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LETTER
Binary Cycle Codes Have Optimal Stopping Redundancy∗

Yingnan QI† ,††a), Chuhong TANG† ,††b), Haiyang LIU†c), Nonmembers, and Lianrong MA†††d), Member

SUMMARY In this letter, we prove that binary cycle codes constructed
from simple connected graphs have optimal stopping redundancy. For such
a code, we also obtain a full-rank parity-check matrix whose number of
minimum-size stopping sets is equal to the number of minimum-weight
codewords of the code.
key words: Binary cycle codes, minimum distance, stopping distance,
stopping redundancy

1. Introduction

It has been shown that the performance of iterative decoding
of a binary linear code over the binary erasure channel (BEC)
depends on the choice of the parity-check matrix of the code
[1]-[3]. To be specific, suppose 𝑯 is a parity-check matrix
of a binary linear code C whose minimum distance is 𝑑.
The performance of iterative decoding over the BEC can
be characterized by certain combinatorial structures, called
stopping sets, of 𝑯. The minimum size of the non-empty
stopping sets is called the stopping distance of 𝑯 and is
denoted by 𝑠(𝑯), which should be maximized for desirable
performance. It can be shown that the inequality 𝑠(𝑯) ≤ 𝑑
holds for any parity-check matrix 𝑯 of C. The stopping
redundancy of C, 𝜌(C), is defined as the minimum number
of rows in a parity-check matrix 𝑯 of C for which 𝑠(𝑯) = 𝑑.
(Note that there always exists such a parity-check matrix 𝑯
for a code C [2].)

In particular, if 𝜌(C) is equal to the redundancy of C,
then C is said to have optimal stopping redundancy. In
other words, there exists a full-rank parity-check matrix 𝑯
(i.e., the rows in 𝑯 are linearly independent) of C for which
𝑠(𝑯) = 𝑑. It is known from [2, Theorem 3] that any binary
linear code with minimum distance ≤ 3 has optimal stopping
redundancy. On the other hand, finding binary linear codes
with minimum distance ≥ 4 as well as optimal stopping re-
dundancy is an interesting but challenging research problem
[4]. To date, only sporadic families of binary linear codes are
proved to have optimal stopping redundancy [4]-[7]. Due to
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its theoretical significance, it is deserved to find more binary
linear codes that have optimal stopping redundancy.

In this letter, we focus on binary cycle codes (also
known as circuit codes), an important class of graph-
theoretic codes that have nice structural properties [8]. From
the practical point of view, the structural properties allow us
to design efficient algorithms for these codes. For instance,
the encoding and decoding processes of a binary cycle code
can be performed iteratively, with complexity linear in the
code length. From the theoretical point of view, these codes
are amenable to analysis thanks to their structural properties.
Several structural parameters of these codes have been de-
termined in the previous works (see e.g., [9]-[12]), which is
helpful in understanding the code performances.

We consider binary cycle codes constructed from sim-
ple connected graphs in this letter. By construction, a parity-
check matrix 𝑯 of a binary cycle code C is the incidence
matrix of the graph from which C is constructed. It is known
that 𝑯 contains one redundant row. We show that 𝑯′ is a
full-rank parity-check matrix of C, where 𝑯′ is obtained by
removing a row from 𝑯. Then we prove that 𝑯′ has the
following property: A stopping set of 𝑯′ with size ≤ 𝑑 is a
stopping set of 𝑯 and vice versa, where 𝑑 is the minimum
distance of C. The property, together with the known re-
sults, indicates that C has optimal stopping redundancy. As
a byproduct, we conclude from the property that the num-
ber of minimum-size stopping sets of 𝑯′ is equal to that
of minimum-weight codewords in C. This implies that the
iterative decoding of a binary cycle code from a simple con-
nected graph using a parity-check matrix with the minimum
number of rows is asymptotically optimal over the BEC.

2. Preliminaries

In this section, we introduce the concepts and known results
that will be used in the following discussions. First, let us
introduce some specific notations. We let F2 = {0, 1} be the
binary Galois field. Suppose 𝑨 is a binary matrix, rank(𝑨)
is the rank of 𝑨 over F2. The support of a vector 𝒂 is the set
{𝑖 : 𝑎𝑖 ≠ 0}, where 𝑎𝑖 is the 𝑖-th entry of 𝒂. The size of the
support of 𝒂 is called the Hamming weight (in brief, weight)
of 𝒂. For a finite set A, |A| is the size of A. Suppose S
is a subset of column indices of 𝑨, the restriction of 𝑨 onto
the set S is denoted by 𝑨S , i.e., 𝑨S is a submatrix of 𝑨 that
contains the columns whose indices are in S.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers
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2.1 Stopping sets, stopping distance and stopping redun-
dancy

Assume that C is an [𝑛, 𝑘, 𝑑] binary linear code specified by
a parity-check matrix 𝑯 ∈ F𝑚×𝑛

2 , where 𝑛, 𝑘 , and 𝑑 are the
length, dimension, and minimum distance of C, respectively.
In this work, 𝑯 is allowed to have redundant rows, so we have
𝑚 ≥ rank(𝑯) = 𝑛 − 𝑘 , where the equality holds if and only
if 𝑯 is of full-rank.

Definition 1 ([2]): Suppose 𝑯 is a parity-check matrix
of binary linear code C. A subset S of column indices of 𝑯
is said to be a stopping set if 𝑯S does not contain a row of
weight 1. The stopping distance of 𝑯, denoted by 𝑠(𝑯), is
the minimum size of the non-empty stopping sets of 𝑯.

Note that the stopping set and stopping distance depend
on the specific parity-check matrix that describes a binary
linear code. Note also that the empty set is a trivial stopping
set for any parity-check matrix. In the following, we only
consider the non-empty stopping sets.

Lemma 1 ([2]): Let C be a binary linear code and 𝑯 be
a parity-check matrix of C. It holds that 𝑠(𝑯) ≤ 𝑑.

It is known that there always exists a parity-check matrix
𝑯 for a binary linear code C satisfying 𝑠(𝑯) = 𝑑 [2]. From
the practical point of view, it is desirable to find such a parity-
check matrix whose number of rows is as small as possible
in order to maintain a reasonable decoding complexity.

Definition 2: Suppose C is an [𝑛, 𝑘, 𝑑] binary linear
code and 𝑯 is a parity-check matrix of C. The stopping
redundancy 𝜌(C) is defined as the minimum number of rows
in 𝑯 such that 𝑠(𝑯) = 𝑑 holds. If 𝜌(C) = 𝑛 − 𝑘 , then C is
said to have optimal stopping redundancy.

Remark 1: We know from the above definition that we
can find a full-rank parity-check matrix 𝑯 such that 𝑠(𝑯) = 𝑑
holds for a binary linear code C that has optimal stopping
redundancy.

Apart from the stopping distance, the number 𝑆min (𝑯)
of minimum-size stopping sets in a parity-check matrix 𝑯
is crucial in the evaluation of the performance of iterative
decoding over the BEC. In particular, it is of great interest
to find a parity-check matrix 𝑯 for C satisfying 𝑠(𝑯) = 𝑑
as well as 𝑆min (𝑯) = 𝐴min, where 𝐴min is the number of
minimum-weight codewords in C.† In this case, we can
expect the performance of iterative decoding of C using 𝑯
is close to that of optimal decoding, especially when the
channel erasure probability is small. For a more detailed
discussion, see e.g., [3].

2.2 Binary cycle codes

A binary cycle code is a linear code constructed from a graph.
In the following discussions, we always assume that a graph
is simple and connected. For terminologies in graph theory,
the readers can refer to [13].

†In general, we have 𝑆min (𝑯) ≥ 𝐴min for a parity-check matrix
𝑯 such that 𝑠(𝑯) = 𝑑. There always exists a parity-check matrix
such that the lower bound is tight [3].

Definition 3: Suppose G is a simple connected graph
that contains 𝑚 vertices and 𝑛 edges. The incidence matrix
of G, 𝑯 := 𝑯(G), is a binary matrix of size 𝑚 × 𝑛. Let C
be a binary linear code specified by the parity-check matrix
𝑯. Then the code C is called a binary cycle code.

Note that each column of 𝑯 is of weight 2, since two
vertices are incident with an edge. Note also that each code-
word in C corresponds to a simple cycle of G or a union of
simple cycles with disjoint edges, which indicates that the
minimum distance of C is equal to the girth of G, i.e., the
length of the shortest cycle in G.

For the analysis of iterative decoding, it is convenient to
represent 𝑯 by a bipartite graph T , called the Tanner graph
of 𝑯 [14], which can be obtained by associating each vertex
(resp., edge) of G with a check node (resp., variable node) in
T , respectively. Denote the girth of T (resp., G) by 𝑔 (resp.,
𝑔𝑑). By construction, we can obtain 𝑔𝑑 = 𝑔/2.
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Fig. 1 An illustrative example. (a) A graph G with 5 vertices
and 7 edges. For convenience, each vertex in G is denoted by a
square. The incidence matrix 𝑯 of G specifies a [7, 3, 3] binary
cycle code. (b) The Tanner graph T of 𝑯. For convenience, each
check (resp., variable) node in T is denoted by a square (resp.,
cycle). The edges in T are not labelled for notational simplicity.

In order to illustrate these concepts, consider the illus-
trative example in Figure 1. Figure 1(a) provides a simple
connected graph G, whose incidence matrix is

𝑯 =


1 0 0 0 1 0 0
1 1 0 0 0 1 0
0 0 0 1 1 1 1
0 1 1 0 0 0 1
0 0 1 1 0 0 0


,

where the 𝑗-th row of 𝑯 corresponds to the vertex 𝑐 𝑗 in G,
and the 𝑖-th column of 𝑯 corresponds to the edge 𝑒𝑖 in G.
The Tanner graph T of 𝑯 is shown in Figure 1(b), where
the variable node 𝑣𝑖 corresponds to the edge 𝑒𝑖 in G. By
inspection, we know that 𝑯 is the parity-check matrix of a
[7, 3, 3] binary cycle code.

Lemma 2 ([8]): Let 𝑯 be the incidence matrix of a
simple connected graph G. If 𝑯 has𝑚 rows, then rank(𝑯) =
𝑚 − 1.

3. Main Results

In this section, we present the main results of this letter.
The following lemma states the stopping distance and the
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number of minimum-size stopping sets of a binary cycle
code specified by a parity-check matrix that is the incidence
matrix of a simple connected graph.

Lemma 3: Let 𝑯 be the incidence matrix of a simple
connected graph with girth 𝑔𝑑 . Suppose C is a binary cycle
code with parity-check matrix 𝑯. Then we have 𝑠(𝑯) = 𝑑 =
𝑔𝑑 and 𝑆min (𝑯) = 𝐴min.

Proof: In fact, the equality 𝑠(𝑯) = 𝑔/2 follows from
the results in [15, Section II], where 𝑔 is the girth of the
Tanner graph of 𝑯. Since C is a binary cycle code, we have
𝑑 = 𝑔𝑑 = 𝑔/2. Therefore, we have 𝑠(𝑯) = 𝑑 = 𝑔𝑑 .

For a parity-check matrix 𝑯 with uniform column
weight 𝛾, we know from [16, Corollary 1] that the equal-
ity 𝑆min (𝑯) = 𝐴min holds if 𝑑 = 𝑑𝐿 , where

𝑑𝐿 =


1 + 𝛾 +

(𝑔−6)/4∑
𝑖=1

𝛾(𝛾 − 1)𝑖 , 𝑔/2 odd,

1 + 𝛾 +
(𝑔−8)/4∑
𝑖=1

𝛾(𝛾 − 1)𝑖 + (𝛾 − 1) (𝑔−4)/4, 𝑔/2 even.

Hence, we only need to prove that 𝑑𝐿 = 𝑑 = 𝑔/2 for the
incidence matrix 𝑯 of a simple connected graph. In this case,
we have 𝛾 = 2. If 𝑔/2 is odd, we can let 𝑔/2 = 2𝑡 + 1, where
𝑡 is a positive integer. Then we have 𝑑𝐿 = 1 + 2 + 2(𝑡 − 1) =
2𝑡 + 1 = 𝑔/2. If 𝑔/2 is even, we can also prove that 𝑑𝐿 = 𝑔/2
in a similar manner. □

Remark 2: Note that the authors use the notation 𝑑 to
represent the column weight of a parity-check matrix in [15].
In this letter, we follow the convention of coding theory and
use the notation 𝑑 to represent the minimum distance of a
code.

The following two lemmas are necessary for establish-
ing our results.

Lemma 4: Let C be a binary cycle code specified by an
𝑚 × 𝑛 parity-check matrix 𝑯 that is the incidence matrix of
a simple connected graph. Then the matrix 𝑯′ is a full-rank
parity-check matrix of C, where 𝑯′ is obtained by removing
a row from 𝑯.

Proof: Assume that the 𝑚 rows in 𝑯 are 𝒉1, . . . , 𝒉𝑚−1
and 𝒉, where 𝒉1, . . . , 𝒉𝑚−1 are the rows of 𝑯′. Since each
column of 𝑯 is of weight 2, we have 𝒉+∑𝑚−1

𝑖=1 𝒉𝑖 = 0, where
0 is the zero vector of length 𝑛. In other words, it holds that
𝒉 =

∑𝑚−1
𝑖=1 𝒉𝑖 .

Suppose 𝒉̄ is a vector in the row space of 𝑯. Then 𝒉̄
is the linear combination of the rows 𝒉1, . . . , 𝒉𝑚−1 and 𝒉.
Because 𝒉 =

∑𝑚−1
𝑖=1 𝒉𝑖 , we conclude that 𝒉̄ is the linear com-

bination of the 𝑚−1 rows 𝒉1, . . . , 𝒉𝑚−1. This, together with
the fact that rank(𝑯) = 𝑚 − 1, indicates that 𝒉1, . . . , 𝒉𝑚−1
are linearly independent. As a consequence, 𝑯′ is a full-rank
parity-check matrix of C. □

Lemma 5: Let C be a binary cycle code specified by an
𝑚 × 𝑛 parity-check matrix 𝑯 that is the incidence matrix of
a simple connected graph G. Let S be a subset of column
indices of 𝑯, where |S| is less than or equal to the minimum
distance of C. Suppose 𝑯′ is obtained by removing a row
from 𝑯. Then S is a stopping set of 𝑯′ if and only if S is a
stopping set of 𝑯.

Proof: Since the graph from which binary cycle code
C is constructed is simple, we have 𝑑 ≥ 3, where 𝑑 is the
minimum distance of C. Hence, both 𝑯′ and 𝑯 do not
contain stopping sets with size less than 3. (Suppose to the
contrary. Let S be a stopping set of 𝑯′ or 𝑯 with size less
than 3. We construct a binary vector 𝒙 of length 𝑛 whose
support is S. Because 𝑯′

S or 𝑯S does not contain a row
of weight 1, we conclude that 𝒙 is a codeword in C whose
weight is less than 3, a contradiction.) In the following, we
assume that |S| = 𝑠 ≥ 3. Since the minimum distance of C
is equal to 𝑔𝑑 , we have 𝑠 ≤ 𝑔𝑑 .

We first prove the “if” part of the lemma. With proper
row permutations, 𝑯S can be written as

𝑯S =

[
𝑯′

S
𝒉S

]
.

Since S is a stopping set of 𝑯 and 𝑯′
S is a submatrix of 𝑯S ,

𝑯′
S does not contain a row of weight 1. This indicates that

S is a stopping set of 𝑯′.
Now we prove the “only if” part of the lemma. Assume

that S is a stopping set of 𝑯′ but S is not a stopping set
of 𝑯. Under the assumption, we conclude that 𝒉S is a row
vector of weight 1 and 𝑯′

S does not contain a row of weight
1. Denote the entry in the 𝑗-th row and the 𝑖-th column of
𝑯′

S by ℎ 𝑗𝑖 . Without loss of generality, we can assume that
𝒉S = [1 0 · · · 0]. We know that the first column of 𝑯′

S is
of weight 1. Without loss of generality, we can let ℎ11 = 1.
Since 𝑯′

S does not contain a row of weight 1, there exists at
least one more entry 1 in the first row. With proper column
permutations, we can let ℎ12 = 1. Because the weight of
the second column of 𝑯′

S is 2, there is an entry 1 in the last
𝑚 − 2 rows of the column. With proper row permutations,
we can assume that ℎ22 = 1. Using the fact that 𝑯′

S does
not contain a row of weight 1, we conclude that there exists
at least one more entry 1 in the second row, which can be
assumed in the third column, i.e., ℎ23 = 1. Because the
weight of the third column of 𝑯′

S is 2, there is an entry 1 in
the column in addition to ℎ23. If this entry 1 is in the first
row, i.e., ℎ13 = 1, we conclude that the Tanner graph of 𝑯
has a cycle of length 4. Equivalently, G has a cycle of length
2, a contradiction. As a result, this entry 1 is in the last 𝑚−3
rows of the third column. With proper row permutations, we
can assume that ℎ33 = 1. Repeat the above processes, we
can obtain the following matrix of size (𝑠 − 1) × (𝑠 − 1),

1 1

1 1

1
. . .

. . . 1

1


,

which is a submatrix of 𝑯′
S after proper row and column

permutations.
Let us consider the (𝑠 − 1)-th row. Using the fact that

𝑯′
S does not contain a row of weight 1, we conclude that
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there exists at least one more entry 1 in this row. Moreover,
this entry 1 cannot be in any of the first 𝑠 − 1 columns. With
proper column permutations, we can suppose that ℎ𝑠−1,𝑠 = 1.
Because the weight of the 𝑠-th column of 𝑯′

S is 2, there is an
entry 1 in the column in addition to ℎ𝑠−1,𝑠 . If ℎ𝑖,𝑠 = 1(1 ≤
𝑖 ≤ 𝑠−2), we conclude that the Tanner graph of 𝑯 has a cycle
of length 2(𝑠 − 𝑖). In other words, G has a cycle of length
𝑠 − 𝑖 ≤ 𝑔𝑑 − 𝑖 < 𝑔𝑑 , a contradiction. As a consequence, the
vector [0 · · · 0 1] of length 𝑠 is a row of 𝑯′

S . This, however,
contradicts the assumption that S is a stopping set of 𝑯′. □

Theorem 1: With the above notations, we have 𝑠(𝑯′) =
𝑔𝑑 = 𝑑 and 𝑆min (𝑯′) = 𝐴min.

Proof: By Lemmas 3 and 5, we know that 𝑯′ does
not contain non-empty stopping sets with size less than 𝑑.
Hence, we have 𝑠(𝑯′) ≥ 𝑔𝑑 . This, together with 𝑠(𝑯′) ≤
𝑔𝑑 = 𝑑, leads to 𝑠(𝑯′) = 𝑔𝑑 = 𝑑. We can also conclude from
Lemma 5 that the numbers of minimum-size stopping sets
of 𝑯 and 𝑯′ are equal. By Lemma 3, we have 𝑆min (𝑯) =
𝑆min (𝑯′) = 𝐴min. □

The following corollary is a direct consequence of Def-
inition 2 and Theorem 1.

Corollary 1: Let C be a binary cycle code constructed
from a simple connected graph. ThenC has optimal stopping
redundancy.

As mentioned in Section 1, there are some binary linear
codes in the literature that have been proved to have optimal
stopping redundancy. To the best of our knowledge, however,
the codes investigated in this letter are the first class of binary
linear codes for which a full-rank parity-check matrix 𝑯′

satisfying 𝑠(𝑯′) = 𝑑 ≥ 3 as well as 𝑆min (𝑯′) = 𝐴min can be
constructed for each code.

Consider binary Hamming codes, an important class of
linear codes invented in the early days of error correction
coding. Let 𝑚 be a positive integer and 𝑚 ≥ 2. The binary
Hamming code H𝑚 is a [2𝑚 − 1, 2𝑚 − 𝑚 − 1, 3] linear code
specified by a full-rank parity-check matrix 𝑯𝑚 of size 𝑚 ×
(2𝑚 − 1) that contains all the nonzero binary column vectors
of length 𝑚. By [2, Theorem 3], we conclude that H𝑚

has optimal stopping redundancy. For H𝑚, it also holds
that [17] 𝑆min (𝑯𝑚) = 1

6 (5𝑚 − 3𝑚+1 + 2𝑚+1) and 𝐴min =
1
6 (4𝑚 − 3 × 2𝑚 + 2). Clearly, we have 𝑆min (𝑯𝑚) > 𝐴min
for any 𝑚 ≥ 3. (Note that the full-rank parity-check matrix
of H𝑚 is unique up to the equivalence. Note also that the
minimum number of rows of a parity-check matrix 𝑯 of
H𝑚 satisfying 𝑆min (𝑯) = 𝐴min has been considered in [3].)
For other binary linear codes in the literature that have been
proved to have optimal stopping redundancy, it is unknown
whether there exists a full-rank parity-check matrix whose
number of minimum-size stopping sets is equal to the number
of minimum-weight codewords for each code.

It is known from [3] that a binary linear code C with
parity-check matrix 𝑯 satisfying 𝑠(𝑯) = 𝑑 as well as
𝑆min (𝑯) = 𝐴min indicates that the iterative decoding of C us-
ing 𝑯 is asymptotically optimal over the BEC. Our Theorem
1 suggests that such performance can be achieved through
the use of a full-rank parity-check matrix for a binary cycle

code constructed from a simple connected graph, which is
desirable in terms of the performance and complexity trade-
off.†

4. Conclusion and Future Work

In this letter, we have constructed a full-rank parity-check
matrix for a binary cycle code C from a simple connected
graph, where the constructed parity-check matrix contains
no stopping set whose size is less than the minimum distance
of C. Moreover, the number of minimum-size stopping sets
of the constructed parity-check matrix is equal to that of
minimum-weight codewords of C. These not only indicate
that C has optimal stopping redundancy but also imply that
C can achieve asymptotically optimal performance over the
BEC under iterative decoding using the constructed parity-
check matrix.

As a future work, we will try to find more families of
binary linear codes with optimal stopping redundancy. It is
also deserved to find binary linear codes with parity-check
matrices containing a minimum number of rows such that
𝑠(𝑯) = 𝑑 and 𝑆min (𝑯) = 𝐴min.
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