IEICE

TRANSACTIONS

on Fundamentals of Electronics,
Communications
and Computer Sciences

DOI:10. 1587/transfun. 2024EAL2035
Publicized:2024/12/16

This advance publication article will be replaced by
the finalized version after proofreading.

A PUBLICATION OF THE ENGINEERING SCIENCES SOCIETY

(] The Institute of Electronics, Information and Communication Engineers
-I Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN

IEICE TRANS. FUNDAMENTALS, VOL.Exx—-??7, NO.xx XXXX 200x

[LETTER

An N-state Opaque Predicate Obfuscation Algorithm

Based on Henon Map

Yindong CHEN'*?), Member, Wandong CHENT', and Dancheng HUANG" ', Nonmembers

SUMMARY In recent years, chaos maps and opaque predi-
cates have received widespread attention in the field of code ob-
fuscation. Chaos map is proved opaque in n-state predicates
code obfuscation. We use n-state opaque predicates to improve
the control flow flattening technique and flatten the control struc-
ture of the code. Finally, we demonstrate that Henon map scheme
outperforms other obfuscation schemes.

key words: chaos map, opaque predicate, code obfuscation

1. Introduction

Chaos map defines the nonlinear relationship between
system states and time, and these states exhibit com-
plex and sensitive dynamic behaviors. That is, small
changes in the initial conditions can cause huge differ-
ences in the evolution of the system [1]. It is especially
useful in computer science and cryptography because it
has a high degree of randomness and unpredictability.
In the field of software obfuscation, they can be used to
build opaque predicates. These properties of chaos map
can be exploited to improve the effectiveness of opaque
predicates. Applying chaos map to the design of opaque
predicates not only expands the method of construct-
ing opaque predicates, but also improves the obfusca-
tion strength, uncertainty, security and complexity of
obfuscated code. We use Henon map to improve the
traditional control flow obfuscation algorithm, and ex-
periments have proven that the effect is effective.

In the process of exploring code protection mecha-
nisms, code obfuscation techniques were classified for
the first time and innovatively subdivided into four
main types: layout obfuscation, data obfuscation, con-
trol flow obfuscation, and preventive obfuscation [3].

fThe author is with the Department of Computer Sci-
ence and Technology, Shantou University, and the Key Lab-
oratory of Intelligent Manufacturing Technology, Ministry
of Education, China.

" The author is with the Department of Mathematics and
Computer Science, Guangdong Technion-Israel Institute of
Technology, China.

*The work is supported by the Key Research Platforms
and Projects of Higher Education Institutions in Guang-
dong Province (No. 2024ZDZX1021, 2024KSYS012), the
Natural Science Foundation of Guangdong Province (No.
2514050003605), and the Science and Technology Planning
Projects of Shantou (No. 220516096491783).

a) E-mail: ydchen@stu.edu.cn

Wang et al [4] proposed a control flow flattening al-
gorithm. This algorithm is a code obfuscation tech-
nique used to change the logical structure of the pro-
gram, making the control flow graph flatter and hin-
dering reverse engineering. Arboit [5] proposed to use
the quadratic remainder theory to construct opaque
predicates and combine it with watermarking technol-
ogy. However, later studies found that this method
performed poorly in terms of safety. Su et al [6] pro-
posed a method to construct opaque predicate clusters
through improved Logistic chaos map. Through ex-
perimental verification, they proved the feasibility of
two-dimensional obfuscation map, and the method has
strong security features when the result is true. Wang
et al [2] proposed a flattened control flow method based
on congruence equations and improvements, which can
effectively resist dynamic attacks.

The structure of the letter is as follows. Sect.2 in-
troduces some preliminaries on chaos map and opaque
predicate as well as control flow algorithms. In Sect.3,
we propose a method to construct opaque predicates us-
ing Henon map, and than use the constructed chaotic
opaque predicate to improve the control flow flatten-
ing algorithm. In Sect.4, Experiments and analysis are
introduced. Finally, Sect.5 concludes the letter.

2. Preliminaries
2.1 Chaos

Definition 1. (Chaos [7]) A continuous self-mapping
F(n) on the interval I has chaotic properties if it meets
the following conditions:
i) Mapping periodic points on F has no upper bound;
it) Given an uncountable subset N on the closed interval
I, for¥m,ne Nym#n

e lim,, . sup ’F”(n) - F”(m)’ > 0;

o lim, ‘F”(n) - F"(m)‘ = 0;

o lim,_,o sup ’F”(n) - F”(m)‘ >0, m is a periodic

point of F'.

2.2 Code obfuscation

Code obfuscation can be expressed by the following for-

Copyright (© 200x The Institute of Electronics, Information and Communication Engineers

mula: Obf(P) = P’, where Obf is an obfuscation algo-
rithm, P is the original program, and P’ is a program
that is functionally equivalent to P after obfuscation.

VI, Exec(P,I)= Exec(P’,I),

where, I represents the input of the program, and Exec
is the function executed by the program, which exe-
cutes program P or P’ under the given input I. This
shows that for any input I, the execution results of
the original program P and the obfuscated program P’
are the same, thus ensuring that obfuscation will not
change the function of the program. According to the
conversion target and logical structure of the original
program, code obfuscation technology is divided into
layout obfuscation, data obfuscation, preventive obfus-
cation, and control flow obfuscation [3].

2.3 Opaque Predicate

Opaque predicate falls under the category of control
flow obfuscation. It is an expressions that always e-
valuate to true or false at compile time or run time,
but whose results are difficult to predict without global
knowledge or deep understanding of the specific run-
time context and program state. Logical formulas for
opaque predicate can be expressed as follows.
P(z): X — {true, false},

where P is a predicate function, X is a set of in-
puts, and P (z) appears to be true or false to the
analyst expression, but in practice it always return-
s the same result value, regardless of the value of z.
If Ve € X,P(x) = true is always holds, then P is
defined as a truth opaque predicate, denoted PT; If
Vx € X, P(z) = false is always holds, then P is defined
as the never false opaque predicate, denoted PF.

Trapdoor opaque predicates. Let j€{1,2,---,n}
and K; denote the key of some constructed predicate.
If K; is known before the program execution, know-
ing K; allows the analyst to determine the result of
the predicate execution. Conversely, not knowing K;
makes it difficult or impossible to determine the result.

N-state opaque predicate. For Vo € O, opaque
predicates expression P = E(o) € Z, where Z =
{0,1,2,--- ,n}, produces the result not limited to true
or false, but maps it to the natural numbers 1,2, ..., n.
The P corresponding to the mapping E forms an n-state
opaque predicate.

2.4 Control Flow Flattening

Control flow flattening is a control flow obfuscation
technique, aimed at altering the original control flow
structure of a program to make its logic difficult to un-
derstand and analyze. This technique hides the origi-
nal structure of basic blocks and control transitions by

IEICE TRANS. FUNDAMENTALS, VOL.Exx-??, NO.xx XXXX 200x

transforming the control flow of the program into a sin-
gle scheduling structure, typically a large “switch-case”
statement. The core idea of control flow flattening is to
reconstruct the multiple branch structures in the pro-
gram (such as “if-else”, “for”, “while”, etc.) into seem-
ingly disordered state transition processes controlled by
a unified dispatcher. The transformed structure retains
the same functionality as the original program logical-
ly, but hides the real execution path of the program in
form, which increases the difficulty of attack analysis.

1

Sz

T
]’ - ‘ 51 ‘ Sz 53 S4
S3

Fig.1 Control Flow Flattening

3. Opaque Predicate Methods Based on Henon
Map

3.1 Henon Map

Henon map is a two-dimensional chaotic system that
generates real number sequences with characteristic-
s that depend on initial parameters and are pseudo-
random behavior and limited range of truth values.
The mathematical form of the expression of this two-
dimensional chaotic map is as follows.

X1 =Y, +1—aX? -15<X <15
Vi1 = BXn —04<Y <04

When 1.07 < a < 1.4 and g = 0.3, the system is in a
chaotic state. When o = 1.4, the system complexity is
maximum.

3.2 Characteristics of Henon Map

Firstly, Henon map is highly sensitive to initial con-
ditions, which is beneficial to increase the uncertain-
ty of the whole confusing system. Meanwhile, note
that the iterative functions with different parameters
all show difficult to predict pseudo-random phenomena.
Henon map has good pseudo-random characteristics,
and chaotic sequences show long-term unpredictability
and high complexity, which further improves the se-
curity of chaotic systems. Moreover, Henon map is a
discrete chaotic mapping with larger parameter and ini-
tial value range, larger key space of chaotic system, and

LETTER

uniform distribution of chaotic sequence in state space.
This property is beneficial to generate uniform state se-
quences covering the global space, and it is convenient
to evenly partition and map state spaces into real inte-
ger sequences to improve the construction efficiency of
n-state chaotic opaque expressions.

Therefore, due to the above characteristics, Henon
map is used in opaque predicates construction and is
expected to show excellent security performance.

3.3 Opaque Predicate Methods

In this subsection, an n-state chaotic opaque predicate
generated by Henon chaotic map is proposed. This new
predicate can be applied to the enhanced flat control
flow algorithm to improve the program’s ability to resist
reverse engineering. The following is the construction
of n-state opaque predicate based on two-dimensional
chaotic Henon map.

Algorithm 1: N-state Opaque Predicate Based
on Henon Map

1 Generate a set of n integers by random function to form
Z* ={Z,Z5,...,Z}}.

2 Generate random real two-dimensional vector sequence
M = {My, M, -, My} using initial quadruple key
(e, B, X0, Yo) with Henon chaotic map, where
My = [Xo, Yo|’, and so on.

3 Map a sequence of real two-dimensional vectors
M = {My, M, -- ,My,} to a sequence of real integers
by mapping Fun.

M = {Mo, My,--- , My} 28N = {No, N1,--+ , Ny }. Let

VZ* € [-m, m] and adopt the mapping function as

shown in equation. For x,,yn :

X, = znfmin<z) 1 V. — yn—min<y) 1
max(z)—min(x) 20 n max(y)—min(y) 27

N; = Round{[X, + Yn] x m}, where M (X;), M(Y;)

represent the data of the two-dimensional matrix M,

and Round is the rounding function. The key becomes

the five-tuple («, 8, Xo, Yo, Flun).

a4 Then let result be the same amount of storage space

and find (N Jnappine, Z*) — result, 0 < result < n,
The count of the number of elements in N that are the
same as z* is stored in result.

5 Repeat Step 2 to Step 4 to train keys that can produce
different result values until each value has a
corresponding key. Might as well make it as
{result=", result=2,--. result="}, where result="
denotes the one with constant key of ¢ € {1,2,--- ,n}.

Let’s take a simple “while” loop for example. The
loop condition, loop body, and conditional branches can
all be visualized in a control flow graph. However, with
the help of control flow flattening techniques, the orig-
inal explicit process structure can be rewritten. Dur-
ing flattening, the existing nested loops and condition-
al branch statements are merged into a single “switch”
structure and placed inside a “while” loop that nev-
er exits. Each basic block of the control flow graph is

3
int L(int a, int b[], int m, int n){ By:
intx,y; =4
inti=1; L]
while (i<=m){
if (b [i]==0) . .
x=(j+i)%n; Bg: return y ‘ By:| 1f (b i]==0)
else
x=j+a; N P . .
i=xe(i+1)%n: By | x=(j+i)%n By: x=j+a ‘
y=x+1;
i+
) j=x+(i+1)%n
return y; Bs: ?,:(o
} goto By
Fig.2 Code Before Obfuscation
int L(int a, int b[], int m, int n){
intx,y,i,j;
int next=0;
for (:3)
switch(next) {
case 0 : 1= 1;j = 4; next=1; break;
case | :if (i <=m) next=2; else next=6; break;
case 2 : if (b [i]= =0) next=3; else next=4; break;

case 3 :x = (j +1) % n; next=5; break;

case 4 : x = j + a; next=5; break;

case 5:j=x*(i+1)%n; y=x+I;it++; next=1; break;
case 6 : return y;

= f(i<=m if(b [i]==0 K X
}:zlt ' (n‘ex(:Z ! ‘tbni}:[]:;) j=x*(i+1)%n return'y
next=1 | [else else v +1 5
B next=6 next=4 ' .

next=
° B, B,

— B,

Fig.3 Control Flow Transformation Code

translated into a “case” statement in a “switch” struc-
ture.

This algorithm maintains the correct control flow
structure by updating the value of the next variable in
each basic block continuously. Even if the structure of
the control flow graph is disturbed, the runtime control
flow still passes through the basic blocks in a correct
order. Because each basic block loses the jumping point
information, the cracker can only gradually track basic
blocks that have been executed, which greatly increases
the analyzing difficulty.

The attacker can deduce the execution flow of the
program and reconstruct the control flow graph by us-
ing the “use-define” chain constant propagation analy-
sis on the next variable of the “switch” statement.

To prevent this analysis, the data flow analyzer
must be further obfuscated to keep track of the value
of the next variable. If the data flow analyzer cannot
determine the value of the next variable, the attacker
also cannot determine the specific path of the control
flow, so that the control flow graph cannot be recon-
structed accurately. In this letter, the n-state opaque

int L(int a, int b[], int m, int n){
intx,y,i,j;
int next=E=° (a, B, X,, Yo, Fun);
for(;3)
switch(next) {

case chaos(value0) : i = 1 j = 4; next= E=! (a, B, Xo, Yo, Fun); break;

case chaos(valuel) : if (i <=m) next= E=2 (a, B, Xo, Yo, Fun); else next= E=¢
(@, B, Xo, Yo, Fun); break;

case chaos(value2) : if (b [i |= =0) next= E=3 (@, B, Xo, Yo, Fun); else next= E=*

(a, B, Xo, Yo, Fun); break;
case chaos(value3) : x = (j +1i) % n; next= E=5 (, B, Xo, Yo, Fun); break;
case chaos(valued) : x = j + a; next= E=5 (a, B, X,, Yo, Fun); break;
case chaos(valueS) : j=x* (i+1)%n; y=x+ 1; i++; next= E=1(a, B, Xy, Yo, Fun); break;
case chaos(value6) : return y;

Fig.4 Improved Control Flow Flattening

expression is used to calculate the value of the variable
next. Chaos is the obfuscating function to obfuscate
the constant term.

4. Experiment and Analysis

In order to make the structure of the code flow before
and after obfuscation clearer, we use five classical algo-
rithms as test cases, and the tests are the cyclomatic
complexity of the function, Non-comment Lines of Code
(NLOC), and the number of tokens confused. Our al-
gorithm is compared with the algorithm of Ref. [2] and
[6]. “Original” is the source code metric before obfus-
cation, followed by the results after obfuscation.

Table 1 Non-comment Lines of Code
NLOC Original Su Wang Ours
MergeSort 73 183 298 376
HeapSort 69 174 224 328
Dijkstra 74 249 368 469
Primd 84 268 372 435
KMP 62 193 271 392

Table 1 is the comparison of the number of code
lines before and after obfuscation. It can be seen that
the effect of obfuscation is different for different codes,
mainly due to the different control flow after code ob-
fuscation. Table 1 shows the obfuscation results of dif-
ferent algorithms. Su’s algorithm is about 2 to 3 times,
Wang’s about 3 to 4 times, and ours about 5 to 6 times.

Table 2 Cyclomatic Complexity Number
CCN Original Su Wang Ours
MergeSort 9 14 19 25
HeapSort 12 20 26 34
Dijkstra 11 19 28 47
Primd 13 18 24 32
KMP 12 22 27 42

Table 2 shows the obfuscation effect for each differ-
ent code. It can be observed that the obfuscated code
not only increases in the non-comment lines of code,
but also significantly improves the cyclomatic complex-
ity, which indicates the complexity of the code struc-
ture. For the five benchmarks, their total cyclomatic

IEICE TRANS. FUNDAMENTALS, VOL.Exx-??, NO.xx XXXX 200x

Table 3 Confused Token Number
Token Original Su Wang Ours
MergeSort 345 731 851 1276
HeapSort 260 634 712 1194
Dijkstra 422 752 943 1645
Primd 486 1043 1279 2036
KMP 421 947 1154 1964

complexity increases by 177%, 183%, 327%, 146%, and
250%, which are better than those of other algorithms.

Table 3 compares the number of confused tokens
(tokens represent symbols such as keywords, operators,
identifiers, and separators). The number of tokens re-
flects part of the complexity of the code: the greater
the number of tokens, the higher the total complexi-
ty of the code. Table 3 shows that our results have
significant advantages over others.

5. Conclusion

Based on the two-dimensional chaotic model of Henon
map, an n-state opaque predicate is constructed to en-
hance the randomness and uncertainty of the obfusca-
tion scheme. It significantly increases the cyclomatic
complexity of the code. Therefore, it further increases
the difficulty of code reverse analysis.

References

[1] Xie X., Liu F., Lu B. and Xiang F., Mixed Obfuscation
of Overlapping Instruction and Self-Modify Code Based
on Hyper-Chaotic Opaque Predicates[C]. The 10th Inter-
national Conference on Computational Intelligence and Se-
curity, Kunming, China, 2014, 524-528.

[2] Wang Y., Huang Z., Gu N.. Obfuscating algorithm based
on congruence equation and improved flat control flow[J].
Journal of Computer Applications, 2017, 37(6): 1803-1807
(in Chinese).

(3] Collberg C., Thomborson C., Low D.. Manufacturing
cheap, resilient, and stealthy opaque constructs[C|. Proc.
of the ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, 1997, 184-196.

[4] Wang C., Advisor J., Blakley G., et al. A Security Archi-
tecture for Survivability Mechanisms[D]. University of Vir-
ginia. 2001.

[5] Arboit G.. A method for watermarking java programs via
opaque predicates[C]. The 5th International Conference on
Electronic Commerce Research (ICECR-5). 2002: 102-110.

6] Su Q., Wu W., Li Z.. Research and application of chaos
opaque predicate in code obfuscation[J]. Computer Science,
2013, 40(6): 155-159 (in Chinese).

[7] LiT., Yorke J.. Period Three Implies Chaos[J]. The Amer-
ican Mathematical Monthly, 1975, 82(10): 985-992.

http://www.tcpdf.org

