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PAPER
Computational Complexity of One-Dimensional Origami with
Constraints on Thickness at Creases∗

Junnosuke HOSHIDO†, Tonan KAMATA††a), Nonmembers, Tsutomu ANSAI†††b),
and Ryuhei UEHARA††c), Members

SUMMARY We investigate the computational complexity of a simple
one-dimensional origami problem. We are given a paper strip 𝑃 of length
𝑛+ 1 and fold it into unit length by creasing at unit intervals. Consequently,
we have several paper layers at each crease in general. The number of paper
layers at each crease is called the crease width at the crease. For a given
mountain-valley assignment of 𝑃, in general, there are exponentially many
ways of folding the paper into unit length consistent with the assignment.
It is known that the problem of finding a way of folding 𝑃 to minimize the
maximum crease width of the folded state is NP-complete. In this study,
we investigate a related paper-folding problem. For any given folded state
of 𝑃, each crease has its mountain–valley assignment and crease-width
assignment. Then, can we retrieve the folded state uniquely when only
partial information about these assignments is given? We introduce this
natural problem as the crease-retrieve problem, for which there are a number
of variants depending on the information given about the assignments. In
this paper, we show that some cases are polynomial-time solvable and that
some cases are strongly NP-complete.
key words: computational origami, crease-retrieve problem, crease width,
NP-complete, one-dimensional origami.

1. Introduction

Recently, computational origami has attracted the interest
of theoretical computer scientists. In this paper, we focus
on one of the simplest origami models: one-dimensional
origami. This origami model involves a long rectangular
strip of paper, which can be abstracted by a line segment
and is uniformly subdivided by creases. At each crease,
we fold the paper strip by degree 𝜋 in either one of two
choices for the direction of folding: a mountain fold, or a
valley fold. Finding the number of feasible (i.e., without
self-crossing) ways of folding a paper strip is known as a
stamp-folding problem, for which the exact value remains
open [1]: Experimentally, a paper strip of length 𝑛 + 1 has a
total of Ω(3.06𝑛) feasible ways of folding and, on average,
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Ω(1.53𝑛) ways of folding for a given random mountain–
valley assignment (“MV assignment,” for short) of length
𝑛.
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Fig. 1 Example of MV assignment 𝑀𝑀𝑉𝑀𝑀𝑉𝑀𝑉𝑉𝑉𝑉 for paper
strip of length 12.

[5|4|3|6|7|1|2|8|10|12|11|9] [2|1|3|4|9|11|12|10|8|7|6|5]

Mountain fold Segment 5

Valley fold
Max. CW=3

Max. CW=7

Segment 2

Fig. 2 Side views of two folded states for MV assignment
𝑀𝑀𝑉𝑀𝑀𝑉𝑀𝑉𝑉𝑉𝑉 . [5 |4 |3 |6 |7 |1 |2 |8 |10 |12 |11 |9] and
[2 |1 |3 |4 |9 |11 |12 |10 |8 |7 |6 |5] describe the orders of paper segments from
the top. The first folded state has the maximum crease width of 3, whereas
the second has the maximum crease width of 7.

It is known that a paper strip has a unique folded state
if and only if it is a pleat folding with MV assignment
𝑀𝑉𝑀𝑉𝑀𝑉𝑀𝑉𝑀 · · · or 𝑉𝑀𝑉𝑀𝑉𝑀𝑉 · · · [1]. Except the
pleat folding, little is known about the relationship between
an MV assignment and the number of feasible folded states
for the assignment. For example, a paper strip of length 12
with the MV assignment 𝑀𝑀𝑉𝑀𝑀𝑉𝑀𝑉𝑉𝑉𝑉 , shown in
Fig. 1, has 100 different feasible folded states (as verified by
a computer program), among which some are easy, while
some are difficult, to fold flat. The main reason behind the
differences in difficulty is the number of paper layers be-
tween two paper segments at each crease. For example, in
the first folded state shown in Fig. 2, the maximum number
of layers at a crease is 3, whereas in the second folded state,
the maximum number of layers is 7. From this viewpoint,
an optimization problem was proposed and investigated in
[2]. That paper introduced a new concept known as the
“crease width” of a crease, which is defined by the num-
ber of paper layers at a crease in a folded state. Therein, it
was proved that the minimization problem for the maximum
crease width of a given MV assignment is NP-complete. (In
fact, among the 100 feasible folded states for the MV assign-
ment 𝑀𝑀𝑉𝑀𝑀𝑉𝑀𝑉𝑉𝑉𝑉 shown in Fig. 1, the first folded
state is the only one with a maximum crease width of 3,
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which is optimal.)
Now, we consider the information necessary for speci-

fying a folded state. We will observe that given both an MV
assignment and a crease-width assignment for every crease
(“CW assignment,” for short), the folded state is uniquely
determined if it is feasible. Then, what happens if we are
given partial information about these assignments? This
natural question leads us to our new computational origami
problem, which is named the crease-retrieve problem. In
this paper, we first show that the crease-retrieve problem is
strongly NP-complete in general. More specifically, when
we are given part of the MV assignment and CW assign-
ment, the decision problem that asks whether there exists a
feasible folded state is strongly NP-complete. Even if the
entire MV assignment is given, the crease-retrieve problem
is still strongly NP-complete when only a part of the CW
assignment is given. On the other hand, we also investi-
gate the cases that the crease-retrieve problem is tractable.
When the maximum crease width is 0, it is easy to solve
the crease-retrieve problem since only the pleat folding sat-
isfies this condition. We extend this idea and show that the
crease-retrieve problem can be solved in linear time when
the maximum crease width is restricted to 1, 2, or 3.

2. Preliminaries

Herein, a paper strip refers to a one-dimensional line seg-
ment with creases at every integer position. (In other words,
we ignore the thickness and width of the paper.) The paper
strip is rigid except at the creases; that is, we are allowed
to fold only along these creases at integer positions. We
are given a paper strip of length 𝑛 + 1 placed in the interval
[0, 𝑛 + 1]. (We will refer to this state as an initial state.) We
call each paper segment between 𝑖 and 𝑖+1 at the initial state
the segment 𝑖+1. We assume that the top and bottom sides of
the 1st segment are fixed. The paper strip is in a folded state
if each crease is folded by a degree 𝜋 or −𝜋, and the folded
strip is placed in the interval [0, 1]. The paper strip is moun-
tain (valley)-folded at a crease 𝑖 when the 𝑖th segment and
the (𝑖+1)st segment are folded in the direction such that their
bottom sides (top sides, respectively) are close to touching
(although they may not necessarily touch if they have some
other paper layers between them). For a given paper strip, an
MV assignment at crease 𝑖 is either 𝑀 or 𝑉 , where 𝑀 refers
to a “mountain fold,” and𝑉 refers to a “valley fold.” We will
use the standard notation 𝑥𝑘 for string repetition. For exam-
ple, (𝑀𝑉)3𝑀𝑀 (𝑉𝑀)3 = 𝑀𝑉𝑀𝑉𝑀𝑉𝑀𝑀𝑉𝑀𝑉𝑀𝑉𝑀 . A
folded state is feasible if the paper strip does not penetrate
itself in the given state.

We then provide formal definitions of feasibility and
MV assignment for the sake of precision. When we obtain a
folded state of 𝑃 placed in the interval [0, 1], the segments
1, 2, . . . , 𝑛, 𝑛+1 are positioned in this interval in some proper
order. We define an ordering function 𝑓 such that 𝑓 (𝑖) = 𝑗
denotes that the segment 𝑖 is the 𝑗 th layer in the folded
state with 1 ≤ 𝑖, 𝑗 ≤ 𝑛 + 1. (That is, for the first folded
state [5|4|3|6|7|1|2|8|10|12|11|9] shown in Fig. 2, we have

𝑓 (1) = 6, 𝑓 (2) = 7, 𝑓 (3) = 3, 𝑓 (4) = 2, 𝑓 (5) = 1, and so
on.) Then, for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, the crease 𝑖 (between
segment 𝑖 and 𝑖 + 1) is mountain-folded in the folded state if
and only if (1) 𝑖 is odd, and 𝑓 (𝑖) < 𝑓 (𝑖 + 1), or (2) 𝑖 is even,
and 𝑓 (𝑖) > 𝑓 (𝑖 + 1). Inversely, the crease 𝑖 is valley-folded
if and only if (3) 𝑖 is odd, and 𝑓 (𝑖) > 𝑓 (𝑖 + 1), or (4) 𝑖 is
even, and 𝑓 (𝑖) < 𝑓 (𝑖 + 1). When the paper strip does not
penetrate itself, the creases form a nest structure. Precisely,
a folded state is feasible if and only if for any pair of integers
𝑖 and 𝑗 (𝑖 ≠ 𝑗) with the same parity,† we have either

• max{ 𝑓 (𝑖), 𝑓 (𝑖 + 1)} < min{ 𝑓 ( 𝑗), 𝑓 ( 𝑗 + 1)} (crease 𝑖 is
over 𝑗),

• max{ 𝑓 ( 𝑗), 𝑓 ( 𝑗 + 1)} < min{ 𝑓 (𝑖), 𝑓 (𝑖 + 1)} (crease 𝑗
is over 𝑖),

• 𝑓 (𝑖) < 𝑓 ( 𝑗) < 𝑓 ( 𝑗 + 1) < 𝑓 (𝑖 + 1), 𝑓 (𝑖) < 𝑓 ( 𝑗 + 1) <
𝑓 ( 𝑗) < 𝑓 (𝑖 + 1), 𝑓 (𝑖 + 1) < 𝑓 ( 𝑗) < 𝑓 ( 𝑗 + 1) < 𝑓 (𝑖),
𝑓 (𝑖 +1) < 𝑓 ( 𝑗) < 𝑓 ( 𝑗 +1) < 𝑓 (𝑖) (crease 𝑖 pinches 𝑗),
or

• 𝑓 ( 𝑗) < 𝑓 (𝑖) < 𝑓 (𝑖 + 1) < 𝑓 ( 𝑗 + 1), 𝑓 ( 𝑗) < 𝑓 (𝑖 + 1) <
𝑓 (𝑖) < 𝑓 ( 𝑗 + 1), 𝑓 ( 𝑗 + 1) < 𝑓 (𝑖) < 𝑓 (𝑖 + 1) < 𝑓 ( 𝑗), or
𝑓 ( 𝑗 +1) < 𝑓 (𝑖) < 𝑓 (𝑖 +1) < 𝑓 ( 𝑗) (crease 𝑗 pinches 𝑖).

(Consequently, the 𝑖th and 𝑗 th creases should cross when we
have 𝑓 (𝑖) < 𝑓 ( 𝑗) < 𝑓 (𝑖 + 1) < 𝑓 ( 𝑗 + 1) or its symmetric
cases, which means that the paper strip penetrates itself.)

For a given paper strip 𝑃 of length 𝑛 + 1, we consider
a feasible folded state. Then, the crease width at crease 𝑖
in the state is defined by | 𝑓 (𝑖) − 𝑓 (𝑖 + 1) | − 1, which gives
the number of paper layers between the 𝑖th segment and the
(𝑖 + 1)st segment joined at the crease 𝑖 in the state. For
a feasible folded state, the CW assignment at a crease 𝑖 is
defined by the crease width at the crease 𝑖.

In this study, we introduce the following crease-retrieve
problem. We are given partial information on the MV and
CW assignments of the creases of a folded state of 𝑃. Then,
the solution to the problem is a folded state of 𝑃 that sat-
isfies these assignments. Precisely, the input of the crease-
retrieve problem is composed of two functions As : [1, 𝑛] →
{𝑀,𝑉, ∗𝐴} and Cw : [1, 𝑛] → {0, 1, . . . , 𝑛 − 1, ∗𝐶 }. Intu-
itively, the symbols ∗𝐴 and ∗𝐶 are so-called “wild cards”,
which mean they can take any value. That is, ∗𝐴 means “𝑀
or 𝑉”, and ∗𝐶 means “any integer in [0, 𝑛 − 1]”. (Note that
Cw(𝑖) takes an integer in [0, 𝑛 − 1] for any 1 ≤ 𝑖 ≤ 𝑛 in
a folded state.) The problem asks if there exists a feasible
folded state of 𝑃 consistent with these two functions. Pre-
cisely, a folded state satisfies these two functions if and only
if for each crease 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, (1) it is mountain-folded if
As(𝑖) = 𝑀 or As(𝑖) = ∗𝐴, (2) it is valley-folded if As(𝑖) = 𝑉
or As(𝑖) = ∗𝐴, and (3) the crease width at 𝑖 is equal to Cw(𝑖)
or Cw(𝑖) = ∗𝐶 .

3. Computational Complexity of Crease-Retrieve Prob-
lem

In this section, we investigate the computational complexities

†They satisfy the parenthesis theorem.
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for some natural cases of the crease-retrieve problem. We
first consider a few trivial cases:

Observation 1: ([1, Proposition 1]) All instances of the
crease-retrieve problem are yes instances when As(𝑖) ∈
{𝑀,𝑉} and Cw(𝑖) = ∗𝐶 for every 𝑖 in {1, 2, . . . , 𝑛}.
Proof. Intuitively, we can repeat “end folding” for each
𝑖 = 1, 2, . . . , 𝑛 following As(𝑖). See [3] for the definition of
the end folding. In our context, we just repeat folding along
the leftmost crease line. It is easy to observe that it is feasible
for any function As. 2

Observation 2: We can solve the crease-retrieve problem
in linear time when Cw(𝑖) ∈ {0, 1, . . . , 𝑛 − 1} and As(𝑖) ∈
{𝑀,𝑉} for every 𝑖 in {1, 2, . . . , 𝑛}.
Proof. We first fix segment 1 of height 0, where the height
ℎ() indicates the order of each paper segment in [0, 1] in the
final folded state. (We denote the height of segment 1 by
ℎ(1) = 0. For example, we have ℎ(5) = −5 and ℎ(8) = 2 for
the left figure in Fig. 2.) Then, for each 𝑖 = 1, . . . , 𝑛, we can
compute the height of the segment 𝑖 + 1 from the height of
the segment 𝑖 by adding or subtracting Cw(𝑖). The addition
or subtraction is determined by the parity of 𝑖 and As(𝑖).
Precisely,

(1) ℎ(𝑖) = ℎ(𝑖 − 1) + Cw(𝑖) + 1 if 𝑖 is odd and As(𝑖) = 𝑉 ,
(2) ℎ(𝑖) = ℎ(𝑖 − 1) + Cw(𝑖) + 1 if 𝑖 is even and As(𝑖) = 𝑀 ,
(3) ℎ(𝑖) = ℎ(𝑖−1) − (Cw(𝑖) +1) if 𝑖 is odd and As(𝑖) = 𝑀 ,

or
(4) ℎ(𝑖) = ℎ(𝑖−1) − (Cw(𝑖) +1) if 𝑖 is even and As(𝑖) = 𝑉 .

After computation of the heights, we check if the folded state
is feasible, and if the heights have no gaps. The folded state
has no gap if and only if there is an integer 𝑗 with 𝑗 ≤ 0 such
that there exists exactly one paper segment of height 𝑗 ′ for
every 𝑗 ′ = 𝑗 , 𝑗 + 1, . . . , 𝑗 + 𝑛. This consecutiveness check
of heights can be done in linear time in the same technique
as in bucket sort. The feasibility can be confirmed through
checks of the nest structure. It is discussed in [4, Sect. 3.2.3]
in the context of recognition of valid linear orderings in 2D
map folding. Using the technique in [4, Sect. 3.2.3], it can
be confirmed in linear time. 2

Now, we turn to the main theorem in this section.

Theorem 3: The crease-retrieve problem is strongly NP-
complete when Cw(𝑖) ∈ {0, 1, . . . , 𝑛 − 1, ∗𝐶 } and As(𝑖) ∈
{𝑀,𝑉} for every 𝑖 in {1, 2, . . . , 𝑛}.
Proof. It is easy to see that the problem is in NP. We prove
the hardness via a reduction from the following problem 3-
Partition, which is known to be strongly NP-complete even
if 𝐵 is bounded from above by some polynomial in 𝑚 [5].

3-Partition
Input: Positive integers 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎3𝑚 such that∑3𝑚

𝑗=1 𝑎 𝑗 = 𝑚𝐵 for some positive integer 𝐵 and
𝐵/4 < 𝑎 𝑗 < 𝐵/2 for 1 ≤ 𝑗 ≤ 3𝑚.

Question: Is there a partition of {1, 2, . . . , 3𝑚} into 𝑚
subsets 𝐴1, 𝐴2, . . . , 𝐴𝑚 such that

∑
𝑗∈𝐴𝑘

𝑎 𝑗 = 𝐵 for
1 ≤ 𝑘 ≤ 𝑚?

To begin with, we describe a construction of a pa-
per strip 𝑃 for a given instance 𝑎1, . . . , 𝑎3𝑚 and 𝐵 of 3-
Partition. The basic idea is slightly similar to the one in
[2].

The strip 𝑃 consists of a folder part and 3𝑚 gadget parts
(Fig. 3). The folder part consists of creases in [1, 2𝑚+3], and
each of the 3𝑚 gadget parts corresponds to 𝑎 𝑗 (1 ≤ 𝑗 ≤ 3𝑚),
which contains 4𝑚 +28𝑚2𝑎 𝑗 consecutive points on the strip.
That is, the total length of 𝑃 is 2𝑚+3+∑3𝑚

𝑗=1 (4𝑚+28𝑚2𝑎 𝑗 ) =
3 + 2𝑚 + 12𝑚2 + 28𝑚3𝐵. In the folder part, creases 𝑖 with
1 ≤ 𝑖 ≤ 2𝑚+3 form a zig-zag pattern via the MV assignment
𝑉𝑀𝑉𝑀 · · ·𝑀𝑉 , as shown in Fig. 3. Precisely, As(𝑖) = 𝑉 for
odd 𝑖, and As(𝑖) = 𝑀 for even 𝑖. For even 𝑖, we let Cw(𝑖) = 0;
that is, we cannot have any paper layers in the folded state
at this crease (assigned 𝑀). For 𝑖 = 1 and 𝑖 = 2𝑚 + 3, we
set Cw(𝑖) = ∗𝐶 ; that is, we can have any number of paper
layers in the folded state at these creases. These two creases
1 and 2𝑚 + 3 are called trash folders, where we will put
useless paper layers. For each 𝑖 with 𝑖 = 3, 5, 7, . . . , 2𝑚 + 1,
we set Cw(𝑖) = 14𝑚2𝐵 + 6𝑚. We call these 𝑚 creases “unit
folders.”

Now, we move to the gadget part (Fig. 4). For each
integer 𝑎 𝑗 , we let 𝑏 𝑗 = 14𝑚2𝑎 𝑗 . We first consider the case
that 𝑗 is an odd number. Then, the 𝑗 th gadget part consists of
a zig-zag pattern of length 2𝑚+𝑏 𝑗 (which can be represented
by (𝑉𝑀)𝑏 𝑗+2𝑚 in a standard representation of string). Let 𝑠 𝑗
be the first crease of the 𝑗 th gadget part (which depends on
𝑎 𝑗′ with all 𝑗 ′ < 𝑗). Then, As(𝑖) = 𝑉 for even 𝑖 = 𝑠 𝑗+2𝑘 , and
As(𝑖) = 𝑀 for odd 𝑖 = 𝑠 𝑗 + 2𝑘 + 1, with 0 ≤ 𝑘 ≤ 𝑚 + 𝑏 𝑗/2
(we note 𝑏 𝑗 is even). This zig-zag pattern contains three
parts. We set their crease widths as follows: (1) Cw(𝑖) = ∗𝐶
for 𝑖 = 𝑠 𝑗 + 𝑘 for 0 ≤ 𝑘 ≤ 2𝑚, (2) Cw(𝑖) = 0 for 𝑖 = 𝑠 𝑗 + 𝑘
for 2𝑚 < 𝑘 < 2𝑚 + 𝑏 𝑗 , and (3) Cw(𝑖) = ∗𝐶 for 𝑖 = 𝑠 𝑗 + 𝑘
for 2𝑚 + 𝑏 𝑗 ≤ 𝑘 < 2𝑚 + 𝑏 𝑗 + 2𝑚. We call the first and
third parts spring parts and the second part 𝑏 𝑗 part. Based
on the requirement in (2), we cannot put any paper layers
at the creases in the 𝑏 𝑗 part. Intuitively, this part can be
considered as “glued,” and this thickness of 𝑏 𝑗 should be put
into some folder. On the other hand, each of the spring parts
can be split in any way, and they can be put into any folders,
including trash folders.

We next consider the case that 𝑗 is an even number. The
zig-zag pattern (𝑀𝑉)𝑏 𝑗+2𝑚 is obtained via flipping of the 𝑀
and 𝑉 used in the odd case. The crease widths are identical:
(1) Cw(𝑖) = ∗𝐶 for 𝑖 = 𝑠 𝑗 + 𝑘 for 0 ≤ 𝑘 ≤ 2𝑚, (2) Cw(𝑖) = 0
for 𝑖 = 𝑠 𝑗 + 𝑘 for 2𝑚 < 𝑘 < 2𝑚 + 2𝑏 𝑗 , and (3) Cw(𝑖) = ∗𝐶
for 𝑖 = 𝑠 𝑗 + 𝑘 for 2𝑚 + 2𝑏 𝑗 ≤ 𝑘 < 2𝑚 + 𝑏 𝑗 + 2𝑚.

The construction of the paper strip 𝑃 can be done in
polynomial time. Therefore, it is sufficient to show that 𝑃
can be folded into a unit length without penetration such
that each crease 𝑖 satisfies the condition for the crease width
Cw(𝑖) if and only if the instance of 3-Partition is a yes
instance.

We first observe that most parts of 𝑃 are in pleat folding
𝑀𝑉𝑀𝑉 · · · or 𝑉𝑀𝑉𝑀 · · · . As shown in Fig. 5, the folder
part consists of 𝑚 unit folders of crease width 14𝑚2𝐵 + 6𝑚
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between two trash folders, and each gadget corresponding
to 𝑎 𝑗 consists of a “glued” part of width 2𝑏 𝑗 between two
springs of width 2𝑚.† Therefore, we consider putting gadget
parts into unit folders to fill up each folder by exactly 14𝑚2𝐵+
6𝑚 layers of paper.

We first assume that the instance of 3-Partition is a
yes instance and show that 𝑃 can be folded into unit length.
Because the instance is a yes instance, the positive inte-
gers 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎3𝑚 can be partitioned into 𝑚 subsets
𝐴1, 𝐴2, . . . , 𝐴𝑚 such that

∑
𝑗∈𝐴𝑘

𝑎 𝑗 = 𝐵 for 1 ≤ 𝑘 ≤ 𝑚.
Then, we fill the unit folders as follows (Fig. 6). We assume
that 𝑎1 is put into a subset 𝐴𝑘′ for some 𝑘 ′. Then, we put
the 𝑏1 gadget into the 𝑘 ′th unit folder, and two paper layers
for each unit folder, as shown in Fig. 6. The other remaining
segments in the two springs are put into trash folders on both
sides. We can observe that these springs also act as unit
folders after putting the 𝑏1 gadget into 𝐴𝑘′ . Therefore, we
can repeat the same process for each 𝑎2, 𝑎3, . . . , 𝑎3𝑚. Then,
by the assumption with 𝑏 𝑗 = 14𝑚2𝑎 𝑗 , each unit folder 𝐴𝑘′

†The width here refers to the number of layers.

has 14𝑚2𝐵 + 6𝑚 paper layers at its corresponding crease.
Thus, we obtain the required folded state of 𝑃.

Next, we assume that the paper strip 𝑃 is folded, and we
construct a solution for 3-Partition from it. We first observe
that the total number of paper layers in the spring parts is
3𝑚 · 4𝑚 = 12𝑚2, which is much less than 14𝑚2. Therefore,
because each 𝑏 𝑗 = 14𝑚2𝑎 𝑗 and 𝐵/4 < 𝑎 𝑗 < 𝐵/2, if a unit
folder contains 14𝑚2𝐵 + 6𝑚 paper layers, it is easy to see
that each unit folder contains exactly three 𝑏 𝑗 parts for some
𝑏 𝑗 , 𝑏 𝑗′ and 𝑏 𝑗′′ . Then, these parts together make 14𝑚2𝐵
paper layers because 6𝑚 is excessively small compared to
each of 𝑏 𝑗 , 𝑏 𝑗′ , and 𝑏 𝑗′′ . Therefore, we have 𝑎 𝑗 + 𝑎 𝑗′ + 𝑎 𝑗′′ =
𝐵 for this unit. We can use the same argument for each
unit folder, and we can construct a solution for 3-Partition,
which completes the proof. 2

Indeed, if the proof of Theorem 3 is considered care-
fully, it can be inferred that the MV assignment in the proof
is not necessary. This fact leads us to the following corollary.

Corollary 4: The crease-retrieve problem is strongly NP-
complete when Cw(𝑖) ∈ {0, 1, . . . , 𝑛−1, ∗𝐶 } and As(𝑖) = ∗𝐴
for every 𝑖 in {1, 2, . . . , 𝑛}.

Proof. The reduction is identical to one given in the proof of
Theorem 3, but we provide no MV assignment to 𝑃. When
the instance of 3-Partition is a yes instance, we can use
the same method as that used in the proof, and thus 𝑃 can
be folded into unit length in a way that satisfies the two
functions. Therefore, we assume that the paper strip 𝑃 is
folded, and we construct a solution for 3-Partition from it.

We first focus on the folder part. We have Cw(𝑖) = 0
for each even 𝑖, and Cw(𝑖) has the same value for each
𝑖 = 3, 5, 7, . . . , 2𝑚 + 1. If we valley-fold at some even 𝑖, two
consecutive unit folders have to have the same crease width,
which is impossible. On the other hand, if we mountain-fold
at some odd 𝑖, we cannot have Cw(𝑖 − 1) = Cw(𝑖 + 1) = 0.



HOSHIDO et al.: COMPUTATIONAL COMPLEXITY OF ONE-DIMENSIONAL ORIGAMI WITH CONSTRAINTS ON THICKNESS AT CREASES
5

Therefore, the folder part should make a pleat folding.
Next, we focus on the gadget part for 𝑎 𝑗 . In this part,

we have consecutive 𝑏 𝑗 + 1 creases 𝑖 with Cw(𝑖) = 0. For
the same reason as for the folder part, we can observe that
this part should make a pleat folding to satisfy the condition.
Then, to satisfy the crease-width conditions in all unit fold-
ers, this part has to be put into some unit folder to contribute
to its crease width by 𝑏 𝑗 .

Therefore, we can use the same argument as that applied
in the proof of Theorem 3, and obtain the claim. 2

4. Polynomial Time Algorithms for Crease-Retrieve
Problem

In this section, we investigate the case that the maximum
crease width is given as a part of input to the crease-retrieve
problem. That is, we are given two functions As and Cw
with the maximum crease width 𝑘 , and the problem asks if
there exists a feasible folded state of 𝑃 consistent with these
two functions with the maximum crease width at most 𝑘 .

As mentioned in Introduction, it is known that a paper
strip has a unique folded state for a given MV assignment if
and only if it is a pleat folding with MV assignment (𝑀𝑉)𝑖 ,
(𝑀𝑉)𝑖𝑀 , (𝑉𝑀)𝑖 , or (𝑉𝑀)𝑖𝑉 for some 𝑖 [1]. This fact leads
us to the following observation:

Observation 5: The maximum crease width is 0 if and only
if it is a pleat folding. Therefore, the crease-retrieve problem
can be solved in linear time when the maximum crease width
𝑘 = 0.

Proof. We first show that the maximum crease width is 0 if
and only if it is a pleat folding. It is easy to see that a pleat
folding has the maximum crease width 0. Thus we assume
that a folded state has the maximum crease width 0, that is,
all CW assignments are zero. In this case, once we fold at a
crease 𝑖 by, say, mountain fold, we can glue the 𝑖th segment
and the (𝑖 + 1)st segment since the crease width at the crease
𝑖 is zero. It is then easy to see that we have to fold at the
(𝑖 − 1)st and the (𝑖 + 1)st creases by valley fold to achieve
the maximum crease width 0. Repeating this, we eventually
obtain a pleat folding.

When the maximum crease width is constrained to zero,
the crease-retrieve problem can be solved in linear time by
checking the consistency of the function As. 2

We show three simple observations which are useful in
this section:

Observation 6: In a folded state, a crease 𝑖 has an odd
crease width if and only if either the segment 1 or the segment
𝑛 is between the segments 𝑖 and 𝑖 + 1 in the folded state.

Proof. Trivial. 2

Observation 7: Let 𝑆 = (𝑠𝑖1 , 𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘 ) be a se-
quence of paper segments and let 𝑆′ = (𝑠′𝑖1 , 𝑠

′
𝑖2
, 𝑠′𝑖3 , . . . , 𝑠

′
𝑖𝑘
)

be the sequence of right neighbor segments of 𝑆 (precisely,
𝑠′𝑖 𝑗 = 𝑠𝑖 𝑗+1 if 𝑖 𝑗 is odd, and 𝑠′𝑖 𝑗 = 𝑠𝑖 𝑗−1 if 𝑖 𝑗 is even). The
maximum crease width of the final folded state is at least

i1
si1 si1 +1

i2-1

si2 si2 -1

iksik sik +1

folded
glued glued

Fig. 7 Paper segments 𝑠𝑖1 , 𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘 are folded on their right end-
points at once and they are adjacent in the final folded state. We here note
that the segment 𝑠𝑖 𝑗 is flipped if and only if 𝑖 𝑗 is even regardless of the
ordering of the segments.

2(𝑘 − 1) if the following conditions hold (Fig. 7). (1) In the
final folded state, 𝑠𝑖 𝑗 is adjacent to 𝑠𝑖 𝑗+1 and 𝑠′𝑖 𝑗 is adjacent to
𝑠′𝑖 𝑗+1

for each 𝑗 = 1, . . . , 𝑘 . (2) 𝑆 ∩ 𝑆′ = ∅.

Proof. Regardless of mountain fold or valley fold, the outer-
most paper catches the other 𝑘−1 paper layers within it at the
crease, which means that the crease width of the outermost
crease is 2(𝑘 − 1). 2

We here consider a shuffle pattern of length 𝑖 which
is defined by “(𝑀𝑉)𝑖−1𝑀𝑀 (𝑉𝑀)𝑖−1”.† Although it seems
to be similar to a pleat folding, it is shown that a shuffle
pattern of length 𝑖 has

(2𝑖
𝑖

)
distinct ways of folding into a unit

length since two pleats can be combined in any way like riffle
shuffling the cards [6]. On the other hand, a shuffle pattern
of length 𝑖 has only 2 ways of folding if its crease width is
restricted to 2.

Observation 8: The shuffle pattern (𝑀𝑉)𝑖−1𝑀𝑀 (𝑉𝑀)𝑖−1

of length 𝑖 has 2 folded states of the maximum crease width
2.

x x+1 x

x+1

x+1

x

x+2x-1

x-1

x+2

x-1

x+2

Fig. 8 Two ways of folding of a shuffle pattern 𝑀𝑉𝑀𝑉𝑀𝑀𝑉𝑀𝑉𝑀 .

Proof. For a shuffle pattern of length 𝑖, we let 𝑥 = 2𝑖−1. Then
the 𝑥th and the (𝑥+1)st creases are mountains and the (𝑥−1)st
and the (𝑥 + 2)nd creases are valleys (Fig. 8). To achieve the
maximum crease width at most 2, we have 2 possible ways
of folding around the 𝑥th crease; glue the (𝑥 − 1)st crease to
the (𝑥 + 1)st crease or glue the (𝑥 + 2)nd crease to the 𝑥th
crease. In each way, we have to glue the other line segments
as shown in (Fig. 8) to achieve the maximum crease width at

†The notion of the shuffle pattern is introduced in [6].
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most 2. Thus we have the claim. 2

Now we turn to the main theorem in this section. We
first suppose that MV assignments are given for all creases.

Theorem 9: The crease-retrieve problem can be solved in
linear time when the maximum crease width 𝑘 ≤ 3.

In order to show Theorem 9, we show three algorithms
that deal with three cases 𝑘 = 1, 𝑘 = 2, and 𝑘 = 3, respec-
tively.

Lemma 10: The crease-retrieve problem can be solved in
linear time when the maximum crease width 𝑘 = 1.

Proof. By Observation 7, we cannot stack two layers in the
final folded state when 𝑘 = 1. Therefore, clearly, 𝑘 = 1
can be achieved only by the following ordering function 𝑓
when 𝑛 > 3: (1) 𝑓 (1) = 2, 𝑓 (2) = 1, 𝑓 (𝑖) = 𝑖 for each
2 < 𝑖 < 𝑛, 𝑓 (𝑛) = 𝑛, and 𝑓 (𝑛 + 1) = 𝑛 + 1, (2) 𝑓 (1) = 1,
𝑓 (2) = 2, 𝑓 (𝑖) = 𝑖 for each 2 < 𝑖 < 𝑛, 𝑓 (𝑛) = 𝑛 + 1,
and 𝑓 (𝑛 + 1) = 𝑛, or (3) 𝑓 (1) = 2, 𝑓 (2) = 1, 𝑓 (𝑖) = 𝑖 for
each 2 < 𝑖 < 𝑛, 𝑓 (𝑛) = 𝑛 + 1, and 𝑓 (𝑛 + 1) = 𝑛. In the
context of MV assignments, the case (1) can be represented
by 𝑀𝑀𝑉𝑀𝑉𝑀𝑉𝑀𝑉𝑀 · · · or 𝑉𝑉𝑀𝑉𝑀𝑉𝑀𝑉 · · · . In the
case (2), the last two MV assignments are the same, and
both hold in the case (3).

When 𝑛 = 3, 𝑘 = 1 can be achieved when (1) 𝑓 (1) = 1,
𝑓 (2) = 3, and 𝑓 (3) = 2, or (2) 𝑓 (1) = 2, 𝑓 (2) = 1, and
𝑓 (3) = 3. In the context of MV assignments, they can be
represented by 𝑀𝑀 or 𝑉𝑉 . The maximum crease width 𝑘
cannot be 1 when 𝑛 = 1, 2.

Therefore, the crease-retrieve problem can be solved in
linear time. Precisely speaking, for given two functions As :
[1, 𝑛] → {𝑀,𝑉} and Cw : [1, 𝑛] → {0, 1, . . . , 𝑛− 1, ∗𝐶 }, it
is not difficult to check if they are consistent to the patterns
above in linear time. 2

i

j

Fig. 9 Representative way of folding for 𝑘 = 2.

Lemma 11: The crease-retrieve problem can be solved in
linear time when the maximum crease width 𝑘 = 2.

Proof. By Observation 7, once we fold a long paper strip, the
crease width at the crease points on the folded part already
achieves 𝑘 = 2. Then we have to make a pleat folding in
the folded part by Observation 5; otherwise, the maximum
crease width becomes greater than 𝑘 = 2. Therefore, intu-
itively speaking, 𝑘 = 2 can be achieved by the following way
of folding (Fig. 9): (1) we first fold along the crease 𝑖 and
glue the paper strip, (2) we then fold along the crease 𝑗 with
𝑛+1

2 ≤ 𝑗 − 𝑖 and glue the paper strip, (3) we then fold the
glued paper strip in pleat folding. We can observe that after

the steps (1) and (2), the thickness of the paper strip at each
crease is at most 2. Precisely, at the creases on both sides, it
has thickness 2, and it may have some creases of thickness 1
in the central part of the paper strip. When 𝑛+1

2 > 𝑗 − 𝑖, the
thickness of the paper strip at each crease is 2 or 3 since both
endpoints of the paper strip are piled up on some creases
between 𝑖 and 𝑗 .

We here note that around the creases 𝑖 and 𝑗 , we have
the same pattern of the shuffle pattern. By Observation 8,
we have two ways of folding at the creases 𝑖 and 𝑗 . To avoid
the overlapping of the endpoints of the paper strip, we may
choose the further points.

By combining the arguments in the proofs of Observa-
tions 5 and 7, we can observe that this is the only way to
achieve 𝑘 = 2.

In the context of MV assignments, the assignment
of the maximum crease width 𝑘 = 2 consists of three
pleat folding. For example, we assume that 𝑠1 = 𝑀𝑉𝑀 ,
𝑠2 = (𝑀𝑉)4𝑀 , and 𝑠3 = (𝑀𝑉)2𝑀 . Then 𝑠1𝑠2𝑠3 =
𝑀𝑉𝑀𝑀𝑉𝑀𝑉𝑀𝑉𝑀𝑉𝑀𝑀𝑉𝑀𝑉𝑀 has a feasible folded
state of the maximum crease width 𝑘 = 2. We call these
two line segments between two consecutive same (𝑀𝑀 in
this case) MV assignments turning points. When we solve
the crease-retrieve problem, we first find possible turning
points from As, and then check the consistency with Cw.
Among possible turning points, we choose the farthest pairs
of creases and check if 𝑛+1

2 ≤ 𝑗 − 𝑖 for the corresponding
creases. The correctness of the algorithm is easy to follow,
and they can be done in linear time. 2

Lemma 12: The crease-retrieve problem can be solved in
linear time when the maximum crease width 𝑘 = 3.

Proof. By Observation 6, at least one of the segments 1 and
𝑛 should be used to achieve 𝑘 = 3. By the proof of Lemma
10, we can observe that the segment 1 or 𝑛 can increase the
crease width of its neighbor in the folded state. That is, the
folded state of the maximum crease width 𝑘 = 3 is the same
as the folded state of the maximum crease width 𝑘 = 2 except
the segments 1 or 𝑛, and these segments can be put into their
neighbor creases.

We first consider the case that both of the segments 1
and 𝑛 are used to achieve 𝑘 = 3. Then, an assignment of
the maximum crease width 𝑘 = 3 consists of three pleat
foldings 𝑠1, 𝑠2, 𝑠3 with two MV assignments 𝑡1 and 𝑡2 with
𝑡1, 𝑡2 ∈ {𝑀,𝑉} such that (1) the assignment is given by
𝑡1𝑠1𝑠2𝑠3𝑡2, (2) 𝑡1 is the same as the first MV assignment of
𝑠1, (3) the last MV assignment of 𝑠1 is the same as the first
MV assignment of 𝑠2, (4) the last MV assignment of 𝑠2 is
the same as the first MV assignment of 𝑠3, and (5) 𝑡2 is the
same as the last MV assignment of 𝑠3. The length constraint
is the same as Lemma 11. That is, |𝑠1 | + |𝑠3 | ≤ |𝑠2 |, where
|𝑠 | denotes the total number of 𝑀 and𝑉 in 𝑠. The other cases
are similar and omitted.

By the proofs of Lemmas 10 and 11, it is not difficult
to confirm the correctness of the argument above, and the
crease-retrieve problem can be solved in linear time when
𝑘 = 3. 2
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Now we show the proof of Theorem 9:
Proof. By Lemmas 10, 11, and 12, we can solve the crease-
retrieve problem when the maximum crease width is either
𝑘 = 1, 𝑘 = 2, or 𝑘 = 3 in linear time. Thus we can solve the
problem for each of the cases 𝑘 = 1, 𝑘 = 2, and 𝑘 = 3 in this
order in linear time. 2

Intuitively, if every crease width is given and the maxi-
mum crease width is at most 3, we start at some crease point
to glue some consecutive line segments sharing the crease,
expand the gluing, and make pleat folding. Therefore, once
we choose turning points in the case 𝑘 = 2, the way of folding
is almost uniquely determined.

In the arguments above, we suppse that As : [1, 𝑛] →
{𝑀,𝑉} is given. That is, all MV assignments are given. With
careful analysis, we can observe that Lemmas 10, 11, and 12
hold even if As(𝑖) = ∗𝐴. That is, since the final folded state is
essentially unique when 𝑘 ≤ 3, the assignment for each 𝑖 with
As(𝑖) = ∗𝐴 is determined by the unique final folded state.
(Precisely, when As(𝑖) = ∗𝐴 for all 𝑖, we have two feasible
assignments determined by As(1) = 𝑀 or As(1) = 𝑉 .) Thus
we have Theorem 9 for any As : [1, 𝑛] → {𝑀,𝑉, ∗𝐴}.

Interestingly, this strategy does not work in the case
𝑘 = 4. When Cw = [2, 0, 0, 2, 0, 4, 0, 2, 0, 0, 2, 0], we have
two completely different feasible folded states as shown in
Fig. 10.† That is, we cannot extend Theorem 9 to the case of
𝑘 = 4 in a straightforward way.

Fig. 10 Two feasible folded states for Cw = [2, 0, 0, 2, 0, 4, 0, 2, 0, 0, 2, 0].

5. Concluding Remarks

In this study, we introduce the crease-retrieve problem and
investigate its computational complexity. As investigated in
[1], an MV assignment is not sufficient for determining the
folded state of a strip of a paper. On the other hand, an MV
assignment and a CW assignment are sufficient for determin-
ing the folded state. When we provide partial information on
the CW assignment, the decision problem is NP-complete,
whether we provide a full MV assignment or provide no MV

†This example was found by Giovanni Viglietta in October,
2022.

assignment.
An interesting case is the case when only a full CW

assignment is given. As shown in the example in Fig. 10,
feasible folded states are not unique in general, and it is
completely different to the case that the maximum crease
width is up to 3. A natural open problem is whether we can
determine in polynomial time if a feasible folded state exists
when only a full CW assignment is given.

In the context of the stamp-folding problem, the char-
acterization of the number of folded states for a given MV
assignment remains open. As mentioned in Introduction, it
is known that an MV assignment is a pleat folding if and only
if it has only one folded state. On the other hand, the shuf-
fle pattern (𝑀𝑉)𝑖𝑀𝑀 (𝑉𝑀)𝑖 has exponentially many folded
states. It is also known that a random MV assignment has
exponentially many folded states. The characterization of
MV assignments in which each assignment has polynomial
number of feasible folded states is still open.
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