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SUMMARY The deep learning method has been proven to be perfect in 

the field of multi-ship formation (MSF) recognition for high-frequency 

surface wave radar (HFSWR). However, the range-Doppler (RD) images 

of MSF are not always available in large quantities for training. And there 

is diversification in formation styles. In this paper, we propose a signal 

processing method for HFSWR formation recognition, which performs RD 

imaging through coherent accumulation and motion compensation. In the 

Doppler profile, the peaks are equal to sub-targets. The experiments based 

on actual RD background verify the feasibility and robustness of the 

proposed method. 
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1. Introduction 

High-frequency surface wave radar (HFSWR) works in the 

3-30MHz frequency band, which is able to monitor large 

areas of the sea surface in real time under all weather 

conditions [1,2]. The HFSWR can compensate for the blind 

spots in the line of sight detection and has wide applications 

in ship monitoring and maritime warning [3,4]. 

The existing research on target detection is chiefly 

conducted in the range-Doppler (RD) images [5], which are 

generated by 2D Fast-Fourier transform (FFT) processing of 

echo signals. Detection and distinction of dense ships in the 

field of HFSWR have limitation because of the spectral peak 

broadening and spectral peak adhesion caused by multiple 

targets aggregation. Many studies have focused on this. In 

the case of multiple targets in the same cell, Rohling H [6] 

used the optimal thresholding method to decide about the 

targets’ presence. In [7], the adaptive constant false alarm 

rate (CFAR) threshold combined with pulse accumulation is 

introduced to improve resolution for many targets that are 

closely spaced in range, Doppler, and azimuth. Li et al. [8] 

analyzed the domain knowledge of spatial correlation and 

modified the existing constant false alarm detectors based 

on spatial information to improve the detection accuracy of 

dense targets. 

The above researches in the field of HFSWR focus on 

the detection of irrelevant dense targets. Research on group 

targets with constraint principles, such as formation, is 

limited. The formation presents a certain spatial geometric 

shape, which is related to the relative position and motion of 

the sub-targets. In [9], the RD image model of multiple 

aircraft formation was established based on multipath effects. 

Based on this, the number of sub-targets in formation is 

accurately identified by the convolutional neural network 

(CNN) method in an ideal clutter background. In the 

previously published papers [10,11], we proposed a deep 

learning-based method for HFSWR multi-ship formation 

(MSF) recognition, and analyzed the radar measurement 

errors on MSF recognition accuracy. In practice, the RD 

images for MSF are not always available in large quantities 

for training. In some cases, the quantity information of sub-

targets in the formation is more important than formation 

type information. In this paper, the signal processing based 

on the HFSWR formation model is introduced to distinguish 

formation. Firstly, the coherent accumulation is performed 

on the formation echo signal, and the Doppler resolution is 

improved by increasing coherent integration time (CIT). The 

overall motion compensation successfully eliminates the 

spectral peak broadening and spectral peak adhesion caused 

by multiple targets aggregation. Then, the RD processing is 

carried out, and the number of sub-targets is determined in 

the Doppler dimension through peak detection. Meanwhile, 

we analyze the radial velocity difference required for 

recognition and the radial velocity resolution provided by 

the radar system, and determine the CIT required for MSF 

recognition through experiments. The experimental process 

based on the actual RD background is provided, and the 

effectiveness of the proposed formation recognition method 

has been demonstrated. The Monte Carlo experiment 

verifies the robustness of the proposed method. 

The rest of this paper is organized as follows. In Section 

Ⅱ, the MSF signal model and motion compensation method 

are introduced. In Section Ⅲ , the CIT and formation 

recognition results are discussed. In Section Ⅳ , a 

conclusion is drawn. 

2. Ship Formation Recognition 

In our previously established MSF model for HFSWR [10], 

the distance between sub-target pi and the HFSWR station 

can be expressed as: 

( )i i iR R t r l = + −                (1) 
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where R(t) is the distance between the formation center and 

HFSWR station, ri is the projected distance of the sub-target 

pi relative to the formation center in the direction of radar 

line-of-sight, li is the projected distance of the sub-target pi 

relative to the formation center perpendicular to the radar 

line-of-sight direction, and   is the angle at which the 

formation center rotates relative to the HFSWR during CIT. 

The R(t) and  are related to the overall movement of the 

MSF, while ri and li are related to the motion of the sub-

targets relative to the formation center. 

0( ) rR t R v t= +                 (2) 

where R0 is the distance between the formation center and 

HFSWR station at the initial moment, and vr is the radial 

velocity of the formation center relative to the HFSWR 

station. 

Based on the consistent movement of the sub-targets, 

the compensation function for the MSF signal model is 

established and can be expressed as follows: 

( ) ( )
4

( ) exp c

c

B
H t j f R t R t t

c T
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         (3) 

where fc, B, c and Tc represent the carrier frequency, system 

bandwidth, signal propagation speed and sweep period.  

 The uncompensated and compensated phase change of 

the sub-target pi can be expressed as a combination of fast 

time tf and slow time ts: 

( ) ( )
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where
riv is the radial velocity of the sub-target pi, and 

( )/ri i f sv l t t=  + . 

 The fast time has a Fourier transform relationship with 

the radial projection distance ri , and the slow time has a 

Fourier transform relationship with the radial velocity vri and 

vr.The RD images are generated by performing 2D FFT 

along the fast time domain and slow time domain on the 

echo, respectively. Among them, the one-dimensional 

Doppler profile is obtained along the slow time domain. 

3. Experiments 

3.1 Resolution Performance Analysis 

Table 1  HFSWR simulation parameters. 
Parameter Name Parameter symbol Parameter Value 

Carrier Frequency fc 6 MHz 

Bandwidth B 30 kHz 

Sweep time / 0.128 s 

Pulse width T0 0.40 ms 

Sampling Frequency f0 24 MHz 

Table 2  MSF simulation parameters. 
Parameter Name Parameter symbol Parameter Value 

Distance between the formation center 

and HFSWR station 

R0 100 km 

Azimuth angle of the formation center 
0

 
60° 

Sailing speed vship 8 m/s 

Distance between formation center and 

sub-targets 

d 2 km 

The HFSWR system parameters are given in Table 1, and 

the MSF simulation parameters are given in Table 2. 

The radial velocity is used to separate the sub-targets, 

of which resolution is related to CIT: 

2
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r
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v

c T
 =



                    (6) 

where CITT  represents the CIT in seconds. The CIT is 

determined based on the radial velocity difference required 

for MSF recognition. The actual radial velocity difference 

between sub-targets is represented as: 
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        (7) 

where d is the distance between the adjacent sub-targets, vship 

is the sailing speed, and is the rotational angular velocity 

of the formation center relative to the radar. If
r rv v    is met, 

the sub-targets of the formation can be recognized 

theoretically. 

 
(a)                             (b) 

Fig. 1  The single-column formation. (a) The geometric model of the 

single-column formation. (b) The variation of radial velocity resolution 

and radial velocity difference of sub-target with CIT. 

Fig 1(a) shows the single-column formation geometric 

model, and Fig 1(b) shows the variation of radial velocity 

resolution and radial velocity difference of sub-target p1 with 

CIT. For an ideal scenario, the provided radial velocity 

resolution is lower than the radial velocity difference when 

the CIT reaches 4 minutes, which can meet the requirements 

for MSF recognition. Due to the interference term 2 /c if r c in 

Eq. 4, the signal amplitude of the sub-target is to some extent 

affected by
ir . It is validated with experiments that the CIT 

is set to approximately 8 minutes, and the MSF recognition 

effect is perfect. Table 3 compares the required CIT for ideal 

and actual scenarios. 

Table 3  CIT for single-column formation. 
Parameter Name Ideal scenario Actual scenario 

CIT 4 min 8 min 

Radial velocity resolution 0.104 m/s 0.052 m/s 

Radial velocity difference 0.118 m/s 0.115 m/s 

Fig 2 shows the V-shaped formation and symmetrical 

formation geometric model. In Figure 2(a), 1 2 / 3 =  ,

2 / 6 = , d1=3 km, d2=2 km. In Figure 2(b), the sub-targets 

are symmetrically distributed with equal distances from the 

formation center. The angle between two sub-targets is
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2 / 3  . As shown in Table 4, the optimal CIT for the V-

shaped and symmetrical formation is determined through 

multiple simulation experiments. For the V-shaped 

formation, the required CIT increases due to the interference 

term. For the symmetrical formation, the velocity 

projections of p1 and p3 in the radial direction are consistent. 

A longer CIT is needed for recognition ideally. In practice, 

the radial range between p1 and p3 is different, exacerbating 

the differences in the echo amplitude from sub-targets. This 

to some extent shortens the CIT. 

       
(a)                            (b) 

Fig. 2  The geometric model of two types of formation. (a) The V-shaped 

formation. (b) The symmetrical formation. 

Table 4  CIT for V-shaped formation and symmetrical formation. 
Formation Parameter Name Ideal scenario Actual scenario 

V-shaped 

formation 

CIT 7 min 11 min 

Radial velocity resolution 0.060 m/s 0.038 m/s 

Radial velocity difference 0.065 m/s 0.062 m/s 

Symmetrical 

formation 

CIT 23 min 13 min 

Radial velocity resolution 0.018 m/s 0.032 m/s 

Radial velocity difference 0.020 m/s 0.012 m/s 

3.2 Formation recognition experiment 

The experiment process of MSF recognition is shown in 

Figure 3. Firstly, the actual RD background comes from the 

HFSWR station, which is located in Weihai, China. Three 

types of simulated formations, single-column, V-shaped, 

and symmetrical formations, are injected in the actual RD 

background. The radial range of the formation center to the 

radar is obtained with the CFAR method. Then, the 2D IFFT 

is performed on the RD images to obtain the echo signal in 

time domain. The imaging blurring, which is caused by the 

joint motion of sub-targets in long CIT, can be eliminated by 

motion compensation in time domain. Finally, the focused 

Doppler profile is obtained by FFT along the slow time. The 

sub-target quantity recognition of the formation through 

peak detection in the Doppler domain. 

 
Fig. 3  The formation recognition process based on the actual RD 

background. 

Figure 4 and Figure 5 compare the RD images and 

Doppler profile before and after motion compensation for 

single-column, V-shaped, and symmetrical formations. It 

can be seen that the compensated MSF signal undergoes 

spectral shift in the Doppler domain, and the Doppler 

spectrum is shifted to near 0 frequency. The values in the 

range domain have been added with R0 compensation for 

correction for easier analysis. Before motion compensation, 

there is a significant broadening of the image in the Doppler 

direction. After motion compensation, Doppler broadening 

is eliminated, and the focused image shows the number of 

sub-targets in the formation. Different types of formations 

can be recognized with a sufficient amount of time. 

 
(a)                       (b) 

 
(c)                       (d) 

 
(e)                       (f) 

Fig. 4  The RD images. (a) In the situation of single-column formation 

without motion compensation. (b) In the situation of single-column 

formation with motion compensation. (c) In the situation of V-shaped 

formation without motion compensation. (d) In the situation of V-shaped 

formation with motion compensation. (e) In the situation of symmetrical 

formation without motion compensation. (f) In the situation of 

symmetrical formation with motion compensation. 

    
(a)                       (b) 

     
(c)                       (d) 



IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX 

4 

     
(e)                       (f) 

Fig. 5  The Doppler profile. (a) In the situation of single-column 

formation without motion compensation. (b) In the situation of single-

column formation with motion compensation. (c) In the situation of V-

shaped formation without motion compensation. (d) In the situation of V-

shaped formation with motion compensation. (e) In the situation of 

symmetrical formation without motion compensation. (f) In the situation 

of symmetrical formation with motion compensation. 

In practice, there are deviations in the position and 

velocity of the sub-targets, which may cause imaging bias. 

To test the robustness of the proposed MSF recognition 

method, the range parameter R0 from MSF model is set to 

 2% float, the parameter vship is set to  10% float. There 

are 200 Monte Carlo samples for each formation. The 

variation of recognition accuracy with CIT is shown in 

Figure 6. For single-column and symmetrical formations, 

motion compensation can shorten the CIT required. For V-

shaped formation, the improvement effect of motion 

compensation on MSF recognition is only demonstrated 

when the CIT is greater than 10 minutes. 

     
(a)                       (b) 

 

 

(c) 
Fig. 6  The variation of recognition accuracy with CIT before and after 

motion compensation. (a) The single-column formation situation. (b) The 

V-shaped formation situation. (c) The symmetrical formation situation. 

4. Conclusion 

In this paper, the MSF signal model for high-frequency 

surface wave radar (HFSWR) is established, and the range-

Doppler (RD) imaging method based on coherent 

accumulation and motion compensation is proposed. The 

peak detection is used to determine the sub-target number of 

the formation in the Doppler profile. We compare the 

theoretical coherent integration time (CIT) required for MSF 

recognition with the actual CIT using three types of 

formation models: single-column formation, V-shaped 

formation, and symmetrical formation. We design an 

experimental process based on the actual RD background, 

and verify the effectiveness of the proposed signal 

processing method without modifying the HFSWR system. 

Among them, the motion compensation method can 

effectively shorten the required CIT and improve the 

recognition accuracy. For the non-standard formation model, 

Monte Carlo experiments are conducted to verify the 

robustness of the recognition method proposed in this paper. 
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