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Progressive Multi-Scale Learning for Remote Sensing Image
Super-Resolution with Residual Prior

Qiuyu XU†, Kanghui ZHAO†, Tao LU*†, Zhongyuan WANG††, and Ruimin HU††,

SUMMARY Global contextual information and spatial structural details
are pivotal elements in the context of super-resolution (SR) reconstruction
for remote sensing images. Therefore how to generate rich contextual
semantic information and accurate spatial structure information simultane-
ously is a key challenge for remote sensing image SR. In this paper, we
propose a novel progressive multi-scale learning strategy based on resid-
ual prior to solve the remote sensing image SR problem. In particular, we
propose a novel progressive up-downmapping unit (PUMU) that asymptoti-
cally maps the input low-dimensional vectors into a high-dimensional space
to learn global context information, which avoids loss of global information.
Subsequently, we suggest introducing a novel method of explicitly mining
spatial structure information, called residual prior (RP), which can help the
proposed model to achieve spatial-structure-preserving SR. We have con-
ducted extensive experiments on two public datasets including UCMerced
and PatternNet, and the experimental results demonstrate the effectiveness
of the proposed method.
key words: remote sensing image super-resolution, progressive multi-scale
learning, residual prior

1. Introduction
Remote sensing high-resolution (HR) image is an important
prerequisite for earth observation techniques and is widely
used for high level vision tasks such as remote sensing seg-
mentation and classification. However, due to the long imag-
ing distance and the influence and limitation of the equip-
ment, it results in a low resolution (LR) of the images cap-
tured, which cannot meet the application of the actual scene.
Single image super-resolution (SISR) [1] technique can infer
the corresponding HR image from the observed LR image
by relying on the a prior knowledge, which can overcome
the limit of the optical imaging system and provide better in-
put images for the subsequent detection and recognition, etc.
Therefore, the study of reconstructing high-quality satellite
images by SR techniques is of great importance.

In recent years, deep learning has been widely intro-
duced into the field of remote sensing image super-resolution
(SR), such as RCAN [2], SAN [3], HAN [4], MHAN [5], CT-
Net [6], HSENet [7], MEN [8], and SPE [9]. Compared with
SR methods based on interpolation and reconstruction, deep
learning relies on powerful implicit feature representations
and automatically constructs high-level representations of
the original inputs to significantly improve the performance
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of SR reconstruction. However most methods tend to design
complex network structures to learn LR to HR mappings
directly, ignoring global contextual and spatial structure in-
formation.

Contextual information is a critical factor in SR of re-
mote sensing image. Considering that multi-scale networks
can expand the receptive field and thus capture finer content,
i.e., contextual information, a series of multi-scale strategies
have been applied to SR.Expanding the receptive field can be
achieved through a straightforward and effective approach,
namely, the utilization of multi-scale convolution. In a study
by Wang et al. [8], they introduced a Multi-scale Enhance-
ment Network (MEN) designed to harness the multi-scale
features inherent in remote sensing images, thereby improv-
ing the network’s reconstruction capability. Specifically,
a fusion of convolutional layers employing multiple kernel
sizes is employed to enhance the extraction of multi-scale
features.However, when the input image size is fixed, its
multiscale feature learning is limited. Another proven way
is to use a U-Net-like encoding-decoding structure for image
reconstruction. Gao et al. [10] processed the input images in
two different downscaled spaces and designed a multi-scale
residual network based on residual blocks in the downscaled
space. However, it is well known that more spatial informa-
tion is lost as the information flow goes deeper in the image
coding process, which is unacceptable for SR tasks. In view
of this, it is necessary to develop a novel multi-scale learn-
ing strategy that can simultaneously learn global contextual
information without losing spatial information.

The recovery of spatial structure information is another
key factor in the SR task for remotely sensed images. The
spatial structure cares more about the overall image contour
or edge details. Some previous researches such as RCAN [2],
SAN [3], HAN [4], and MHAN [5] have achieved some suc-
cess with SR methods based on attention mechanism. How-
ever, the images reconstructed by these methods based on
prior representations of implicit spatial structures tend to be
too smooth, and as the network deepens, there is a substantial
loss of information and the training error accumulates. Thus
explicitly mining the a prior information about the spatial
structure is another challenge for SR.

To address the above problems, we propose a novel
multi-scale learning strategy to learn image context global
features without losing spatial structure information. Fur-
thermore, we incorporate an image prior that effectively
preserves the inherent structure of the image. This image
prior is capable of explicitly learning a representation that
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Fig. 1 The outlined framework: ILR denotes the input, and ISR signifies the ultimate super-resolved
output in our proposed methodology.

guides the model towards high-quality image reconstruction.
Specifically, we propose a progressive up-downmapping unit
(PUMU) that progressively maps the input low-dimensional
vectors from a low-dimensional space to a high-dimensional
space. We attain the goal of broadening the receptive field
without modifying the convolutional kernel size, and this re-
mains unaffected by the dimensions of the input image. The
designed PUMU avoids the information loss caused by the
encoder, and at the same time can learn multi-scale global
context information. Then, we explore another novel new
paradigm for explicit expression of image prior, which we
call residual prior (RP). RP does not rely on existing de-
tection operators such as edges and gradients, and it is the
residual result of themaximum andminimum channel values
of an image, computed without any additional parameters.
Therefore, we apply RP to the remote sensing image SR task
and propose a residual prior block (RPB), which focuses
more on learning spatial structural information and assists in
generating high-quality HR images with clear and accurate
structure. In summary, our contributions can be summarised
as follows:

(1)we propose a novel multi-scale progressive learning
strategy to learn fine-grained global contextual information
by the designed PUMU that progressively maps images from
a low-dimensional space to a multi-scale high-dimensional
space. Subsequently, we introduce an explicit new paradigm
of image prior representation, RP, and design RPB. We can
ensure that our model mines the image spatial structure in-
formation without introducing additional parameter counts
and computation.

(2) we construct a progressive multi-scale remote sens-
ing image SR model based on residual prior bootstrapping.
We perform a large number of experiments in UCMerced
and PatternNet, and the experimental results prove that our
method due to the existing state-of-the-art SR methods for
remote sensing images.

2. PROPOSED METHOD
2.1 The whole Architecture of Proposed Network
We show the overall framework diagram of the proposed
method in detail in Fig.1. We denote the input LR image

as ILR and the output image as ISR. The aim of our model
is to reconstruct the image ISR from the input ILR in an
end-to-end manner. More specifically, the model can be
divided into three components: a 3 × 3 convolutional layer
for extracting shallow features from the input ILR, followed
by n PUMUs and their embedded RPBs for deep image
feature representation, and finally an image reconstruction
module consisting of an upsampling module and two 3 × 3
convolutional layers for reconstructing the output ISR. Given
a low-resolution input ILR, we obtain initial shallow features
FS by applying a 3 × 3 convolutional layer

FS = Conv3×3 (ILR) , (1)

where Conv3×3 denotes the 3 × 3 convolutional layer used
for shallow feature extraction, FS denotes shallow feature.
Subsequently shallow feature FS are fed into m PUMUs and
RPBs for deep feature representation. The second part of
the model network is multiple PUMUs and RPBs, which
are stacked together by serial connections and embedding to
capture accurate images feature step by step. This process
can be represented as

FD = Conv3×3 (Dn (Fs)) , (2)

where Dn represents n PUMUs and embedded RPBs, FD

represents deep features. Finally, the SR image ISR is gen-
erated by reconstruction as follows

ISR = Conv3×3 (Conv3×3 (UP (FS ⊕ FD))) , (3)

where UP denotes upsampling operation, and ⊕ represents
element-level addition.

{
I iLR, I

i
HR

}N
i=1 is a given set of

training sets,Incorporating N low-resolution images (I iLR)
and their respective high-resolution counterparts (I iHR), the
model training aims to minimize the L1 loss function.

θ̂ = argmin
1
N

N∑
i=1




F
(
I iSR

)
− I iHR





1
, (4)

where θ represents the parameter set of the model, F rep-
resents the model function, and ‖.‖1 represents the L1 loss
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function.
2.2 Progressive Up-down Mapping Unit
The PUMU design is depicted in Fig.1, showcasing its sim-
plicity and effectiveness. The input feature undergoes pro-
gressive upsampling, transitioning from low to high dimen-
sions, facilitating the extraction of multi-scale features from
the image.Then, we carry out progressive downsampling
of these features and reduce them to the initial size as the
output characteristics of PUMU. Different from the above
methods.In our multi-scale strategy, LR images are mapped
from low-dimensional to high-dimensional space, enabling
multi-scale feature extraction within the expanded dimen-
sional space of the image. This ensures the preservation
of structure and texture details in the reduced-dimensional
space while retaining the original multi-scale structure and
texture features, contributing to the robustness of image SR
reconstruction.
2.3 Residual Prior Block
Another important task of remote sensing image SR is to
recover spatial structure texture information, which is more
concerned with the overall image contour or edge details.
The single scale network shows a great advantage in spatial
information generation. However this implicit a prior min-
ing is limited for spatial structure information recovery. To
solve this problem, we suggest to introduce explicit a prior
expressions. We introduce a residual prior (RP). The RP
(Residual Prior) is independent of existing detection modal-
ities like edges and gradients; it is computed based on the
variability between the highest and lowest values within the
image channels.As a result, it avoids introducing additional
parameters and computational complexity.In addition, we
design a residual prior block (RPB) to help RP learn spatial
structural information, which helps to generate high-quality
HR images with clear and accurate structure.

In Figure 1, it is evident that the RP image exclusively
retains background details, delineated by the distinction be-
tween the highest and lowest channel intensities.It filters out
low-frequency information from the image, but retains edges
and textures, such as the outline of the house in the figure.
Thus, given an input LR image ILR, the RP of ILR can be
defined as

RP (LR) = max
c∈r ,g,b

ILR − min
c∈r ,g,b

ILR . (5)

RP can extract target structures and textures more com-
prehensively and accurately.Hence, we incorporate RP into
the image super-resolution (SR) model. To capture high-
dimensional features of RP, we introduce a Residual Prior
Block (RPB), as depicted in Fig. 1.The initial feature map
obtained by convolutional layer first. In addition, to dimin-
ish noise within the initial features and enhance the semantic
richness of these features, we directly use SRiR [11] to ex-
tract the deep features of the RP.
3. Experimental results and analysis
3.1 Dataset and Implementation Details
UCMerced [12] is a public dataset released by the UC

Merced Computer Vision Laboratory for remote sensing im-
age scene classification. The images come from manually
extracted large images of urban areas across the country from
the National Map Urban Area Imagery of the United States
Geological Survey. The dataset includes 21 categories, and
each category has 100 images of size 256 × 256 pixels. We
select 90 images from each category for training and vali-
dation, and 10 images for testing. Therefore, the training
and validation images amount to 1890, while the test images
amount to 210.

PatternNet [13] is a large-scale, high-resolution remote
sensing dataset collected for remote sensing image retrieval.
There are 38 classes, with each class containing 800 images
of size 256 × 256 pixels. The images in PatternNet are of
various US cities, collected from Google Earth images or
through the Google Map API. For training and validation,
we select 62 images from each class, while 8 images are
reserved for testing. As a result, there are a total of 2356
training and validation images and 304 test images.

During the model training stage, we set batchsize to
32 and patchsize is 64. We selected four commonly used
objective evaluation metrics to evaluate the performance of
reconstruction, including:PSNR, SSIM [14], and VIF [15].
In terms of details, the networkwas optimised for the training
process using the ADAM [16] optimiser, where the learning
rate was set to 0.0002, β1 = 0.9, β2 = 0.999. Our model
consists of 10 PUMUs and corresponding RPBs, with the
number of feature maps set to 64. The implementation of
our model is based on the PyTorch framework and runs on
a GPU with NVIDIA GTX 1080. For dataset processing,
we use 4× bicubic interpolation to downsample HR images
with resolution of 256 × 256 to LR images with resolution
of 64 × 64.
3.2 Ablation Study
Verify the effect of RP and RPB. To substantiate the role
of RP and RPB, a series of experiments were conducted for
verification purposes. RPB was intentionally excluded from
the proposed methodology, and the corresponding experi-
mental outcomes are presented in Table 1. The deduction
drawn from the results is that the removal of RPB leads
to a degradation in performance, resulting in a decrease in
PSNR from 30.79 dB to 30.40 dB. In addition, we provide
another ablation study removing the RP and employing only
the SRiR directly on the features that should be performed
to validate our affirmations. The results of which are shown
in Table 1. When we remove the RP, the performance of
the model shows a significant decline in PSNR values by
0.10 dB, which demonstrates the role of RP in our model.
To dynamically portray the demonstration of RP and RPB’s
significance, we visually present the subjective effects of re-
taining and removing RP and RPB in Fig.2. We chose two
typical images for demonstration purposes. We can see that
when removing the RP and RPB there is a wrong structure
and texture. In summary, after removing the RP and RPB,
the reconstruction lost more details and appeared blurred,
which further confirms the importance of the RP and RPB
in local detail texture recovery. We further show the MSE
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Fig. 2 Qualitative comparison of different settings of the proposedmodel.
(a)Reconstruction result of removing RP. (b)Reconstruction result of remov-
ing RPB. (c) Reconstruction result of finalmodel proposed. (d)HR. (e)MSE
Map of removing RP. (f) MSE Map of removing RPB. (g) MSE Map of
final model proposed. (Zoomed-in view to see more details.)

Table 1 VERIFY THE EFFECT OF RP and RPB. ”OURS W/O RP”
and ”OURS W/O RPB” INDICATES THAT THE RP AND RPB IS RE-
MOVED. The best results are highlight.

Methods PSNR/dB SSIM [14] VIF [15]
Ours w/o RP 30.69 0.8211 0.4650
Ours w/o RPB 30.40 0.8157 0.4553

Ours 30.79 0.8241 0.4698

between SR and HR. We observed when we removed RP
and RPB, satellite images with complex textures and dense
objects complex textures and dense objects are easily con-
taminated by artifacts.

Verify the effect of batchsize and learning rate. To
substantiate the role of batchsize and learning rate, a series of
experiments were conducted for verification purposes, and
the corresponding experimental outcomes are presented in
Table 2 and Table 3. A smaller batchsize reduces memory
footprint while meaning that gradient estimates are nosier
with each update, which helps models jump out of local
minimums and allows for training larger models or process-
ing larger data sets with limited resources. However, too
small a batchsize can lead to computational inefficiency and
can also lead to unstable training processes. In contrast, a
larger batchsize can improve computational efficiency, re-
duce noise from gradient estimation, and make the training
process more stable, but may exceed memory limits and trap
the model in local minima. Therefore, we set batchsize to 32
to achieve a compromise in terms of model training, com-
putation, hardware requirements, and so on. Similarly, too

Table 2 Explore the impact of batchsize reconstruction results. The best
results are highlight.

batchsize PSNR/dB SSIM [14] VIF [15]
8 30.65 0.8210 0.4648
16 30.69 0.8212 0.4651
24 30.73 0.8226 0.4679
32 30.79 0.8241 0.4698
40 30.80 0.8240 0.4701

Table 3 Explore the impact of learning rate reconstruction results. The
best results are highlight.

learning rate PSNR/dB SSIM [14] VIF [15]
0.0001 30.70 0.8221 0.4668
0.0002 30.79 0.8241 0.4698
0.0003 30.75 0.8233 0.4689

Fig. 3 In comparing our proposed method with eight other state-of-the-
art approaches, we’ve emphasized critical areas in the image using red
wireframes.

high learning rate may cause the model to skip the global
minimum and fall into the local minimum during training.
However, too low learning rate may cause the training pro-
cess to be too slow or even stagnant. Proper learning rate is
helpful for the model to find better solutions in the training
process, thus improving the final performance of the model,
so we choose 0.0002 as the final learning rate.

3.3 Compared with State-of-the-Arts
In this subsection, we have selected some state-of-the-art SR
algorithms for comparison, including DBPN [17], RCAN
[2], SAN [3], HAN [4], MHAN [5], CTNet [6], HSENet [7],
and MEN [8]. For all SOTA models, we retrained and
tested them through the same dataset using the official code
provided by the authors.The numeric results are displayed
in Table 4. As can be seen from the quantitative results,
our method is optimal on both datasets. Specifically, on
the UCMerced dataset and PatternNet dataset, our approach
demonstrates a performance advantage of at least 0.07 dB
and 0.11 dB over other methods, providing strong evidence
for the effectiveness of our model.

As can be seen fromFig.3, although some texture details
can be inferred from the reconstruction results of other SR
algorithms, the lower feature utilization produces excessively
smooth results, with artifacts at the edges of the resulting
image and very blurred texture details. In contrast, our
method can reconstruct images with more realistic texture
details and fewer artifacts.
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Table 4 Qualitative comparison of reconstruction results comparing dif-
ferent algorithms under UCMerced and PatternNet datasets with scale of
4×. The best results are highlight.

Method Dataset PSNR/dB SSIM [14] VIF [15]

Bicubic

UCMerced [12]

26.48 0.6866 0.3569
DBPN [17] 28.33 0.7762 0.4226
RCAN [2] 28.20 0.7719 0.4175
SAN [3] 28.26 0.7725 0.4200
HAN [4] 28.25 0.7737 0.4198
MHAN [5] 28.12 0.7673 0.4144
CTNet [6] 27.98 0.7601 0.4117
HSENet [7] 28.39 0.7759 0.4262
MEN [8] 28.16 0.7660 0.4163
Ours 28.46 0.7807 0.4278

Bicubic

PatternNet [13]

28.05 0.7362 0.3856
DBPN [17] 30.28 0.8175 0.4614
RCAN [2] 30.53 0.8187 0.4617
SAN [3] 30.53 0.8188 0.4617
HAN [4] 30.53 0.8187 0.4621
MHAN [5] 30.31 0.8153 0.4535
CTNet [6] 30.27 0.8120 0.4536
HSENet [7] 30.68 0.8233 0.4667
MEN [8] 30.45 0.8154 0.4588
Ours 30.79 0.8241 0.4698

4. Conclusion
In this letter, we propose a novel residual prior-guided pro-
gressivemulti-scale feature learningmethod for remote sens-
ing image SR. Firstly, we propose a novel progressivemultis-
cale learning strategy that can help our model capture global
multi-scale contextual information without losing spatial
structure information. Subsequently, we suggest to introduce
RP as a complement to the spatial structure information. RP
is the difference between the maximum andminimum values
of image channel and does not introduce additional parame-
ters and computations. With the help of RP, our model can
generate SR images with clearer structural texture. experi-
mental and ablation studies on two publicly available datasets
have shown that the proposed method exhibits state-of-the-
art performance. However, our method can only perform
high-quality reconstruction of single-frame images, but can-
not reconstruct low-resolution satellite videos well. There-
fore, in future research, we will focus on super-resolution
reconstruction algorithms for video satellite application sce-
narios.
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