝑚𝑎𝑡𝑖𝑟𝑥 , C𝑖𝑛𝑝𝑢𝑡 , C𝑠𝑢𝑚(𝑘))

10 returnM𝑆𝐴𝑇

11 Function SATdiff.char (M)
12 begin
13 if Solver(M) = (“SAT′′ ,M𝑣𝑎𝑟) then
14 extract Cr fromM𝑣𝑎𝑟

15 return (“SAT”, Cr)
16 else
17 return (“UNSAT”, ∅)

form of a SAT model, denotated as M. Its purpose
is to ascertain whether the given SAT model is satis-
fiable (i.e., ”SAT”) or unsatisfiable (i.e., ”UNSAT”).
Upon determining that the model is satisfiable, the
function returns ”SAT” and a Boolean variable, de-
noted as M𝑣𝑎𝑟 . Additionally, if the SAT solver (de-
noted as Solver()) returns ”SAT,” the function returns
the Boolean variables and the output difference. Con-
versely, if the model is not satisfiable, the function re-
turns ”UNSAT” and ∅.

Function SETmodel (): This function accepts two inputs: the
weight 𝑘 and the number of target rounds 𝑟 . Its purpose
is to set a SAT model, which is then used to ascertain
whether there exists a differential characteristic with a
weight of at most 𝑇 on the 𝑟-round cipher. The function
returns two outputs: a SAT model, denoted as 𝑀𝑆𝐴𝑇 ,
and the Boolean variables associated with this model,
which are represented as 𝑀𝑣𝑎𝑟 .

Function SATdiff.char (): This function accepts as input a
SAT model, denoted by the symbol ”M. The function
receives the solution from the SAT solver and extracts
from its variables the difference in inputs at each round
and the difference in outputs from Boolean variables.

2.4 Clustering Effect

As described in Sect. 2.1, we need to gather multiple differ-
ential characteristics sharing the same input and output dif-
ferences to evaluate the clustering effect. Sun et al. show the
easy way to realize such enumeration by a SAT [10].

Let (𝑎 𝑗 ,0, 𝑎 𝑗 ,1, ..., 𝑎 𝑗 ,𝑖−1) be Boolean variables to ex-
press the differences in the input of the 𝑗-th round, where 𝑖 is
the position of bits. With an 𝑟-round differential characteris-
tics 𝐶 = (𝑐0, 𝑐1, ..., 𝑐𝑟), where 𝑐𝑚 = (𝑐𝑚,0, 𝑐𝑚,1, ..., 𝑐𝑚,𝑖−1),

we can fix the input and output differences to 𝑐0 and 𝑐𝑟 , re-
spectively, by the following clauses:

C𝑐𝑙𝑢𝑠𝑡 ←
{
𝑎0,𝑛 ⊕ 𝑐0,𝑛 𝑓 𝑜𝑟 0 ≤ 𝑛 ≤ 𝑖 − 1.
𝑎𝑟 ,𝑛 ⊕ 𝑐𝑟 ,𝑛 𝑓 𝑜𝑟 0 ≤ 𝑛 ≤ 𝑖 − 1.

To avoid solving a SAT model with the same internal dif-
ferential propagation (𝑐1, 𝑐2, ..., 𝑐𝑟−1) multiple times during
the evaluation of the clustering effect, we add the following
clauses to a SAT model:

C𝑐𝑙𝑢𝑠𝑡 ←
𝑟−1∨
𝑥=1

𝑖−1∨
𝑦=0
(𝑎𝑥,𝑦 ⊕ 𝑐𝑥,𝑦)

These clauses will be repeatably added to a SATmodel,
wherever we find another internal differential propagation.

3. Efficient Strategy to Evaluate the Clustering Effect
for a Multiple-Branch-Based Design

In differential cryptanalysis, a differential is more impor-
tant than a single differential characteristic. Generally, to
search for a differential with a high probability, we evaluate
the clustering effect, i.e., finding multiple differential char-
acteristics sharing the same input and output differences.

A generic strategy to evaluate the clustering effect is
to count the number of differential characteristics that share
the same input and output differences while simultaneously
eliminating identical internal differences whenever a differ-
ential characteristic is found. As can been seen in the previ-
ous works [10], [14], [18], [19], this strategy works well on
a single-branch-based design. In contrast, when consider-
ing a multiple-branch-based design, such as Orthros, the in-
ternal state size increases proportionately to the number of
branches, which makes the computational cost of the evalu-
ation expensive.

To address this issue, we propose an efficient search
strategy for evaluating the clustering effect on the multiple-
branch-based designs. The underlying concept is to indepen-
dently evaluate the clustering effect of each branch and then
construct differential characteristics for the entire construc-
tion.

In the reminder of this section, we first define our target
construction and give a new metric for fairly comparing a
cost of our method with that of the general one. Then, we
provide an overview of our strategy and a detailed method.

3.1 Target Construction

We define the round function of a multiple-branch-based
design. We extend the construction of Orthros straight-
forwardly and define the 𝑛-branch-based design. Figure 1
shows the overview of the 𝑛-branch-based design.

Let 𝐸𝐾𝑖 (·), 𝐾 , and 𝑀 be any cryptographic function
under key 𝐾𝑖 , which is called “branch 𝑖” in this work, a secret
key, and plaintext, respectively. The encryption algorithm of
𝑛-branch-based design 𝐸 (·) is defined as follows:

TAKA et al.: TOWARDS FINDING BETTER DIFFERENTIALS ON MULTIPLE-BRANCH-BASED STRUCTURES WITH THE SAT METHOD
7

Branch 1 Branch 2 Branch n

(Key,Plaintext)

Ciphertext

Fig. 1 Overview of 𝑛-branch-based design.

𝐸 (𝐾, 𝑀) :=
𝑛⊕
𝑖=1

𝐸𝐾𝑖 (𝐾, 𝑀).

We do not give details about a key scheduling since it does
not affect to all evaluations in this work.

3.2 How to Assess the Efficiency of the Evaluation of the
Clustering Effect

Generally, the efficiency of automatic search methods is
measured by their practical run-time during evaluations.
However, a practical run-time highly depends on the com-
putational environment and the efficiency of solvers. In par-
ticular, for a automatic search tools based on a SAT, we have
many choices of excellent SAT solvers owing to numerous
dedicated works on a SAT. Thus, it seems important to in-
troduce a new metric for automatic search tools based on a
SAT.

In the evaluation of the clustering effect, we need to
solve a SAT problemmultiple times as explained in Sect. 2.3
This entails repeatedly invoking a SAT solver, which con-
stitutes the majority of the cost associated with the evalua-
tion of the clustering effect. The cost of such a single in-
vocation, of cause, depends on the total number of clauses
and Boolean variables in a solved SAT problem. Generally,
the total number of clauses and variables does not vary sig-
nificantly among different evaluation methods for the same
target design, as the majority of clauses and variables are
those that express the propagation of internal differences and
weight in non-linear operations, both of which are typically
common across different evaluation methods for the same
target design.†

Hence, we introduce the number of invocations of a
SAT solver to evaluate the clustering effect as a new metric
as follows.

Definition 4 (the number of invocations of a SAT solver “#𝑆𝐴𝑇”):
The number of invocations of a SAT solver #𝑆𝐴𝑇 is defined
†The number of clauses and variables in our method is smaller

than those in the general method, since our method essentially eval-
uate the clustering effect on each branch not an entire design while
the general method evaluate it on an entire design. Therefore, a
practical run-time can be short in our method even if the number of
solved SAT problems is the same as that of the general method.

as the total number of “SAT” and “UNSAT” that a solver
returns during the evaluation of the clustering effect.

Note that #𝑆𝐴𝑇 does not contain the invocation for ob-
taining a differential characteristic that is used as a starting
point for evaluating the clustering effect.

Suppose that we evaluate the clustering effect on a spe-
cific differential corresponding to the optimal differential
characteristic with weight 𝑊𝑚𝑖𝑛 by the general method. In
this approach, we first enumerate the differential character-
istic with weight𝑊𝑚𝑖𝑛 and repeat this procedure with incre-
menting weight. To increase the probability of this differen-
tial to 2−𝑊𝑚𝑖𝑛+𝛼, #𝑆𝐴𝑇 must be at least 2𝛼 +1. Specifically,
a solver returns “SAT” 2𝛼 times, which indicates the exis-
tence of 2𝛼 differential characteristics with weight𝑊𝑚𝑖𝑛, and
“UNSAT” once, which indicates the absence of further dif-
ferential characteristics with weight 𝑊𝑚𝑖𝑛. It must be men-
tioned that this is the best case of the general strategy be-
cause it assumes that the differential is constructed solely by
the optimal differential characteristics (it usually hardly ever
happens).

We emphasis that this metric should be employed only
when evaluating the efficiency of the evaluation of the clus-
tering effect. This is because that our assumption that a
practical run-time depends on the number of clauses and
variables in a SAT problem works only when evaluating the
clustering effect, as we fix the input and output differences.
In contrast, when evaluating optimal differential characteris-
tics, the practical run-time is also influenced by other factors
in many cases.

In addition to #𝑆𝐴𝑇 , we also employ a runtime of the
entire evaluation as a metric of the efficiency, similar to pre-
vious works.

3.3 Our Strategy

Let 𝑁𝑐ℎ𝑎 be the total number of differential characteristics
that contribute to the probability of a differential. For one-
branch-based designs, we can at most obtain a one differ-
ential characteristic by solving a one SAT problem, i.e., we
can obtain differential characteristics followed by 𝑁𝑐ℎ𝑎 =
O(𝑁𝑠𝑎𝑡) when #𝑆𝐴𝑇 = 𝑁𝑠𝑎𝑡 . This is also observed in the
case of multiple-branch-based designs. This natural obser-
vation is the basis for most works considering the clustering
effect, and it works well in their works. We call this strategy
the “general strategy” in this work.

A drawback of the general strategy in the case of a
multiple-branch-based design is that the computational cost
becomes expensive as the number of branches increases,
as the number of clauses and variables increase linearly in
multiple-branch-based designs. Consequently, evaluating
the clustering effect with the general strategy can get chal-
lenging when the number of branches exceeds two and the
number of rounds is large.

To address this issue, we introduce a new strategy for
evaluating the clustering effect onmultiple-branch-based de-
signs. The essence of our strategy is to independently eval-

8
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

uate the clustering effect in each branch and then construct
differential characteristics for an entire design using these re-
sults. This strategy leverages the inherent trait of multiple-
branch-based designs in which each differential characteris-
tic in each branch corresponds to all differential characteris-
tics in other branches under the same input and output differ-
ences. This can significantly increase the number of charac-
teristics that contribute to the probability of a differential and
ultimately decrease #𝑆𝐴𝑇 in the overall evaluation. Suppose
we evaluate the clustering effect of an 𝑛-branch-based design
with a pre-found optimal differential characteristic, we can
obtain 𝑁𝑐ℎ𝑎 = O((𝑁𝑠𝑎𝑡)𝑛) differential characteristics of the
entire design when #𝑆𝐴𝑇 = 𝑁𝑠𝑎𝑡 in each branch†. We illus-
trate our strategy for enumerating the differential character-
istics in Fig. 2. In Fig. 2, we search for differential character-
istics in parallel based on each branch containing red, blue,
and green lines, and then we can construct the differential
characteristic of an entire design using the found differential
characteristics in each branch. Moreover, the computational
cost of solving a single SAT problem becomes small sincewe
independently evaluate the clustering effect for every single
branch.

Branch 1 Branch 2 Branch n

Input differences : Din

Output differences : Dout

#SAT

Single characteristic

#SAT #SAT

Ncha = O(Nn

sat
)

= O(Nsat) = O(Nsat) = O(Nsat)

Fig. 2 Overview of our strategy to efficiently count the differential char-
acteristics in a multiple-branch-based design.

3.4 Efficient Method to Evaluate the Clustering Effect

With the strategy outlined in Sect. 3.3, we present an efficient
method for evaluating the clustering effect on a multiple-
branch-based design. Our method require a specific differ-
ential (D𝒊𝒏,D𝒐𝒖𝒕) corresponding to the optimal differential
characteristics which can be identified by a SAT-based auto-
matic search tool proposed by Sun et al. [17] in advance.††
Our method follows a five-step approach, the procedure of
which is detailed step-by-step as follows:
†In practical, #𝑆𝐴𝑇 in each branch is different since it depends

on various factors, such as their structure. We here assume #𝑆𝐴𝑇
in each branch is the same for the sake of argument.
††Strictly speaking, A differential characteristic do not need to

be optimal, but the optimal one is the best choice for our method.

Branch 1 Branch 2 Branch n

d0out,1 d0out,2 d0out,n

Din

Dout

= = · · · =

→ d0out = (d0out,1, d
0

out,2, · · · , d
0

out,n)

(d0out, d
1

out, · · · , d
m−1

out)

Fig. 3 Overview of Step 1.

Step 1. Search for all sets of output differences (d0
𝒐𝒖𝒕 ,d

1
𝒐𝒖𝒕 , . . . ,d

𝒎−1
𝒐𝒖𝒕)

in each branch under a given differential (D𝒊𝒏,D𝒐𝒖𝒕)
with the minimum weight 𝑊𝑚𝑖𝑛, where di

𝒐𝒖𝒕 =
(di

𝒐𝒖𝒕,1,d
i
𝒐𝒖𝒕,2, . . . ,d

𝒊
𝒐𝒖𝒕,𝒏), i.e., di

𝒐𝒖𝒕,1 ⊕d
i
𝒐𝒖𝒕,2 ⊕ · · · ⊕

di
𝒐𝒖𝒕,𝒏 = D𝒐𝒖𝒕 . Note that 𝑚 depends on some

factors, such as the construction of the target and
the number of rounds. After completing this step,
we have multiple differentials for each branch, i.e.,
{(D𝒊𝒏,d

i
𝒐𝒖𝒕,1), (D𝒊𝒏,d

i
𝒐𝒖𝒕,2), (D𝒊𝒏,d

i
𝒐𝒖𝒕,𝒏)} for 0 ≤

𝑖 ≤ 𝑚 − 1. Figure 3 illustrates the overview of Step
1.

Step 2. Count the number of differential characteristics for
a differential (D𝒊𝒏,d

i
𝒐𝒖𝒕, 𝒋). This procedure is virtu-

ally equivalent to evaluating the clustering effect on
(D𝒊𝒏,d

i
𝒐𝒖𝒕, 𝒋). Suppose that we count the number of

differential characteristics for each (D𝒊𝒏,d
i
𝒐𝒖𝒕, 𝒋), we

will obtain a list Ni = (Ni1, Ni2, . . . , Nin) where Nik =
(𝑁 𝑖𝑘,𝛼, 𝑁

𝑖
𝑘,𝛼+1, . . . , 𝑁

𝑖
𝑘,𝛼+𝑊𝛼−1) ford

𝒊
𝒐𝒖𝒕 , in which each

𝑁 𝑖𝑘,𝑙 stores the number of the differential characteristics
with (D𝒊𝒏,d

𝒊
𝒐𝒖𝒕,𝒌
) corresponding to weight 𝑙. Note that

𝛼 and 𝑊𝛼 can be set arbitrary. Figure 4 illustrates the
overview of Step 2.

Branch 1 Branch 2 Branch n

Dout = d
i
out,1 ⊕ d

i
out,2 ⊕ · · ·⊕ d

i
out,n

d
i
out,1 d

i
out,2 d

i
out,n

Din Din Din

N
i
1
: Count # DC N

i
2
: Count # DC N

i
n: Count # DC

Branch 1

Fig. 4 Overview of Step 2. DC denotes a differential characteristic.

Step 3. Construct the differential characteristicswith (D𝒊𝒏,D𝒐𝒖𝒕)
by combining the differential characteristics found for

TAKA et al.: TOWARDS FINDING BETTER DIFFERENTIALS ON MULTIPLE-BRANCH-BASED STRUCTURES WITH THE SAT METHOD
9

each branch in Step 2. For di
𝒐𝒖𝒕 , each differential

characteristic in each branch corresponds to all dif-
ferential characteristics in all branches, namely, all
possible combinations of a differential characteristic
of each branch bring a differential characteristic with
(D𝒊𝒏,D𝒐𝒖𝒕). Suppose that the sum of all elements in
Nik is 𝑐𝑖𝑘 , we can construct (𝑐𝑖1 × 𝑐

𝑖
2 × · · · × 𝑐

𝑖
𝑛) differ-

ential characteristics with (D𝒊𝒏,D𝒐𝒖𝒕) for each d𝒊
𝒐𝒖𝒕 ,

and their probability can be calculated by the prod-
uct of the probabilities of differential characteristics in
each branch that compose them, that is,

∏𝑛
𝑏=1 𝐷𝑃(Cb)

whereCb denotes a differential characteristic of branch
𝑏. This is based on the strategy outlined in Sect. 3.3.
As the output differences in each branch in d𝒊

𝒐𝒖𝒕 follow
d𝒊
𝒐𝒖𝒕,1 ⊕ d𝒊

𝒐𝒖𝒕,2 ⊕ · · · ⊕ d𝒊
𝒐𝒖𝒕,𝒏 = D𝒐𝒖𝒕 , all differential

characteristics constructed in this step belong to a dif-
ferential (D𝒊𝒏,D𝒐𝒖𝒕). Figure 5 illustrates the overview
of Step 3.

Branch 1 Branch 2 Branch n

DC = ci
1

Dout

Din

DC = ci
2

DC = ci
n

Single DC

DC with (Din, Dout)
= ci

1
× ci

2
× . . .× ci

n

with (Din, Dout)

Fig. 5 Overview of Step 3. DC denotes a differential characteristic.

Step 4. Calculate the probability of a differential (D𝒊𝒏,D𝒐𝒖𝒕).
The probability can be calculated by a sum of the prob-
ability of all differential characteristics constructed in
Step 3.

Step 5. Repeat steps 1 – 4 with incrementing the weight
𝑊𝑚𝑖𝑛 given in step 1.

The detailed algorithm of our method is given in Algo-
rithm 3. We describe Algorithm 3 line by line as follows:

Input: Give a differential (D𝒊𝒏,D𝒐𝒖𝒕), the number of
branches 𝐵𝑛, the number of rounds 𝑟 , the weight𝑊𝑚𝑖𝑛
of the optimal differential characteristics corresponding
to (D𝒊𝒏,D𝒐𝒖𝒕), and two thresholds 𝑊𝛼 and 𝑊𝑐 as in-
put. 𝑊𝑐 specifies the range of weight in Step 5. For ex-
ample, when𝑊𝑐 = 3, we conduct Step 1–4 from𝑊𝑚𝑖𝑛
to𝑊𝑚𝑖𝑛 + 2. 𝑊𝛼 specifies the range of a weight related
to the evaluation of the clustering effect on each branch
in Step 2, i.e., the size of list Nim becomes 𝛼 +𝑊𝛼 − 1.
Note that 𝛼 can be set arbitrarily, such as the minimum
weight of the optimal differential characteristic of each
branch. In our work, 𝛼 is always set to a weight that a
solver first returns “SAT”.

Output: Return the probability of the differential (D𝒊𝒏,D𝒐𝒖𝒕).

Lines 2–3 : Initialize 𝑃 which is the probability of the dif-
ferential (D𝒊𝒏,D𝒐𝒖𝒕) and D that stores d𝑖 including
(d0

𝒐𝒖𝒕 ,d
1
𝒐𝒖𝒕 , · · · ,d𝒎−1

𝒐𝒖𝒕 ,) for weight 𝑖.
Lines 4–12: Repeat Step 1–4 with increasing weight.

Line 5: Obtain all (d0
𝒐𝒖𝒕 ,d

1
𝒐𝒖𝒕 , · · · ,d𝒎−1

𝒐𝒖𝒕 ,) for weight
𝑖.

Lines 6–7: Check the overlap of dj
𝒐𝒖𝒕 for all former

weights. If an identical dj
𝒐𝒖𝒕 has been already

evaluated in another weight, it will be removed in
this weight.

Lines 8–14: Count the number of differential charac-
teristics in each weight.

Line 9: Initialize N which stores the number of
differential characteristics with weight 𝛼 to
𝛼 +𝑊𝛼 − 1 for each branch. N denotes Ni in
Step 2.

Lines 11–13: Count the number of differential
characteristics with weight 𝛼 to 𝛼 +𝑊𝛼 − 1
in Branch 1 to 𝐵𝑛.

Line 14: Calculate the probability of a differen-
tial characteristic by combining the differen-
tial characteristics in each branch obtained in
lines 11–13, and then add the sum of their
probabilities to 𝑃.

Line 15: Return the probability of a differential (D𝒊𝒏,D𝒐𝒖𝒕).
Here, we provide brief explanations of the fun-

damental functions SATdiff.all, SATclust, CHECKoverlap,
and CALCUprob in Algorithm 2, as well as the function
SATdiff.mb_clust () in Algorithm 3.

Function SATdiff.all (): This function searches all com-
binations of the output differences of each branch
followed by a given difference (D𝒊𝒏,D𝒐𝒖𝒕), i.e.,
(d0

𝒐𝒖𝒕 ,d
1
𝒐𝒖𝒕 , . . . ,d

𝒎−1
𝒐𝒖𝒕) in Step 1.

Function SATclust (): This function evaluates the cluster-
ing effect of each branchwith a difference (D𝒊𝒏,d

k
𝒐𝒖𝒕, 𝒋).

The weight range taken into account in this evaluation
is arbitrary. Note that this range has a great impact on
both the final probability of (D𝒊𝒏,D𝒐𝒖𝒕) and the com-
putational cost. Such a function can also be realized by
a SAT-based automatic search tool proposed by Sun et
al. [10].

Function CHECKoverlap (): This function checks the overlap
of (d0

𝒐𝒖𝒕 ,d
1
𝒐𝒖𝒕 , . . . ,d

𝒎−1
𝒐𝒖𝒕) for all weight in Step 5. If a

certain dj
𝒐𝒖𝒕 has already appeared, it will be removed to

avoid the overlap in the evaluation.
Function CALCUprob (): This function calculates the proba-

bility of a differential characteristics with (D𝒊𝒏,D𝒐𝒖𝒕)
by combining differential characteristics in each branch
in Step 2. Suppose that a differential characteristic
with (D𝒊𝒏,D𝒐𝒖𝒕) constructed the differential charac-
teristics in each branch whose weights are 𝑤𝑏 where
𝑏 is the branch number, and its probability is cal-
culated by

∏𝑚
𝑖=1 2−𝑤𝑖 . The total number of differ-

ential characteristics with (D𝒊𝒏,D𝒐𝒖𝒕) is equal to

10
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Algorithm 2: The fundamental functions for
building the clustering effect
1 Function SATdiff.all (𝑊, 𝑟, d𝒊𝒏 , d𝒐𝒖𝒕)
2 begin
3 d← ∅
4 M𝑆𝐴𝑇 ← SETmodel (𝑊)
5 add C𝑠𝑒𝑐 (𝑊) toM𝑆𝐴𝑇

6 while SATdiff.char (M𝑆𝐴𝑇) = (“SAT”, Cr) do
7 add (c0, c𝒓) to d

8 add ∨𝑛−1
𝑘=0 (𝑣0,𝑘 ⊕ 𝑐0,𝑘) ∨ (𝑣𝑟,𝑘 ⊕ 𝑐𝑟,𝑘) toM𝑆𝐴𝑇

9 return d

10 Function SATdiff.clust ((D𝒊𝒏 , d
k
𝒐𝒖𝒕,𝒋) , 𝑊𝛼)

11 begin
12 N← ∅
13 M𝑆𝐴𝑇 ← SETmodel (𝑖) + C𝑐𝑙𝑢𝑠𝑡
14 while SATdiff.char (M𝑆𝐴𝑇) = (“SAT”, Cr) do
15 N← N + 1
16 add C

𝑐𝑙𝑢𝑠𝑡
toM𝑆𝐴𝑇

17 return N

18 Function CHECKoverlap (D)
19 begin
20 𝑈 ← ∅
21 for element in D do
22 if element not in𝑈 then
23 add element to𝑈

24 return𝑈

25 Function CALCUProb ()
26 begin
27 return Π𝐵𝑛

𝑗=1 (2
−𝑤)𝑁 𝑗

∑𝑚−1
𝑖=0

∏𝑛
𝑗=1

∑
𝑘∈k 𝑁

𝑖
𝑗 ,𝑘 , where k is a set of all weight

taken into account in the evaluation of the clustering
effect on each branch. Then, this function sums their
probabilities to the probability 𝑃.

We emphasize that how to construct these functions
affects the efficiency of Algorithm 3. In particular, for
SATclust (), we can decide 𝛼 arbitrary, and the choice of
𝛼 significantly affects the efficiency of Algorithm 3. Intu-
itively, the most efficient choice of 𝛼 is the minimum weight
of each branch since there are no differential characteristics
under the minimum weight. For a fair comparison, we al-
ways set 𝛼 to 0 in our evaluation because the general strat-
egy does not require any information without a differential
(D𝒊𝒏,D𝒐𝒖𝒕) corresponding the optimal differential charac-
teristic.

4. Application to Orthros

4.1 Specification of Orthros

Orthros is a 128-bit low-latency PRFwith a 128-bit plaintext
𝑀 , ciphertext 𝐶, and key 𝐾 proposed by Banik et al. [6] as
shown in Fig. 6. Orthros consists of two 128-bit keyed per-
mutations Branch1 𝐸1 : F128

2 × F128
2 → F128

2 and Branch2

Algorithm 3: Evaluating the clustering effect in a
design based on multiple branches.
1 Function SATdiff.mb_clust ((D𝒊𝒏 ,D𝒐𝒖𝒕) , 𝐵𝑛 , 𝑟 , 𝑊𝑚𝑖𝑛 , 𝑊𝛼 , 𝑊𝑐)
2 begin
3 𝑃 ← 0
4 D ← (d0, d1, . . . , d𝑾𝒄−1)
5 for 𝑖 =𝑊𝑚𝑖𝑛 to𝑊𝑚𝑖𝑛 +𝑊𝑐 − 1 do
6 d𝒊−𝑾𝒎𝒊𝒏 ← SATdiff.all ((D𝒊𝒏 ,D𝒐𝒖𝒕) , 𝑁𝑏 , 𝑟 , 𝑖)
7 if 𝑖 ≠𝑊𝑚𝑖𝑛 then
8 CHECKoverlap (D)
9 for 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 d𝒊−𝑾𝒎𝒊𝒏 do

10 N← (N1, N2, · · · , NBn)
11 /* N denotes Ni in Step 2. */
12 for 𝑗 = 1 to 𝐵𝑛 do
13 Nj ← SATclust ((D𝒊𝒏 , d

k
𝒐𝒖𝒕,𝒋) , 𝑊𝛼)

14 /* 𝑘 corresponds to the index of
element in d𝒊−𝑾𝒎𝒊𝒏

as can be seen

in Step 2. */
15 𝑃 ← 𝑃 + CALCUProb (𝑃, N)

16 return 𝑃

𝐸2 : F128
2 × F128

2 → F128
2 . The encryption algorithm of Or-

thros is expressed as 𝐶 = 𝐸1 (𝐾, 𝑀) ⊕ 𝐸2 (𝐾, 𝑀). The spec-
ifications of Branch1 and Branch2 are detailed below.

Branch1 Branch2

Plaintext M

Key KKey K

128 bit128 bit

128 bit

Ciphertext C

Fig. 6 Overview of Orthros

4.1.1 Specifications of Branch1 and Branch2

Branch1 and Branch2 are 128-bit keyed permutations based
on an SPN structure with 12 rounds. The round function
𝑅 𝑓𝑁 , which denotes the round function inBranch 𝑁 , consists
of S-box (𝑆𝐵), bit-permutation (𝑃𝑏𝑟𝑁), nibble-permutation
(𝑃𝑛𝑁), MixColumn (𝑀𝐶), AddRoundKey (𝐴𝐾) and Add-
Constant (𝐴𝐶), where 𝑁 ∈ {1, 2} as follows:

𝑅 𝑓𝑁 = 𝐴𝐶 ◦ 𝐴𝐾 ◦ 𝑀𝐶 ◦ 𝑃𝑏𝑟𝑁 (𝑃𝑛𝑁) ◦ 𝑆𝐵.

TAKA et al.: TOWARDS FINDING BETTER DIFFERENTIALS ON MULTIPLE-BRANCH-BASED STRUCTURES WITH THE SAT METHOD
11

In the round functions of Branch1 and Branch2, bit permu-
tation 𝑃𝑏𝑟𝑁 is applied in the first four rounds, and nibble
permutation 𝑃𝑛𝑁 is applied in rounds 5 and later.

We provide the detailed explanation of those function.
Note that we do not give the explanation of a key scheduling
because our evaluation does not consider the impact of the
round keys.

SB A 4-bit S-box will be applied to each nibbles in parallel
forBranch1 andBranch2. The specification of the 4-bit
S-box is given in Table 3.

Table 3 4-bit S-box of Branch1 and Branch2
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 1 0 2 4 3 8 6 d 9 a b e f c 7 5

𝑃𝑏𝑟𝑁 ,𝑃𝑛𝑁 For the first 4 rounds of Branch1 and Branch2, 𝑃𝑏𝑟1
and 𝑃𝑏𝑟2 will be applied, respectively. From the 5th
round to the 11th round, the nibble permutations 𝑃𝑛1
and 𝑃𝑛2 will be adopted in Branch1 and Branch2 re-
spectively. The details of the permutation 𝑃𝑏𝑟𝑁 and
𝑃𝑛𝑁 , where 𝑁 ∈ {1, 2}, are shown in Table. 10 and
Table. 11, respectively.

MC Let 𝑀𝑏 be 4 × 4 binary matrix over nibbles defined as

𝑀𝑏 =
©­­­«
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

ª®®®¬ .
Four nibbles (𝑎0, 𝑎1, 𝑎2, 𝑎3) will be updated as follows:

(𝑎0, 𝑎1, 𝑎2, 𝑎3)𝑇 ← 𝑀𝑏 · (𝑎0, 𝑎1, 𝑎2, 𝑎3)𝑇 .

RfN
Figure 7 and 8 show the first four and remaining rounds
of each branch. Note that MC and NP are not applied
in the final round.

Fig. 7 The first four rounds.

Fig. 8 The 5th to 11th round.

4.2 Existing Security Evaluation by Designers

The designers of Orthros evaluated the security against sev-
eral attacks, including differential, linear, impossible and in-
tegral attacks [6], In their work, they showed the 7-round in-
tegral distinguisher as the most effective attack to Orthros.

For the differential cryptanalysis, they provided only
the lower bounds for # AS and concluded that the 9-round
Orthros is secure against this type attack. However, this se-
curity bound is very rough since it is provided by the sum of
the lower bounds for # AS in each branch. Moreover, their
lower bounds of each branch are also rough because they are
independently evaluated in the first 4 rounds and the remain-
ing rounds, i.e., they are just a sum of the lower bound in
the first 4 rounds and the remaining rounds due to the high
computational cost. Furthermore, the lower bound in 5–12
rounds is evaluated by a nibble-wise evaluation, and it brings
a rougher bound than that in a bit-wise evaluation.

Note that designers of Orthros considers that Orthros
can be secure against differential attacks when a sum of the
lower bounds for # AS in Branch1 and Branch2 exceeds
64 (2−2×64 ≤ 2−128). Therefore, we follow this metric in our
evaluation, namely, considering the probability of a differen-
tial characteristic in Orthros as a product of the probabilities
in Branch1 and Branch2.

4.3 Updating Bounds for Differential Attacks

We apply the SAT-based automatic search method [10]. to
Orthros to obtain tighter security bounds for differential at-
tacks. Specifically, we first give the strict lower bounds of #
AS based on a bit-wise difference and further obtain the op-
timal differential characteristics by taking differential transi-
tions with each probability via an S-box into consideration.

4.3.1 AS-Based Evaluation.

We provide the “exact” lower bounds for # AS up to 7 rounds
of Orthros and the full rounds of each branch using a SAT-
based automatic search tool proposed by Sun et al. [10]. As
our evaluation is based on a bit-wise difference and takes into
account bit-level differential transitions of S-box, we can find

12
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

the exact lower bounds of # AS. In other words, the differ-
ential propagation found in this evaluation is always valid.

Table 4 shows our lower bounds of Orthros and each
branch in comparison to the designer’s results. Our result
shows that 8/11/11 rounds of Orthros/Branch1/Branch2 are
sufficient to guarantee security against differential attacks,
while the designer’s result requires at least 9/12/12 rounds,
respectively. Thus, our bit-level evaluation enables updating
these bounds by one round.

Our evaluation is conducted on Threadripper™3990X
@2.9GHz (128 cores) with 256GB RAMs by a SAT solver
P-MCOMSPS [22](40 threads used).

Table 4 The lower bound for # AS in Orthros, Branch 1, and Branch
2.
Rounds 1 2 3 4 5 6 7 8 9 10 11 12 Ref.

B1 1 4 6 8 9 12 16 24 33 44 58 68 [23]
B1 1 4 6 8 11 18 28 37 48 58 67 80 Our
B2 1 4 5 8 9 12 16 24 33 44 59 68 [23]
B2 1 4 5 8 10 16 26 36 49 58 70 80 Our

Orthros 2 8 12 16 18 24 36 56 84 88 117 136 [23]
Orthros 2 8 12 16 22 36 58 79 98 129 188 196 Our

4.3.2 Finding Optimal Differential Characteristics.

In the AS-based evaluation, we only consider whether an S-
box is active or not. To obtain tighter bounds for differential
attacks, we take the probability of differential transitions over
an S-box into account, namely, we aim at finding the optimal
differential characteristics for Orthros and each branch.

Table 5 shows the optimal differential characteristic up
to 7 rounds of Orthros and the full rounds of Branch1 and
Branch2, where the evaluation environment is the same as
that of Sect. 4.3.1. In comparison to the result of the AS-
based evaluation in Table 4, we can reduce the number of
rounds of Orthros/Branch1/Branch2 by one round to en-
sure secure against differential attacks, i.e. from 8/11/11 to
7/10/10, respectively.

In summary, our bit-level evaluation can improve
the designer’s security bounds by 2 rounds for Or-
thros/Branch1/Branch2, respectively. We emphasize that
the optimal differential characteristics in 10 rounds of
Branch1 and Branch2 can be the best distinguishing attacks
for them, where known best attacks are 7-round integral dis-
tinguishers [6].

Table 5 Weight of the optimal differential characteristics in Orthros,
Branch 1, and Branch 2.
Rounds 1 2 3 4 5 6 7 8 9 10 11 12 Ref.

B1 2 8 14 19 29 41 61 91 113 142 160 181 Our
B2 2 8 13 19 26 38 58 82 117 136 163 180 Our

Orthros 4 16 29 42 59 90 136 - - - - - Our

4.4 How to Efficiently Capture the Clustering Effect

We leverage our SAT-based automatic search method for

evaluating the clustering effect onmultiple-branch-based de-
signs to increase the differential probability. Specifically, we
evaluate the clustering effect of the 7-round optimal differen-
tial characteristic of Orthros by the general and our method.
For a fair comparison, we apply the identical differential
characteristic to both methods and compare their efficiency
in terms of how much we can enhance the probability of a
given differential, #𝑆𝐴𝑇 , and the practical run-time.

Table 6 shows the result of the general and our method.

Table 6 Comparison of our method and the general method. The param-
eters of our method are𝑊𝑚𝑖𝑛 = 136, 𝑊𝑐 = 5 and𝑊𝛼 = 15. The general
method takes the clustering effect from weight 136 to 149 into considera-
tion..

Prob.[-log2] #𝑆𝐴𝑇 Time

Our method 121.297 145245 36m12.644s
General method 127.395 2288883 114h28m28.438s

Our / general 6.098 0.0634 0.005

In the general method, we can evaluate a weight up
to 151 and cannot evaluate a weight over 152 because it is
computationally infeasible in our environment. As can be
seen in Table 6, both methods can improve the probability to
more than 2−128, that is, we can improve the distinguishing
attack from 7 rounds to 6 rounds due to the clustering ef-
fect. However, our method demonstrates superior efficiency
compared to the general method. Specifically, our method
increases the probability from 2−136 to 2−121.297, while the
general method increases it to 2−127.395.

Furthermore, our method exhibits a significant im-
provement in efficiency, achieving a 93.6% and 99.5% re-
duction in #𝑆𝐴𝑇 and runtime, respectively, compared to the
general method. The gap in an improvement between #𝑆𝐴𝑇
and a run-time comes from the difference in a size of the SAT
model solved in each method. The general method solves a
SAT model expressing a differential propagation in a whole
Orthros while our method primarily solves a SAT model ex-
pressing a differential propagation in one branch, i.e, a size
of a SAT model solved in our method is roughly half that
of the general method. Since a computational cost becomes
larger with increasing a size of a SAT model in general, this
gap becomes larger with growing the number of branches.
From this observation, our method will be getting more and
more advantageous with the number of branches increasing.

4.5 Better Choice of𝑊𝛼

The choice of 𝑊𝛼 has a large impact on the probability,
#𝑆𝐴𝑇 , and a practical run-time. In this section, we present
experimental results for several choices of 𝑊𝛼 and discuss
which choices of𝑊𝛼 are most favorable.

Table 7 shows the detailed results for 𝑊𝛼 =
5, 10, 15, 20, 25, 30 with 𝑊𝑚𝑖𝑛 = 136 and 𝑊𝑐 = 6. Ac-
cording to Table 7, the gap in the probability is not large
across the range of𝑊𝛼 = 4 to 30 even though each #𝑆𝐴𝑇 is

TAKA et al.: TOWARDS FINDING BETTER DIFFERENTIALS ON MULTIPLE-BRANCH-BASED STRUCTURES WITH THE SAT METHOD
13

different. In other words, the differential characteristics con-
structed with larger values of𝑊𝛼 have a limited contribution
to the probability, and it is a natural observation as a higher
number of differential characteristics is required to enhance
the probability of a differential when the probability of these
differential characteristics is low.

For a practical run-time, it seems to increase signifi-
cantly with 𝑊𝛼 becoming large. This comes from the fact
that the clustering effect occurs easily in weight far from
𝑊𝑚𝑖𝑛 up to a point. Notably, #𝑆𝐴𝑇 for 𝑊𝛼 = 30 with
𝑊𝑚𝑖𝑛 = 141 is almost the same as that for 𝑊𝛼 = 25 with
𝑊𝑚𝑖𝑛 = 141 while the run-times of them are quite different.
It is because that the distribution of the differential charac-
teristic is biased depending on weight. Figure 9 illustrates
the distribution of the differential characteristic in Branch 1
and Branch 2 for𝑊𝛼 = 30 with𝑊𝑚𝑖𝑛 = 141. As can be seen
in Fig. 9, # differential characteristics reaches the peak when
the weight is around +15 to +20 from weight that a solver
first returns “SAT”. After reaching the peak, the differential
characteristics become sparse with increasing weight, that
is, there are few differential characteristics in a large 𝑊𝛼.
Therefore, the gap in #𝑆𝐴𝑇 on 𝑊𝛼 = 25 and 𝑊𝛼 = 30 be-
comes small. However, this small gap affects a practical run-
time so much because P-MCOMSPS takes a much longer
run-time to solve “UNSAT” than that of “SAT” and an SAT
problem that will be “UNSAT” dominates this small gap of
#𝑆𝐴𝑇 . This is the reason why the case of 𝑊𝛼 = 30 takes
longer run-time than the case of𝑊𝛼 = 25 even though their
#𝑆𝐴𝑇 and weight are almost the same.

Therefore,𝑊𝛼 = 10, 15 appear to be favorable choices
for balancing both probability and practical run-time in the
evaluation of Orthros. Of course, the better choice may be
different depending on the designs, but we expect that𝑊𝛼 =
10, 15 will be a suitable choice for most designs, as a similar
distribution in Fig. 9 may appear in other designs.

4.6 Maximizing the Clustering Effect with Optimal Choice
of𝑊𝛼

In Sect. 4.4 and 4.5, our method consistently investigates
the clustering effect in each branch starting from weight 0
for a fair comparison with the general method. However,
given that we have knowledge of the minimum weight of
each branch, we can further enhance the efficiency of our ap-
proach by initiating the evaluation of the clustering effect at
the minimum weight of each branch rather than at 0. Here,
we aim to maximize the probability of a given differential
by utilizing the information of the minimum weight of each
branch and the optimal selection of𝑊𝛼 discussed previously.

Table 8 shows the result of setting the starting weight
of the evaluation of the clustering effect to the minimum
weight of each branch with 𝑊𝛼 = 15. With the optimiza-
tion of our method, we can further improve the probability
from 2−121.297 to 2−116.806.

5. Investigating the Clustering Effect on the Three-
Branch-Based PRF

In this section, we investigate the clustering effect on the
three-branch-based construction. We first show the specifi-
cation of this three-branch-based PRF and our results about
the clustering effect on this construction. Lastly, we discuss
the impact of increasing the number of branches on the op-
timal differential characteristics and differentials.

5.1 Specification of the Three-Branch-Based PRF

We introduce a three-branch-based PRF, named Orthros-
3b, based on Orthros. Orthros-3b has three keyed per-
mutation; two permutations are the same ones used in Or-
thros and the other one has the same security property as
the aforementioned two keyed permutations. These three
keyed permutation share the same input state and the output
of Orthros-3b is generated by XOR of the outputs of these
three keyed permutations, similar to the output of Orthros,
i.e., 𝐶 = Branch1(𝑀) ⊕ Branch2(𝑀) ⊕ Branch3(𝑀). We
show the overview of Orthros-3b in Fig. 10.

Branch3 has an SPN-based construction, namely con-
sisting of an S-box, a bit permutation, a nibble permutation, a
matrix multiplication, a key addition, and a constant addition
as well as Branch1 and Branch2. The detailed parameters in
Branch3 will be provided in 6

5.2 Finding Optimal Differential Characteristics and Eval-
uating the Clustering Effect

We evaluate the optimal differential characteristics of
Branch3 and Orthros-3b and the clustering effect of
Orthros-3b with our method given in Sect. 4.3.

Table 9 shows the optimal differential characteristics up
to 7 rounds of Orthros-3b and up to 10 rounds of Branch3,
conducted on the same evaluation environment as that of
Sect. 4.

(1) The Optimal Differential Characteristics

As can be seen in Table 9, the weight of the optimal dif-
ferential characteristics for Branch3 are similar to those
for Branch1 and Branch2, reaching the weight of 128 at
10 rounds which is the same number of rounds as that of
Branch1 and Branch2. For Orthros-3b, the weight of the op-
timal differential characteristics outnumbers 128 at 6 rounds,
while Orthros needs 7 rounds to achieve it. Therefore,
adding the one more branch contributes to increasing the
weight of the optimal differential characteristics.

(2) The Clustering Effect

We evaluate the clustering effect on the 6-round optimal dif-
ferential characteristics of Orthros-3b by our method. As a
result, we can construct the differential with the weight of
149.71, the gap between the weight of the optimal differ-
ential characteristic and the differential is 15.29(= 165 −

14
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Table 7 The probability, #𝑆𝐴𝑇 , and a run-time on𝑊𝛼 = 5 to 30.
𝑊min
+𝑊𝑐-1

𝑊𝛼
Prob. #𝑆𝐴𝑇 Run-time 𝑊min

+𝑊𝑐-1
𝑊𝛼

Prob. #𝑆𝐴𝑇 Run-time 𝑊min
+𝑊𝑐-1

𝑊𝛼
Prob. #𝑆𝐴𝑇 Run-time[-log2] [-log2] [-log2]

136

5 131.585 201 5m29s

138

5 127.532 697 8m48s

140

5 124.329 2742 10m56s
10 130.098 1463 5m31s 10 126.231 7382 9m56s 10 123.091 29229 15m09s
15 129.915 5607 6m27s 15 126.098 22733 11m09s 15 122.981 75619 20m20s
20 129.911 7319 6m26s 20 126.096 26802 14m38s 20 122.980 83875 38m32s
25 129.911 7356 6m07s 25 126.096 26913 22m04s 25 122.980 84279 1h21m02s
30 129.911 7366 8m33s 30 126.096 26993 39m34s 30 122.980 84649 2h46m56s

137

5 131.585 201 7m01s

139

5 126.074 1174 10m10s

141

5 122.588 6325 17m11s
10 130.098 1463 7m25s 10 124.767 12905 12m10s 10 121.396 61742 25m39s
15 129.915 5607 7m33s 15 124.640 36727 13m39s 15 121.298 145245 36m12s
20 129.911 7319 8m28s 20 124.638 42147 20m07s 20 121.297 157340 1h24m20s
25 129.911 7356 8m35s 25 124.638 42318 34m08s 25 121.297 158320 3h23m00s
30 129.911 7366 9m40s 30 124.638 42458 1h04m48s 30 121.297 159230 11h45m27s

80 85 90 95 100 105

Weight [-log2]

0

200

400

600

800

1000

#
 S

A
T

Branch 1

60 65 70 75 80 85

Weight [-log2]

0

20

40

60

80

100

120

140

#
 S

A
T

Branch 2

Fig. 9 #𝑆𝐴𝑇 on𝑊𝛼 = 30 with𝑊𝑚𝑖𝑛 = 141. Colored lines show the distribution of the differential
characteristic of each (D𝒊𝒏 , d

i
1) and (D𝒊𝒏 , d

i
2)

Table 8 The highest probability of a differential that we found.
Method 𝑊min 𝑊𝑐 𝑊𝛼 Prob.[-log2] #𝑆𝐴𝑇 Time

Our (optimized) Sect. 4.6 136 14 15 116.806 1431466 25h38m39s
Our in Sect. 4.5 136 5 15 121.298 145245 36m12s

General - - 127.395 2288883 114h28m28s

Branch2 Branch3

Plaintext M

128 bit

Ciphertext C

128 bit

Branch1

Key K

128 bit

Key K

128 bit

Key K

128 bit

Fig. 10 Overview of Orthros-3b

149.71). To construct the differential distinguisher at 6
rounds, we have to further collect the differential charac-

teristics until the probability is over 2−128. Since there is
still margin of 221.71 (= 2−128/2−149.71), we expect that it is
hard to construct the differential distinguisher at 6 rounds of
Orthros-3b.

5.3 Discussion

We discuss the impact of adding a branch on the optimal
differential characteristics an differentials. To this end, we
evaluate the clustering effect of the optimal differential char-
acteristics on each round of Orthros and Orthros-3b (see Ta-
ble 9).

(1) The Optimal Differential Characteristics

Adding one more branch efficiently improve the weight of
the optimal differential characteristics by Table 9. Remark-

TAKA et al.: TOWARDS FINDING BETTER DIFFERENTIALS ON MULTIPLE-BRANCH-BASED STRUCTURES WITH THE SAT METHOD
15

ably, the gap of the weights between the entire PRF and the
sum of the optimal differential characteristics of all branches
becomes large as the number of branches increases. For ex-
ample, this gap on the 6-round Orthros-3b is 45(= 165 −
(41 + 38 + 41)), while that of the 6-round Orthros is 11(=
90−(41+38)) It can be because all branches has to share the
same input differences which makes reducing the weight in
each branch difficult. Therefore, we conclude that increas-
ing the number of branches is promising to increasing the
weight of the optimal differential characteristics for the en-
tire construction.

(2) The Differentials

According to our results in Table 9, the clustering effect is
easy to happen as the number of branches increases. In com-
parison to the results of the 6-round Orthros and Orthros-
3b, the gap between the weight of the optimal differential
characteristic and the differential on the 6-round Orthros is
1.37(= 90 − 88.63), while that of the 6-round Orthros-3b
is 15.29(= 165 − 149.71). It is a natural observation be-
cause our method constructs a differential by collecting the
differential characteristics of each branch. The constructed
differential contains the same number of differential char-
acteristics as the multiplication of the number of differen-
tial characteristics of each branch. In other word, adding the
branch dramatically results increasing the number of differ-
ential characteristics constructing the differential and conse-
quently enhances the clustering effect.

As the other interesting observation, the clustering ef-
fect does not happen from 1 to 5 rounds of Orthros, while
it happens on 4 and 5 rounds of Orthros-3b. It is deeply re-
lated to that the ciphertext is generated by the XOR of the
outputs of each branch. In our method, we first need to fix
the differential, which is the same as fixing the differences
in the plaintext and ciphertext, and then collect the differen-
tial characteristics. For Orthros, the ciphertext is generated
by the outputs of two branches. Hence, the output differ-
ence in one branch is deterministic if the output difference
in the other branch is already decided. It drastically makes
the clustering effect hard to happen. For Orthros-3b, the ci-
phertext is generated by the outputs of three branches, i.e.,
there are some degree of freedom in the output differences
of two branches even if the output difference in the remaining
branch is already decided. Therefore, the clustering effect on
Orthros-3b is easier to happen than that of Orthros.

It is notably that the probability of the differential is
quite low compared to that of Orthros although the cluster-
ing effect is easy to happen on Orthros-3b, which demon-
strates the advantage of adding the branch. Therefore, we
conclude that adding the branch is effective to enhance the
security against differential cryptanalysis even though the
clustering effect is enhanced.

6. Conclusion

In this paper, we proposed a new SAT-Based automatic
search method for efficiently evaluating the clustering ef-

fect. We applied our method to Orthros and showed that our
method is much more efficient than the general method. As a
results, we presented the distinguishing attack up to 7 rounds
of Orthros with 2116.806 time/data complexity, which is the
best distinguishing attack to Orthros. Besides, we updated
the designer’s security bound against the differential crypt-
analysis from 9/12/12 to 7/10/10 rounds for Orthros/Branch
1/Branch 2, respectively.

Moreover, we applied our method to a new PRF
Orthros-3b with a new Branch3, which has the same secu-
rity properties as the keyed permutation used in Orthros, and
performed the same evaluation as that of Orthros. As a re-
sult, we confirmed that our method worked well on Orthros-
3b and showed that adding a branch is effective to enhance
the security against differential cryptanalysis.

16
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Table 9 Comparison of our optimal differential characteristics and the clustering effect results with
existing structures

Round 1 2 3 4 5 6 7 8 9 10 11 12 Ref.

Weight of optimal differential characteristics

Branch1 2 8 14 19 29 41 61 91 113 142 160 181 Sect. 4.3.2
Branch2 2 8 13 19 26 38 58 82 117 136 163 180 Sect. 4.3.2
Branch3 2 8 12 18 25 41 62 83 111 137 - - Our

Orthros 4 16 29 42 59 90 136 - - - - - Sect. 4.3.2
Orthros-3b 6 24 47 77 111 165 - - - - - - Our

The probability with the clustering effect
Orthros 4 16 29 42 59 88.63 116.80 - - - - - Sect. 4.6

Orthros-3b 6 24 47 57 93.53 149.71 - - - - - - Our

Appendix

Detailed Parameters of the bit-permutation 𝐵𝑃(𝑃𝑏𝑟1, 𝑃𝑏𝑟2)
and the nibble-permutation 𝑁𝑃(𝑃𝑛1, 𝑃𝑛2) of Branch 1 and
Branch 2

The details of the permutation 𝑃𝑏𝑟𝑁 and 𝑃𝑛𝑁 , where 𝑁 ∈
{1, 2}, are shown in Table. 10 and Table. 11, respectively.

Detailed Parameters of Orthros-3b

The details of the bit and nibble permutations in Branch3 are
shown in Table. 10 and Table. 11, respectively.

Acknowledgments

Takanori Isobe is supported by JST, PRESTO Grant Num-
ber JPMJPR2031. These research results were also obtained
from the commissioned research (No.05801) by National
Institute of Information and Communications Technology
(NICT), Japan.

References

[1] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M.J.B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: an ultra-
lightweight block cipher,” CHES, Lecture Notes in Computer Sci-
ence, vol.4727, pp.450–466, Springer, 2007.

[2] J. Borghoff, A. Canteaut, T. Güneysu, E.B. Kavun, M. Kneze-
vic, L.R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger,
P. Rombouts, S.S. Thomsen, and T. Yalçin, “PRINCE - A low-
latency block cipher for pervasive computing applications - ex-
tended abstract,” ASIACRYPT, Lecture Notes in Computer Science,
vol.7658, pp.208–225, Springer, 2012.

[3] R. Avanzi, “The QARMA block cipher family. almost MDS matri-
ces over rings with zero divisors, nearly symmetric even-mansour
constructions with non-involutory central rounds, and search heuris-
tics for low-latency s-boxes,” IACR Trans. Symmetric Cryptol.,
vol.2017, no.1, pp.4–44, 2017.

[4] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Ak-
ishita, and F. Regazzoni, “Midori: A block cipher for low energy,”
ASIACRYPT (2), Lecture Notes in Computer Science, vol.9453,
pp.411–436, Springer, 2015.

[5] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin,
Y. Sasaki, P. Sasdrich, and S.M. Sim, “The SKINNY family of block
ciphers and its low-latency variant MANTIS,” CRYPTO (2), Lecture
Notes in Computer Science, vol.9815, pp.123–153, Springer, 2016.

[6] S. Banik, T. Isobe, F. Liu, K. Minematsu, and K. Sakamoto,
“Orthros: A low-latency PRF,” IACR Trans. Symmetric Cryptol.,
vol.2021, no.1, pp.37–77, 2021.

[7] G. Leander, T.Moos, A.Moradi, and S. Rasoolzadeh, “The SPEEDY
family of block ciphers engineering an ultra low-latency cipher from
gate level for secure processor architectures,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol.2021, no.4, pp.510–545, 2021.

[8] C. Dobraunig, M. Eichlseder, D. Kales, and F. Mendel, “Practical
key-recovery attack on MANTIS5,” IACR Trans. Symmetric Cryp-
tol., vol.2016, no.2, pp.248–260, 2016.

[9] C. Boura, N. David, R.H. Boissier, and M. Naya-Plasencia, “Better
steady than speedy: Full break of SPEEDY-7-192,” IACR Cryptol.
ePrint Arch., p.1351, 2022.

[10] L. Sun, W. Wang, and M. Wang, “More accurate differential prop-
erties of LED64 and midori64,” IACR Trans. Symmetric Cryptol.,

TAKA et al.: TOWARDS FINDING BETTER DIFFERENTIALS ON MULTIPLE-BRANCH-BASED STRUCTURES WITH THE SAT METHOD
17

Table 10 BP of Branch1 and Branch2
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pbr1(x) 6 46 62 126 70 52 28 14 36 125 72 83 106 95 4 35
Pbr2(x) 20 122 74 62 119 35 15 66 9 85 32 117 21 83 127 106

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pbr1(x) 25 41 10 76 87 74 120 42 88 21 11 67 64 38 112 50
Pbr2(x) 11 98 115 59 71 90 56 26 2 44 103 121 114 107 68 16

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Pbr1(x) 85 109 24 65 99 0 49 37 8 66 114 47 127 100 56 40
Pbr2(x) 84 1 102 33 80 52 76 36 27 94 37 55 82 12 112 64

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Pbr1(x) 13 117 78 86 92 58 124 101 55 89 97 9 18 116 59 15
Pbr2(x) 105 14 91 17 108 124 6 93 29 86 123 79 72 53 19 99

x 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Pbr1(x) 20 45 75 2 77 27 1 60 115 107 26 69 119 3 84 51
Pbr2(x) 50 18 81 73 67 88 4 61 111 49 24 45 57 78 100 22

x 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Pbr1(x) 123 110 31 82 113 53 81 102 63 118 93 12 30 94 108 32
Pbr2(x) 110 47 116 54 60 70 97 39 3 41 48 96 23 42 113 87

x 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
Pbr1(x) 5 111 29 43 91 19 79 33 73 44 98 48 22 61 68 105
Pbr2(x) 126 13 31 40 51 25 65 125 8 101 118 28 38 89 5 104

x 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Pbr1(x) 34 71 54 104 17 57 80 103 96 121 23 39 122 90 7 16
Pbr2(x) 109 120 69 43 7 77 58 34 10 63 30 95 75 46 0 92

Table 11 NP of Branch1 and Branch2
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pn1(x) 10 27 5 1 30 23 16 13 21 31 6 14 0 25 11 18
Pn2(x) 26 13 7 11 29 0 17 21 23 5 18 25 12 10 28 2

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pn1(x) 15 28 19 24 7 8 22 3 4 29 9 2 26 20 12 17
Pn2(x) 14 19 24 22 1 8 4 31 15 6 27 9 16 30 20 3

Table 12 BP of Branch3
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pbr3(x) 43 98 61 4 55 121 5 65 35 126 76 10 79 36 27 8
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pbr3(x) 127 73 9 18 113 75 82 105 34 59 66 28 21 109 60 125
x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Pbr3(x) 0 99 95 39 44 85 19 116 2 117 101 53 89 69 15 17
x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Pbr3(x) 100 94 23 63 123 33 56 74 90 26 72 102 52 87 37 103
x 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Pbr3(x) 67 114 42 111 108 120 78 49 83 119 47 68 88 6 45 70
x 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Pbr3(x) 115 96 30 92 1 32 104 20 12 40 51 112 124 77 57 11
x 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
Pbr3(x) 80 24 107 58 110 84 46 22 16 48 91 118 97 29 62 7
x 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Pbr3(x) 64 14 41 25 86 38 106 71 31 13 81 54 122 3 50 93

vol.2018, no.3, pp.93–123, 2018.
[11] E. Biham and A. Shamir, “Differential cryptanalysis of des-like cryp-

tosystems,” Journal of CRYPTOLOGY, vol.4, no.1, pp.3–72, 1991.
[12] X. Lai, J.L. Massey, and S. Murphy, “Markov ciphers and differential

cryptanalysis,” EUROCRYPT, Lecture Notes in Computer Science,
vol.547, pp.17–38, Springer, 1991.

[13] N. Mouha, Q. Wang, D. Gu, and B. Preneel, “Differential and linear

cryptanalysis using mixed-integer linear programming,” Inscrypt,
Lecture Notes in Computer Science, vol.7537, pp.57–76, Springer,
2011.

[14] R. Ankele and S. Kölbl, “Mind the gap - A closer look at the secu-
rity of block ciphers against differential cryptanalysis,” SAC, Lecture
Notes in Computer Science, vol.11349, pp.163–190, Springer, 2018.

[15] S. Kölbl, G. Leander, and T. Tiessen, “Observations on the SIMON

18
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Table 13 NP of Branch3
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pn3(x) 14 20 4 18 25 31 11 0 2 13 7 28 21 9 24 16
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pn3(x) 22 3 8 15 30 27 17 6 19 23 26 1 29 5 12 10

block cipher family,” CRYPTO (1), Lecture Notes in Computer Sci-
ence, vol.9215, pp.161–185, Springer, 2015.

[16] N. Mouha and B. Preneel, “Towards Finding Optimal Differential
Characteristics for ARX: Application to Salsa20.” Cryptology ePrint
Archive, Paper 2013/328, 2013.

[17] L. Sun, W. Wang, and M. Wang, “Accelerating the search of differ-
ential and linear characteristics with the SAT method,” IACR Trans.
Symmetric Cryptol., vol.2021, no.1, pp.269–315, 2021.

[18] J.S. Teh and A. Biryukov, “Differential cryptanalysis of WARP,”
IACR Cryptol. ePrint Arch., p.1641, 2021.

[19] S. Sun, L. Hu, M. Wang, P. Wang, K. Qiao, X. Ma, D. Shi, L. Song,
and K. Fu, “Towards finding the best characteristics of some bit-
oriented block ciphers and automatic enumeration of (related-key)
differential and linear characteristics with predefined properties.”
Cryptology ePrint Archive, Paper 2014/747, 2014.

[20] S.A. Cook, “The complexity of theorem-proving procedures,”
STOC, pp.151–158, ACM, 1971.

[21] O. Bailleux and Y. Boufkhad, “Efficient cnf encoding of boolean
cardinality constraints,” International conference on principles and
practice of constraint programming, pp.108–122, Springer, 2003.

[22] V. Vallade, L. Le Frioux, R. Oanea, S. Baarir, J. Sopena, F. Kor-
don, S. Nejati, and V. Ganesh, “New concurrent and distributed pain-
less solvers: P-mcomsps, p-mcomsps-com, p-mcomsps-mpi, and p-
mcomsps-com-mpi,” SAT COMPETITION 2021, p.40.

[23] S. Banik, T. Isobe, F. Liu, K. Minematsu, and K. Sakamoto, “Or-
thros: A low-latency prf,” IACR Transactions on Symmetric Cryp-
tology, pp.37–77, 2021.

Kazuma Taka received the B.E. and M.E.
degree from Ritsumeikan University, Japan in
2015, and University of Hyogo, Japan in 2024.
His research interest is cryptography.

Tatsuya Ishikawa received the B.E. degrees
from Tokushima University, Japan, in 2022.
From 2022, he has worked at WDB KOUGAKU
Co., Ltd.

Kosei Sakamoto received the B.E., M.E.,
and Ph.D. degrees from Kansai University,
Japan, in 2017, and University of Hyogo, Japan,
in 2020 and 2023, respectively. He has worked at
Mitsubishi Electric Corporation from 2023. His
current research interests include information se-
curity and cryptography.

Takanori Isobe received the B.E., M.E.,
and Ph.D. degrees from Kobe University, Japan,
in 2006, 2008 and 2013, respectively. From
2008 to 2017, he worked at the Sony Corpora-
tion. From 2017 to 2022, he has been an As-
sociate Professor at University of Hyogo. Since
2023, he has been a Professor at University of
Hyogo.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

