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PAPER
(𝒕, 𝒔)-completely Independent Spanning Trees

Shin-ichi NAKANO†, Member

SUMMARY In this paper we first define (𝑡 , 𝑠)-completely independent
spanning trees, which is a generalization of completely independent span-
ning trees. A set of 𝑡 spanning trees of a graph is (𝑡 , 𝑠)-completely indepen-
dent if, for any pair of vertices 𝑢 and 𝑣, among the set of 𝑡 paths from 𝑢 to 𝑣
in the 𝑡 spanning trees, at least 𝑠 ≤ 𝑡 paths are internally disjoint. By (𝑡 , 𝑠)-
completely independent spanning trees, one can ensure any pair of vertices
can communicate each other even if at most 𝑠 − 1 vertices break down. We
prove that every maximal planar graph has a set of (3, 2)-completely inde-
pendent spanning trees, every tri-connected planar graph has a set of (3, 2)-
completely independent spanning trees, and every 3D grid graph has a set
of (3, 2)-completely independent spanning trees. Also one can compute
them in linear time.
key words: Algorithm, Independent Spanning Trees, Spanning Tree

1. Introduction

Two paths from vertex 𝑢 to 𝑣 are internally disjoint if they
have no common internal vertex.

A set of 𝑡 spanning trees of a graph is completely inde-
pendent if, for any pair of vertices 𝑢 and 𝑣, the set of 𝑡 paths
from 𝑢 to 𝑣 in the 𝑡 spanning trees are internally disjoint (and
edge disjoint) [6]. A necessary and sufficient condition for
the existence of a set of 𝑡 completely independent spanning
trees is known [5], [6].

In this paper we generalize the concept of completely
independent spanning trees as follows. A set of 𝑡 spanning
trees of a graph is (𝑡, 𝑠)-completely independent if, for any
pair of vertices 𝑢 and 𝑣, among the set of 𝑡 paths from 𝑢 to 𝑣
in the 𝑡 spanning trees, at least 𝑠 ≤ 𝑡 paths are internally dis-
joint. By (𝑡, 𝑠)-completely independent spanning trees, one
can ensure any pair of vertices can communicate each other
even if at most 𝑠− 1 vertices break down. The original com-
pletely independent spanning trees are (𝑡, 𝑡)-complete span-
ning trees.

Intuitively, when we have 𝑡 interconnection (spanning
tree) networks, we want to ensure 𝑠 ≤ 𝑡 of separate (in-
dependent) routes for each pair of vertices. The original
completely spanning tree concept may be too strong for
some applications and may fail to construct them, however
(𝑡, 𝑠)-completely independent tree concept may be a flexible
choice for some applications and may increase the chance to
construct them.

In this paper, we first design an algorithm to construct
a set of (3, 2)-completely independent spanning trees in a
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given maximal planar graph based on the realizer [20], then
design an algorithm to construct a set of (3, 2)-completely
independent spanning trees in a given tri-connected planar
graphs based on the canonical decomposition [12], then de-
sign an algorithm to construct a set of (3, 2)-completely in-
dependent spanning trees in a given 3D grid graph. Those
algorithms are simple and run in 𝑂 (𝑛) time, where 𝑛 is the
number of vertices of the given graph.

Another generalization of the independent spanning
tree, where each edge is shared by more than one tree and
each vertex is shared by more than one tree, is disscussed in
[4].

The remainder of this paper is organized as follows.
Section 2 gives some definitions and two basic lemmas. In
Section 3we design our first algorithmwhich constructs a set
of (3, 2)-completely independent spanning trees in a given
maximal planar graph. In Section 4 we design our second
algorithm which constructs a set of (3, 2)-completely inde-
pendent spanning trees in a given tri-connected planar graph.
In Section 5 we design our third algorithm which constructs
a set of (3, 2)-completely independent spanning trees in a
given 3D grid graph. Finally Section 6 is a conclusion.

A preliminary version of the paper is presented at [19].

2. Preliminaries

A tree is a connected graph with no cycle. A rooted tree is a
tree with a designated vertex as the root. Given a graph 𝐺,
a spanning tree of 𝐺 is a subgraph of 𝐺 which is a tree and
contains all vertices of 𝐺.

A graph is planar if it can be embedded on the plane so
that no two edges intersect geometrically except at a vertex
to which they are both incident. A plane graph is a planar
graph with a fixed plane embedding.

A graph 𝐺 with more than 𝑘 vertices is 𝑘-connected if
removal of any 𝑘 − 1 vertices results in a connected graph.

A 3D grid graph with size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 is the graph
consisting of vertex set {(𝑥, 𝑦, 𝑧) |0 ≤ 𝑥 ≤ 𝐿𝑥 , 0 ≤ 𝑦 ≤
𝐿𝑦, 0 ≤ 𝑧 ≤ 𝐿𝑧 , and 𝑥, 𝑦, 𝑧 are integers } and edge set
{{(𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2)} | |𝑥1−𝑥2 |+|𝑦1−𝑦2 |+|𝑧1−𝑧2 | = 1}.

Independent spanning trees
Let 𝑛 be the number of vertices of a given graph 𝐺. A

set of 𝑡 rooted spanning treeswith a common root 𝑟 of a graph
𝐺 is independent if, for any vertex 𝑣, the set of 𝑡 paths from 𝑟
to 𝑣 in the 𝑡 spanning trees are internally disjoint. It is conjec-
tured that, for any 𝑘 ≥ 1, every 𝑘-connected graph 𝐺 has a
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set of 𝑘 independent spanning trees rooted at any vertex [13],
[21]. If𝐺 is bi-connected then one can find two independent
spanning trees in linear time by the 𝑠𝑡-numbering[1], [11]. If
𝐺 is tri-connected then one can find three independent span-
ning trees in𝑂 (𝑛2) time by the ear-decomposition [1], [2]. If
𝐺 is four-connected then one can find four independent span-
ning trees in 𝑂 (𝑛3) time by the chain-decomposition [3]. If
𝐺 is a tri-connected planar graph then one can find three in-
dependent spanning trees in linear time by the canonical de-
composition [1]. If 𝐺 is a four-connected planar graph then
one can find four independent spanning trees in 𝑂 (𝑛3) time
[9] then in linear time [14], [15]. If𝐺 is a five-connected pla-
nar graph then one can find five independent spanning trees
in polynomial time [10]. If 𝐺 is a five-connected maximal
planar graph then one can find five independent spanning
trees in linear time by the 5-canonical decomposition [16],
[17].

Completely independent spanning trees
A set of spanning trees is completely independent if, for

any pair of vertices 𝑢 and 𝑣, the set of paths from 𝑢 to 𝑣 in
the spanning trees are internally disjoint (and edge disjoint)
[6]. A necessary and sufficient condition for the existence of
𝑘 completely independent spanning trees is known [5], [6].

(𝑡, 𝑠)-completely independent spanning trees
A set of 𝑡 spanning trees is (𝑡, 𝑠)-completely indepen-

dent if, for any pair of vertices 𝑢 and 𝑣, among the set of 𝑡
paths from 𝑢 to 𝑣 in the 𝑡 spanning trees, at least 𝑠 paths are
internally disjoint.

Realizer
Every maximal planar graph with 𝑛 ≥ 4 vertices is tri-

connected, and has a unique embedding on a sphere only
up to mirror copy [7]. In the embedding each face has ex-
actly three vertices on the boundary. Given a maximal planar
graph 𝐺 with 𝑛 vertices, we can compute a maximal plane
graph𝐺′ corresponding to𝐺 in linear time [8]. Let 𝑟𝑟 , 𝑟𝑏, 𝑟𝑦
be the three vertices on the outer face of𝐺′, and assume that
they appear on the outer face clockwise in this order. A par-
tition {𝐸𝑟 , 𝐸𝑏, 𝐸𝑦} of inner edges of𝐺′ is called a realizer of
𝐺′ if the following conditions (re1)–(re3) are satisfied [20].
See an example in Fig.1(b). Let 𝑇𝑟 be the tree induced by all
edges in 𝐸𝑟 . Similarly, let 𝑇𝑏 and 𝑇𝑦 be the trees induced by
all edges in 𝐸𝑏 and 𝐸𝑦, respectively.
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Fig. 1 (a) Amaximal plane graph𝐺 (b) a realizer of𝐺 (c) three spanning
thees of 𝐺.

(re1) 𝑇𝑟 is a tree spanning all inner vertices of 𝐺 and 𝑟𝑟 .

Similarly, 𝑇𝑏 is a tree spanning all inner vertices of 𝐺 and
𝑟𝑏, and 𝑇𝑦 is a tree spanning all inner vertices of 𝐺 and 𝑟𝑦.
(re2) Every inner edge incident to 𝑟𝑟 is in 𝑇𝑟 . Similarly, ev-
ery inner edge incident to 𝑟𝑏 is in 𝑇𝑏, and every inner edge
incident to 𝑟𝑦 is in 𝑇𝑦.
(re3) Define the orientation of each inner edge as follows.
In tree 𝑇𝑟 , we regard 𝑟𝑟 as the root of 𝑇𝑟 , and orient each
edge in 𝑇𝑟 from a child to its parent. Similarly, we regard 𝑟𝑏
and 𝑟𝑦 as the roots of 𝑇𝑏 and 𝑇𝑦, respectively, and define the
orientation of each inner edge in 𝑇𝑏 and 𝑇𝑦 from a child to
its parent.
Then, for each inner vertex 𝑣, all edges incident to 𝑣 appear
around 𝑣 clockwise in the following order. (See Fig. 2)

Exactly one outgoing edge in 𝑇𝑟 .
Zero or more incoming edges in 𝑇𝑦.
Exactly one outgoing edge in 𝑇𝑏.
Zero or more incoming edges in 𝑇𝑟 .
Exactly one outgoing edge in 𝑇𝑦.
Zero or more incoming edges in 𝑇𝑏.

Fig. 2 Illustration for the condition of a realizer.
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Fig. 3 An illustration for (cd3).

We sometimes regard the set of three rooted trees
𝑇𝑟 , 𝑇𝑏, 𝑇𝑦 a realizer of𝐺. The above explanation is from [18].
The following lemma is known.

Lemma 1. [20] Every maximal plane graph has a realizer.
One can find it in linear time.

Canonical decomposition
Every tri-connected planar graph has a unique embed-

ding on a sphere only up to mirror copy [7]. Given a tri-
connected planar graph 𝐺 with 𝑛 vertices, we can compute
a plane graph 𝐺′ corresponding to 𝐺 in linear time [8]. Let
𝑣1, 𝑣2, 𝑣𝑛 be the three consecutive vertices on the outer face
of 𝐺′, and they appear on the outer face counterclockwise
in order (𝑣1, 𝑣2, 𝑣𝑛). A partition 𝑉1, 𝑉2, · · · , 𝑉ℎ of vertices of
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𝐺′ is called a canonical decomposition of 𝐺′ if the follow-
ing conditions (cd1)–(cd4) are satisfied [12]. See an exam-
ple in Fig. 6(a). Let 𝐺𝑖 be the subgraph of 𝐺′ induced by
𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑖 , and Let 𝐺𝑖 be the subgraph of 𝐺′ induced
by 𝑉𝑖+1 ∪𝑉𝑖+2 ∪ · · · ∪𝑉ℎ.

(cd1) 𝑉1 = {𝑣1, 𝑣2}.
(cd2) For each 𝑖 = 2, 3, · · · , ℎ, 𝐺𝑖 is bi-connected.
(cd3) For each 𝑖 = 2, 3, · · · , ℎ − 1, 𝑉𝑖 is either (1) a vertex
𝑢 on the outer face of 𝐺𝑖 having at least one neighbor in 𝐺𝑖

(See Fig.3(a)), or (2) consecutive vertices {𝑢ℓ , 𝑢ℓ+1, · · · , 𝑢𝑟 }
on the outer face of 𝐺𝑖 such that each vertex has degree two
in 𝐺𝑖 and has at least one neighbor in 𝐺𝑖 (See Fig.3(b)).
(cd4) 𝑉ℎ = {𝑣𝑛}.

One can regard the canonical decomposition of a max-
imal plane graph is a realizer.

The following lemma is known.

Lemma 2. [12] Every tri-connected plane graph has a
canonical decomposition. One can find it in linear time.
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Fig. 4 Illustration for Lemma 3.
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Fig. 5 Illustration for Theorem 1.

3. Algorithm I

In this section we design a linear time algorithm to construct
a set of (3, 2)-completely independent spanning trees in a
given maximal planar graph with 𝑛 vertices. The algorithm
is based on the realizer [20].

Let 𝑇𝑟 , 𝑇𝑏, 𝑇𝑦 be a realizer of a maximal planar graph.
We have the following lemma.

Lemma 3. [20][Theorem 4.6] For any inner vertex 𝑣, let 𝑆
be the set of three paths consisting of (1) the path from 𝑣 to
𝑟𝑟 in 𝑇𝑟 , (2) the path from 𝑣 to 𝑟𝑏 in 𝑇𝑏 and (3) the path from
𝑣 to 𝑟𝑦 in 𝑇𝑦. Then any two paths in 𝑆 share only 𝑣.

Proof. Assume otherwise for a contradiction. If the path
from 𝑣 to 𝑟𝑟 in 𝑇𝑟 and the path from 𝑣 to 𝑟𝑦 in 𝑇𝑦 share a
vertex except 𝑣, then let 𝑢 ≠ 𝑣 be the first such vertex in the
path from 𝑣 to 𝑟𝑟 in 𝑇𝑟 (See Fig.4 (b)), then, by the planarity,
(re3) is not satisfied at 𝑢. (A red path never crosses a yellow
path from right to left.) A contradiction.

Similar for the other cases. See Fig.4 (c). □

Given a realizer of a plane graph 𝐺′ corresponding to
a maximal planer graph 𝐺, let 𝑇 ′

𝑟 be the spanning tree of
𝐺′ rooted at 𝑟𝑟 consisting of 𝑇𝑟 and two edges (𝑟𝑦, 𝑟𝑟 ) and
(𝑟𝑏, 𝑟𝑟 ). Similarly, let𝑇 ′

𝑏 be the spanning tree of𝐺′ rooted at
𝑟𝑏 consisting of 𝑇𝑏 and two edges (𝑟𝑟 , 𝑟𝑏) and (𝑟𝑦, 𝑟𝑏), and
𝑇 ′
𝑦 be the spanning tree of 𝐺′ rooted at 𝑟𝑦 consisting of 𝑇𝑦

and two edges (𝑟𝑏, 𝑟𝑦) and (𝑟𝑟 , 𝑟𝑦). See an example in Fig.
1(c).

We have the following theorem.

Theorem 1. 𝑇 ′
𝑟 , 𝑇

′
𝑏, 𝑇

′
𝑦 are (3, 2)-completely independent

spanning trees.

Proof. For an inner vertex 𝑣, let 𝑌 (𝑣) be the region sur-
rounded by the path from 𝑣 to 𝑟𝑟 in 𝑇 ′

𝑟 , the path from 𝑣 to
𝑟𝑏 in 𝑇 ′

𝑏 and edge (𝑟𝑟 , 𝑟𝑏). Similarly, let 𝑅(𝑣) be the region
surrounded by the path from 𝑣 to 𝑟𝑏 in 𝑇 ′

𝑏, the path from 𝑣 to
𝑟𝑦 in 𝑇 ′

𝑦 and edge (𝑟𝑏, 𝑟𝑦) and 𝐵(𝑣) be the region surrounded
by the path from 𝑣 to 𝑟𝑦 in 𝑇 ′

𝑦, the path from 𝑣 to 𝑟𝑟 in 𝑇 ′
𝑟 and

edge (𝑟𝑦, 𝑟𝑟 ).
Given two vertices 𝑢 and 𝑣 in𝐺′, let 𝑆 be the set of three

paths consisting of the path from 𝑢 to 𝑣 in 𝑇 ′
𝑟 , the path from

𝑢 to 𝑣 in 𝑇 ′
𝑏 and the path from 𝑢 to 𝑣 in 𝑇 ′

𝑦. Then we show
that some pair of paths in 𝑆 are internally disjoint.

If {𝑢, 𝑣} ⊂ {𝑟𝑟 , 𝑟𝑏, 𝑟𝑦} then the claim holds. Assume
otherwise.

We have the following three cases to consider.
Case 1: 𝑌 (𝑣) contains 𝑢. See Fig. 5(a).

The path from 𝑢 to 𝑣 in 𝑇 ′
𝑟 and the path from 𝑢 to 𝑣 in

𝑇 ′
𝑏 are internally disjoint. ( If the path from 𝑢 to 𝑣 in 𝑇 ′

𝑟 and
the path from 𝑢 to 𝑣 in 𝑇 ′

𝑏 are not internally disjoint, then,
similar to the proof of Lemma 3, we can show that there is a
vertex where (re3) does not satisfied. A contradiction.)
Case 2: 𝑌 (𝑢) contains 𝑣. See Fig. 5(b).

The path from 𝑢 to 𝑣 in 𝑇 ′
𝑟 and the path from 𝑢 to 𝑣 in

𝑇 ′
𝑏 are internally disjoint.

Similar to Case 1.
Case 3: Otherwise.

Then either 𝐵(𝑣) contains 𝑢 (See Fig. 5(c)) or 𝑅(𝑣) con-
tains 𝑢.

The path from 𝑢 to 𝑣 in 𝑇 ′
𝑏 and the path from 𝑢 to 𝑣 in 𝑇 ′

𝑦

are internally disjoint. (Also the path from 𝑢 to 𝑣 in 𝑇 ′
𝑟 and

the path from 𝑢 to 𝑣 in 𝑇 ′
𝑦 are internally disjoint.) Similar to

the proof of Lemma 3. □

4. Algorithm II

In this section we design a linear time algorithm to construct
a set of (3, 2)-completely independent spanning trees in a
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Fig. 6 (a) A canonical decomposition of a tri-connected plane graph. (b)
Three spanning trees.

given tri-connected planar graph with 𝑛 vertices. The algo-
rithm is based on the canonical decomposition[12].

Given a tri-connected planar graph𝐺, let𝐺′ be the cor-
responding plane graph, and 𝑉1, 𝑉2, · · ·𝑉ℎ its canonical de-
composition. We define, for each vertex 𝑣 of 𝐺, three outgo-
ing edges 𝑙𝑙 (𝑣), 𝑟𝑙 (𝑣) and ℎ(𝑣) from 𝑣, as follows. We call
those edges left leg, right leg and head of 𝑣, and intuitively
each left leg points lower left, each right leg points lower
right and each head points upward.

For vertex in 𝑉1 = {𝑣1, 𝑣2} we define as follows.
𝑟𝑙 (𝑣1) = (𝑣1, 𝑣2) and 𝑙𝑙 (𝑣2) = (𝑣2, 𝑣1). And 𝑣1 has no left
leg and 𝑣2 has no right leg.

For each vertex 𝑣 ∈ 𝑉2 ∪ 𝑉3 ∪ · · · ∪ 𝑉ℎ, we have the
following two cases.

If |𝑉𝑖 | = 1 then let 𝑉𝑖 = {𝑣} and 𝑢ℓ , 𝑢ℓ+1, · · · , 𝑢𝑟 be the
neighbor of 𝑣 on the outer face of 𝐺𝑖−1 and assume that they
appear in this order clockwise. We define 𝑙𝑙 (𝑣) = (𝑣, 𝑢ℓ) and
𝑟𝑙 (𝑣) = (𝑣, 𝑢𝑟 ).

If |𝑉𝑖 | > 1 then let 𝑉𝑖 = {𝑣1, 𝑣2, · · · , 𝑣𝑘}, and they ap-
pear in this order clockwise on the outer face of𝐺𝑖 and 𝑣0 and
𝑣𝑘+1 be the neighbor of 𝑣1 and the neighbor of 𝑣𝑘 on the outer
face of 𝐺𝑖−1, respectively. Then, for each 𝑗 = 1, 2, · · · 𝑘 , we
define 𝑙𝑙 (𝑣𝑖) = (𝑣𝑖 , 𝑣𝑖−1) and 𝑟𝑙 (𝑣𝑖) = (𝑣𝑖 , 𝑣𝑖+1).

For 𝑣𝑛 ∈ 𝑉ℎ we define 𝑙𝑙 (𝑣𝑛) = 𝑣1 and 𝑟𝑙 (𝑣𝑛) = 𝑣2.
Also, for each vertex 𝑣 ∈ 𝑉1 ∪ 𝑉2 ∪ · · · ∪ 𝑉ℎ−1, let 𝑢 ∈

𝑉ℎ′ be the neighbor of 𝑣 with the maximum ℎ′. (For tie we
choose the rightmost vertex.) We define ℎ(𝑣) = (𝑣, 𝑢). For
𝑣𝑛 ∈ 𝑉ℎ, 𝑣𝑛 has no head.

We regard 𝑣1, 𝑣2, 𝑣𝑛 as the three roots 𝑟𝑏, 𝑟𝑟 , 𝑟𝑦, respec-
tively.

Let 𝑇𝑟 be the tree rooted at 𝑟𝑟 consisting of all right
legs. Similarly, let 𝑇𝑏 be the tree rooted at 𝑟𝑏 consisting of
all left legs and let 𝑇𝑦 be the tree rooted at 𝑟𝑦 consisting of
all heads. The set of those three trees is called a realizer of
a triconnected plane graph[1].

We have the following lemma.

Lemma 4. [1] Each of trees 𝑇𝑟 , 𝑇𝑏, 𝑇𝑦 is a spanning tree
of 𝐺′. For each inner vertex 𝑣 of 𝐺′ all edges incident to 𝑣
appear around 𝑣 clockwise in the following order.

• Exactly one outgoing edge in 𝑇𝑟 . (Optionally it is
shared with either one incoming edge in 𝑇𝑏 or one in-
coming edge in 𝑇𝑦)

• Zero or more incoming edges in 𝑇𝑦.
• Exactly one outgoing edge in 𝑇𝑏. (Optionally it is

shared with either one incoming edge in 𝑇𝑦 or one in-
coming edge in 𝑇𝑟 )

• Zero or more incoming edges in 𝑇𝑟 .
• Exactly one outgoing edge in 𝑇𝑦. (Optionally it is

shared with either one incoming edge in 𝑇𝑟 or one in-
coming edge in 𝑇𝑏).

• Zero or more incoming edges in 𝑇𝑏.

Proof. We denote the claim by (𝑐𝑑).
We can prove (𝑐𝑑) by induction on 𝑉𝑖 , that is, for each

𝑖, the following (1)–(5) holds. (1) (𝑐𝑑) holds on each vertex
of 𝐺𝑖 having no neighbor in 𝐺𝑖 , (2) a relax version of (𝑐𝑑)
holds on each vertex of 𝐺𝑖 having a neighbor in 𝐺𝑖 , (3) the
right legs induce a spanning tree of 𝐺𝑖 rooted at 𝑟𝑟 , (4) the
left legs induce a spanning tree of 𝐺𝑖 rooted at 𝑟𝑏, (5) the
heads induce a spanning forest of 𝐺𝑖 with each root on the
outer face of 𝐺𝑖 and each root has a neighbor in 𝐺𝑖 . □

Lemma 5. [1][Lemma 6] For any vertex 𝑣, let 𝑆 be the set
of three paths consisting of (1) the path from 𝑣 to 𝑟𝑟 in 𝑇𝑟 ,
(2) the path from 𝑣 to 𝑟𝑏 in 𝑇𝑏 and (3) the path from 𝑣 to 𝑟𝑦
in 𝑇𝑦. Then any two paths in 𝑆 share only 𝑣.

Proof. Assume otherwise for a contradiction. If the path
from 𝑣 to 𝑟𝑟 in 𝑇𝑟 and the path from 𝑣 to 𝑟𝑦 in 𝑇𝑦 share vertex
𝑢 ≠ 𝑣, then, by the planarity, the condition (𝑐𝑑) of lemma 4
is not satisfied at 𝑢. A contradiction.

Similar for other cases. □

Theorem 2. 𝑇𝑟 , 𝑇𝑏, 𝑇𝑦 are (3, 2)-completely independent
spanning trees.

Proof. Similar to Theorem 1 we can prove the following.
Given two vertices 𝑢 and 𝑣 in𝐺, let 𝑆 be the set of three

paths consisting of the path from 𝑢 to 𝑣 in 𝑇𝑟 , the path from
𝑢 to 𝑣 in 𝑇𝑏 and the path from 𝑢 to 𝑣 in 𝑇𝑦. Then some pair
of paths in 𝑆 are internally disjoint.

□

5. Algorithm III

In this section we design a linear time algorithm to construct
a set of (3, 2)-completely independent spanning trees in a
given 3D grid graph with size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 . We assume
𝐿𝑥 ≥ 1, 𝐿𝑦 ≥ 1, 𝐿𝑧 ≥ 1.

Let 𝐺 be a grid graph with size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 . For
a vertex (𝑥, 𝑦, 𝑧) with 𝑥 < 𝐿𝑥 we define its parent vertex
as (𝑥 + 1, 𝑦, 𝑧), and for a vertex (𝑥, 𝑦, 𝑧) with 𝑥 = 𝐿𝑧 and
𝑦 > 0 we define its parent vertex as (𝐿𝑧 , 𝑦 − 1, 𝑧), and for
a vertex (𝑥, 𝑦, 𝑧) with 𝑥 = 𝐿𝑥 , 𝑦 = 0 and 𝑧 > 0 we define
its parent vertex as (𝐿𝑥 , 0, 𝑧 − 1). The root 𝑟𝑥 is the ver-
tex at (𝐿𝑥 , 0, 0) and it has no parent. Then for each vertex
of 𝐺 except the root 𝑟𝑥 we append the edge connecting 𝑣
and its parent. Those edges induces the spanning tree of 𝐺
and we denote it as 𝑇𝑥𝑦𝑧 . The path from a vertex (𝑥, 𝑦, 𝑧) to
𝑟𝑥 in 𝑇𝑥𝑦𝑧 consists of three line segments, those are (1) the
line segment from (𝑥, 𝑦, 𝑧) to (𝐿𝑥 , 𝑦, 𝑧), (2) the line segment
from (𝐿𝑥 , 𝑦, 𝑧) to (𝐿𝑥 , 0, 𝑧), and (3) the line segment from
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Fig. 7 Illustration for the cases.

(𝐿𝑥 , 0, 𝑧) to (𝐿𝑥 , 0, 0).
Similarly, we define the spanning tree𝑇𝑦𝑧𝑥 with the root

𝑟𝑦 at (0, 𝐿𝑦, 0) and the spanning tree 𝑇𝑧𝑥𝑦 with the root 𝑟𝑧
at (0, 0, 𝐿𝑧). The path from a vertex (𝑥, 𝑦, 𝑧) to the root
𝑟𝑦 in 𝑇𝑦𝑧𝑥 consists of three line segments, those are (1) the
line segment from (𝑥, 𝑦, 𝑧) to (𝑥, 𝐿𝑦, 𝑧), (2) the line seg-
ment from (𝑥, 𝐿𝑦, 𝑧) to (𝑥, 𝐿𝑦, 0), and (3) the line segment
from (𝑥, 𝐿𝑦, 0) to (0, 𝐿𝑦, 0). Similarly the path from a vertex
(𝑥, 𝑦, 𝑧) to the root 𝑟𝑧 in𝑇𝑧𝑥𝑦 consists of three line segments,
those are (1) the line segment from (𝑥, 𝑦, 𝑧) to (𝑥, 𝑦, 𝐿𝑧), (2)
the line segment from (𝑥, 𝑦, 𝐿𝑧) to (0, 𝑦, 𝐿𝑧), and (3) the line
segment from (0, 𝑦, 𝐿𝑧) to (0, 0, 𝐿𝑧).

Note that the second part and the third part of
𝑃𝑥𝑦𝑧 (𝑢, 𝑟𝑥), which is the path from 𝑢 to 𝑟𝑥 in 𝑇𝑥𝑦𝑧 , locate
on the plane with 𝑥 = 𝐿𝑥 , and the second part and the third
part of 𝑃𝑦𝑧𝑥 (𝑢, 𝑟𝑦) locate on the plane with 𝑦 = 𝐿𝑦.

We have the following theorem.

Theorem 3. 𝑇𝑥𝑦𝑧 , 𝑇𝑦𝑧𝑥 , 𝑇𝑧𝑥𝑦 are (3, 2)-completely indepen-
dent spanning trees.

Proof. For any pair of two vertices 𝑢 and 𝑣 in 𝐺 we show
if the path 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) connecting 𝑢 and 𝑣 in 𝑇𝑥𝑦𝑧 and the
path 𝑃𝑦𝑧𝑥 (𝑢, 𝑣) connecting 𝑢 and 𝑣 in 𝑇𝑦𝑧𝑥 are not internally
disjoint, then either (a) 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and the path 𝑃𝑧𝑥𝑦 (𝑢, 𝑣)
connecting 𝑢 and 𝑣 in 𝑇𝑧𝑥𝑦 are internally disjoint, or (b)
𝑃𝑦𝑧𝑥 (𝑢, 𝑣) and the path 𝑃𝑧𝑥𝑦 (𝑢, 𝑣) connecting 𝑢 and 𝑣 in𝑇𝑧𝑥𝑦
are internally disjoint.

Assume that 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑦𝑧𝑥 (𝑢, 𝑣) are not inter-
nally disjoint.

We have the following four cases.
Case 1: 𝑥(𝑢) ≤ 𝐿𝑥 , 𝑥(𝑣) < 𝐿𝑥 , 𝑦(𝑢) < 𝐿𝑦 and 𝑦(𝑣) ≤ 𝐿𝑦

hold.
If 𝑧(𝑢) ≠ 𝑧(𝑣) then 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑦𝑧𝑥 (𝑢, 𝑣) are in-

ternally disjoint. A contradiction. See Figure 7 (a). If

𝑧(𝑢) = 𝑧(𝑣) and either 𝑥(𝑢) = 𝑥(𝑣) or 𝑦(𝑢) = 𝑦(𝑣) then
𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑦𝑧𝑥 (𝑢, 𝑣) are internally disjoint. A contra-
diction.

So assume otherwise. Now 𝑧(𝑢) = 𝑧(𝑣), 𝑥(𝑢) ≠ 𝑥(𝑣)
and 𝑦(𝑢) ≠ 𝑦(𝑣) hold. See Figure 7 (b). If 𝑃𝑥𝑦𝑧 (𝑢, 𝑟) and
𝑃𝑦𝑧𝑥 (𝑣, 𝑟) cross at a vertex 𝑐 on the plane 𝑧 = 𝑧(𝑢). Then
𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑧𝑥𝑦 (𝑢, 𝑣) are internally disjoint. See Figure
7 (c).
Case 2: 𝑥(𝑢) ≤ 𝐿𝑥 , 𝑥(𝑣) = 𝐿𝑥 , 𝑦(𝑢) < 𝐿𝑦 and 𝑦(𝑣) ≤ 𝐿𝑦

hold.
If 𝑧(𝑢) ≠ 𝑧(𝑣) then 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑦𝑧𝑥 (𝑢, 𝑣) are inter-

nally disjoint. See Figure 7 (d). So assume otherwise.
If 𝑧(𝑢) = 𝑧(𝑣) and 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑦𝑧𝑥 (𝑢, 𝑣) share some

vertex 𝑐 on the plane 𝑧 = 𝑧(𝑢). See Figure 7 (e), then
𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑧𝑥𝑦 (𝑢, 𝑣) are internally disjoint. See Figure
7 (f).
Case 3: 𝑥(𝑢) ≤ 𝐿𝑥 , 𝑥(𝑣) = 𝐿𝑥 , 𝑦(𝑢) = 𝐿𝑦 and 𝑦(𝑣) ≤ 𝐿𝑦

hold.
If 𝑥(𝑢) = 𝐿𝑥 then 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑦𝑧𝑥 (𝑢, 𝑣) are inter-

nally disjoint. So assume otherwise.
If 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑦𝑧𝑥 (𝑢, 𝑣) cross at a vertex 𝑐 on the

line with 𝑥 = 𝐿𝑥 and 𝑦 = 𝐿𝑦. See Figure 7 (g). Then
𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑧𝑥𝑦 (𝑢, 𝑣) are internally disjoint.
Case 4: 𝑥(𝑢) ≤ 𝐿𝑥 , 𝑥(𝑣) ≤ 𝐿𝑥 , 𝑦(𝑢) = 𝐿𝑦 and 𝑦(𝑣) = 𝐿𝑦

hold.
If 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑦𝑧𝑥 (𝑢, 𝑣) share some vertex 𝑐 on the

plane 𝑦 = 𝐿𝑦 then 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑧𝑥𝑦 (𝑢, 𝑣) are internally
disjoint. See Figure 7 (h).

Otherwise 𝑃𝑥𝑦𝑧 (𝑢, 𝑣) and 𝑃𝑦𝑧𝑥 (𝑢, 𝑣) are internally dis-
joint. See Figure 7 (i).

Each of other cases is symmetric to one of above cases.
□

6. Conclusion

In this paper we have defined (𝑡, 𝑠)-completely independent
spanning trees which is a generalization of completely inde-
pendent spanning trees. Thenwe have designed an algorithm
to construct a set of (3, 2)-completely independent spanning
trees in a given maximal planar graph, an algorithm to con-
struct a set of (3, 2)-completely independent spanning trees
in a given tri-connected planar graph, and an algorithm to
construct a set of (3, 2)-completely independent spanning
trees in a given 3D grid graph. Those algorithms are sim-
ple and run in 𝑂 (𝑛) time, where 𝑛 is the number of vertices
of the given graph.

Can we design an algorithm to construct a set of (𝑡, 𝑠)-
completely independent spanning trees for other classes of
graphs and some other choices of 𝑡 and 𝑠?
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