
DOI:10.1587/transfun.2024EAL2053

Publicized:2025/01/09

This advance publication article will be replaced by
the finalized version after proofreading.



1 

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers 

Letter 

Automatic classification of human chromosome shapes using 

convolutional neural network models 

 
Shinya Matsumoto†, Nonmember, Daiki Ikemoto†, Nonmember, Takuya Abe††a), Nonmember, Kan Okubo†b), Re

gular member and Kiyoshi Nishikawa†c), Senior member 

SUMMARY Metaphase chromosome classifications based on the 

positional relationship between sister chromatids are used to evaluate the 

function of the cohesin complex, which tethers sister chromatids until cell 

division. Currently, classification is manually performed by researchers, 

which is time consuming and biased. This study aims to automate the 

analysis using multiple convolutional neural network (CNN)-trained 

models. By improving our prototype model with a 73.1% concordance rate, 

one of the proposed new models achieved a maximum concordance rate of 

93.33% after applying a fine-tuning method and ensemble learning method. 

The results suggest that CNN-based models can automatically classify 

chromosome shapes. 
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1. Introduction 

Mitotic chromosomes comprise a pair of sister chromatids 

that form an X-like structure. Until the onset of chromosome 

segregation, sister chromatids are tethered by a protein 

complex called cohesin. Deficiency of the cohesin function 

causes premature sister chromatid separation and is related 

to the development of cancer and genetic diseases [1], [2], 

[3]. 

 Direct microscopic observation of a Giemsa-stained 

metaphase chromosome is a simple and common method to 

measure the cohesin function deficiency [4], [5]. Currently, 

researchers manually evaluate and classify chromosomes 

based on the positional relationship between sister 

chromatids, which is time-consuming, and the result 

potentially includes subjective judgment by researchers. 

 In the field of chromosome analysis using deep 

learning, almost all of the previous research has focused on 

karyotype analysis [6], [7], [8], which involves examining 

and arranging an individual’s set of chromosomes in a 

predefined order. In other words, no previous study has 

considered detecting chromosomal abnormalities caused by 

a deficiency of the cohesin function. Therefore, we aimed to 

develop convolutional neural network [9] (CNN)-based 

models to automatically classify the shape of chromosomes, 

based on the positional relationship between sister 

chromatids. In our previous study, we trained transfer 

learning models based on SqueezeNet [10] or ResNet-18 

[11] using more than 600 labeled chromosome images 

classified based on the positional relationship of sister 

chromatids [12]. Consequently, the SqueezeNet-based 

model achieved a concordance rate of 73.1% with labeled 

answers. 

 In this study, we developed a method to increase the 

classification accuracy and reduce labor. The main features 

include: 1) increasing the number of chromosome images 

and accuracy of data labeling, 2) introduction of automated 

chromosome clipping, 3) fine-tuning of models, and 4) 

introduction of ensemble learning. The model achieved a 

maximum concordance rate of 93.33% with labeled answers. 

Therefore, we infer that the new method is practically 

feasible, providing a useful tool for the automatic 

classification of chromosome shapes. 

2. Dataset Preparation 

2.1 Data preparation and labeling 

First, we prepared metaphase chromosome spreads from the 

TK6 human B lymphoblastoid cell line, as previously 

described [12]. Single-chromosome images were cropped 

from 500 metaphase cells in the Red, Green, Blue (RGB) 

color format using OpenCV’s findContours(). Specifically, 

findContours() detects chromosome outlines and 

rectangularly crops single chromosomes based on the 

coordinate information. An example of this result is 

illustrated in Fig. 1. 

 In total, 9767 cropped single-chromosome images were 

labeled by collaborators. Seven participants classified the 

cropped chromosome images into three classes based on the 

following classification criteria. If the majority of the 

responses matched, the images were used as label data. 

Well-cohered tight chromatids were classified as class A, 

chromatids in which the arms were separated were classified 

as class B, and chromatids in which sister chromatids were 
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also separated at the centromere were classified as class C 

[13], [14]. Example images and illustrated images of each 

class are shown in Fig. 2 and Fig. 3, respectively. 

 Based on these results, 1146 class A, 7386 class B, and 

867 class C chromosome images were obtained from 500 

cells. Subsequently, the 867 images of each class (the 

number of class A and class B chromosome images was 

reduced to adjust the number of class C chromosome images 

for unbiased training) were divided into 667 images for 

training data, 100 images for verification data, and 100 

images for test data to fix the number of training data for 

each class. The same data were always used for the test data, 

but for the training and validation data, three patterns of 

datasets were prepared for cross-validation. 

 

 

 
Fig. 1  Detected sister chromatids. 

 

 

 
Fig. 2  Example images for each class. 

 

 

 
Fig. 3  Illustrated images of sister chromatids of each class. 

2.2 Preprocessing of input data 

Preprocessing was performed on the pixel values to enhance 

the shape of the chromosome images. First, the mean and 

standard deviation of the pixel values were set to 90 and 16, 

respectively, and the pixel value src (x, y) at position (x, y) 

of the image was modified with contrast α = 3.0, brightness 

β = 30, and gamma γ = 3.0, based on (1) and (2). 

 

dst(𝑥, 𝑦)  =  𝛼 src(𝑥, 𝑦)  +  𝛽 (1) 

𝑦 = (
𝑥

255
)

𝛾

× 255 (2) 

 

 Subsequently, OpenCV’s findContours() was 

employed to detect contours and remove chromatids or other 

objects in the images that were not the target of classification. 

The criteria for removing the objects were that the contours 

were at the edges of the image and the areas of the contours 

were less than 8% of the cropped image area. The removed 

areas in the image were replaced with the pixel values (R, G, 

B) = (255, 255, 255). An example of preprocessing input 

data is shown in Fig. 4. 

 Finally, the images were resized to 224 × 224 or 299 × 

299 pixels based on the standard input image size in each 

pretrained model. 

 

 

 
Fig. 4  An example of preprocessing input data. (a) Cropped image. (b) 

Image with enhanced chromosome shape. (c) Image after removing the 

partially captured chromosome according to the criteria. 

 

3. Image Classification Model 

3.1 Transfer learning model 

The number of chromosome images (667 for each class) did 

not appear to be sufficient to start machine learning from the 

beginning. Therefore, we used transfer learning to improve 

the classification accuracy, even with a small amount of 

image data, by using a pretrained model as a feature 

extractor [15]. The fully connected layers (fc) prior to the 

network output were trained using the chromosome dataset, 

and the other layers of the CNNs were used as fixed feature 

extractors. 

 Fig. 5 shows the total and per-class concordance rates 

between the labeled data and predicted answers from the 

SqueezeNet pretrained models [16]. The concordance rates 

improved with the number of training images reached a peak 

at 300 images, and did not further improve as the number of 
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images increased. Thus, we considered 667 images per class 

to be sufficient for transfer learning. 

 In our previous study, we compared SqueezeNet [10] 

and ResNet-18 [11] and showed that the SqueezeNet-based 

model is more suitable for chromosome classification [12]. 

In this study, as shown in Fig. 6, we examined 12 pretrained 

models: AlexNet [17], efficientnet_b7 [18], DenseNet161 

[19], vgg19 [20], inception_v3 [21], GoogleNet [22], 

MobileNetV2 [23], ShuffleNetV2 [24], ResNext50 [25], 

wide_resnet101_2 [26], MnasNet [27], and SqueezeNet [10]. 

All these models are provided by Torchvision. The 

maximum concordance rate was 81.31% in the SqueezeNet-

based model, followed by the ShuffleNet-based model 

(78.35%), DenseNet161-based model (78.04%), and 

MobileNetV2-based model (77.22%), respectively. 

 

 

 
Fig. 5  Concordance rates by the number of images (total and per class). 

 

 

 
Fig. 6  Concordance rate per pretrained model. 

 

3.2 Fine-tuning of models 

We fine-tuned the four models that achieved concordance 

rates higher than 75% in transfer learning. Fine-tuning is a 

method of retraining the parameters of an arbitrary layer of 

a trained model to increase its generality. In this study, each 

of the four pretrained models was tested by increasing the 

number of layers to be retrained in stages and using the 

model with the highest concordance rate. 

 Table 1 lists the highest concordance rate and the layers 

in which fine tuning was performed for each of the four 

models. Following fine-tuning, the concordance rates of all 

models improved (Table 1). The maximum concordance rate 

was 89.67% in the DenseNet161-based model, followed by 

the ShuffleNet-based model (89.58%), MobileNetV2-based 

model (85.98%), and SqueezeNet-based model (85.06%), 

respectively. 

 

 
Table 1  Highest concordance rate and the layers in which fine tuning 

was performed. 

 
 

3.3 Ensemble learning 

Ensemble learning is employed to improve the 

generalization of models by training multiple models 

individually and averaging their outputs during inference. It 

aims to further improve the concordance rate by considering 

the average score obtained by ensemble learning as the final 

score for the output of the fine-tuning models developed 

based on the four trained models in the previous section. 

 In ensemble learning, we obtained the inference 

outputs of each model selected for ensemble learning from 

the four fine-tuning models, obtained their arithmetic mean 

by class, and used the average score as the final output. 

Subsequently, the concordance rate with the label data was 

obtained. We assembled all the possible combinations from 

four different fine-tuning models.  

 Table 2 lists the combinations of the base pretrained 

models and the concordance rates for their ensemble 

learning. The highest result of 93.33% was obtained when 

ensembling the outputs of DenseNet161-, MobileNetV2-, 

and SqueezeNet-based models. The result is a 3.75 

percentage point improvement over the DenseNet161-based 

single model at the time of fine-tuning. 

 Table 3 lists the confusion matrix when ensembling the 

outputs of DenseNet161-, MobileNetV2-, and SqueezeNet-

based models. The concordance rates for each class were 

97%, 85%, and 98%, respectively. Since 10% of class B 

chromosomes were misclassified as class C, it seems 

difficult to distinguish between chromosomes that are 

slightly attached and those that are detached. Considering 

that the classification boundary could vary even more if 

analyzed by different human researchers [12], the 85% 

classification accuracy for class B can be considered 

sufficient for practical use. 
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Table 2  Combination of base pretrained models and concordance rate 

during ensemble. 

 
 

 
Table 3  Confusion matrix when ensembling the outputs of 

DenseNet161-, MobileNetV2-, and SqueezeNet-based models. 

 
 

4. Discussion 

Chromosome analyses, including karyotyping and 

chromosomal aberration detection, are generally manually 

performed by researchers. However, such manual analyses 

is laborious, time-consuming, and involve the risks of 

individual differences and subjective judgement, 

highlighting the importance of automated analyses. 

Applying image recognition models to chromosome 

analyses is an attractive strategy, and many scholars have 

reported CNN-based chromosome analyses. However, most 

studies that have applied image recognition models to 

chromosome analyses have focused on karyotyping, and it 

is not clear whether image recognition models can be 

applied to the detection of chromosomal aberrations. In our 

previous study, we applied CNN-based models to detect 

sister chromatid cohesion defects [12]. Although our 

previous model achieved a maximum concordance rate of 

73.1 % with the labeled answers, the rate was insufficient 

for practical use. 

 Here, we succeeded in increasing the concordance rate 

to a maximum of 93.33%. In particular, the fine-tuning of 

the models and ensemble learning greatly contributed to the 

improvement in the concordance rate. The pretrained 

models were trained only on natural images and did not 

include training data for chromosomes. Therefore, we 

believe that the feature extractor can be retrained to 

effectively extract features from the chromosomes. 

 In addition to sister chromatid cohesion defects, many 

other types of chromosomal aberrations have been reported 

in human chromosomes, including chromosome breaks, 

sister chromatid exchange, chromosome fusion, and 

translocation. Future studies can examine whether CNN-

based models can be applied to detect other chromosomal 

aberrations. 

5. Conclusion 

In this study, we aimed to automate chromosome analysis 

using multiple CNN-trained models. The prototype model 

had a concordance rate of 73.1% with labeled data, and one 

of our newly developed models achieved a maximum 

concordance rate of 93.33% upon applying a fine-tuning 

method and an ensemble learning method. The fine-tuning 

of the models and ensemble learning significantly 

contributed to the improvement. These results suggest that 

CNN-based models have the potential to be used as practical 

tools to automatically classify chromosome shapes. 
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