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A novel Distributed Stagewise Orthogonal Matching Pursuit
algorithm for mmWave MIMO channel estimation
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SUMMARY In this letter, we investigate the problem of multiple-input
multiple-output (MIMO) mmWave channel estimation in a hybrid analog-
digital architecture by exploiting both sparsity and the structure of the
channel. To gain noise robustness, we first introduce a method that applies
the Stagewise Orthogonal Matching Pursuit (StOMP) algorithm to a dis-
tributed setting, where subsystems over sub-carriers share the same support
set. To further enhance the accuracy of the estimation, we propose a novel
algorithm to estimate the number of paths present in the channel. This
technique leverages a modified Silhouette method to determine the exact
support for the mmWave sparse system, thereby reducing the ambiguity
of the estimate returned by the Distributed StOMP (DStOMP) algorithm.
Simulation results demonstrate that our proposed method outperforms the
standard OMP method and achieves nearly the same recovery accuracy
compared to the Simultaneous OMP method, even without prior knowledge
of signal sparsity.
key words: mmWave; channel estimation; distributed compressive sensing;
OMP; SOMP; StOMP.

1. Introduction

The demand for high data rates and low-latency commu-
nication will continue to increase for next-generation net-
works due to the emergence of new types of services such
as high-definition communication, immersive experiences,
industrial automation, etc. As a result, millimeter-wave
(mmWave) or even shorter wavelengths at terahertz fre-
quencies were and will be adopted for use in multiple-input,
multiple-output (MIMO) systems. However, raising the fre-
quency also lowers the wave’s capacity to propagate. Conse-
quently, this leads to significant path loss at the user equip-
ment (UE) and hence requires advanced methods like di-
rectional beamforming to compensate for its disadvantage.
To support beamforming, sparse channel estimation algo-
rithms were introduced [2]. For example, they are Orthogo-
nal Matching Pursuit (OMP) [1], Sparse Bayesian Learning
(SBL) [9], and Approximate Message Passing Algorithm
(AMP) algorithm [6] [10].

Although the benefits of the sparse method have been
proven in many previous works, structural understanding of
mmWave channels and the benefits of certain methods for
that structure still need more work to surpass the current
state-of-the-art in mmWave channel estimation. There are
two weaknesses that exist in current studies on sparse channel
estimation: i) the number of paths, i.e., sparsity level, is
often assumed to be known in advance, and ii) the mmWave
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channel in the angular domain is assumed to be 𝐿-sparse,
where 𝐿 is the number of paths. These two assumptions
reduce the practical meaning of sparse estimation methods.
Firstly, estimating the number of paths in the channel is not
a trivial task. Secondly, the true nature of the mmWave
channel is only nearly sparse in the sense that there is a
set of non-zero entries with smaller amplitudes concentrated
around the dominant (highest) one [5].

In this letter, we propose a novel Distributed Stagewise
Orthogonal Matching Pursuit (DStOMP) † algorithm for the
estimation of the mmWave MIMO channel. Our approach
leverages a distributed setting, estimating the channel with
multiple sub-carriers rather than a single carrier. It is based
by the fact that a multiple measurement vector setting invari-
ably outperforms the single measurement vector setting in
terms of noise robustness. The StOMP [1] algorithm was se-
lected as the main algorithm for two practical reasons. First,
it does not require prior knowledge of the sparse level. Sec-
ond, it is particularly suited to the mmWave channel, which
exhibits a specific structure. Leveraging the DStOMP and
the channel’s special structure, we introduce a novel cluster-
ing algorithm that is capable of identifying the number of
paths and identifying the dominant supports in cases where
the channel is considered 𝐿-sparse.

2. System model and mmWave channel estimation
problem

2.1 System model

Consider a mmWave MIMO system, where a single UE is
served by a single base station (BS) that employs a hybrid
architecture. Both BS and UE are equipped with a uniform
linear array (ULA) consisting of 𝑁𝑡 and 𝑁𝑟 equally spaced
antennas, respectively. Initially, BS sent a pilot sequence to
the UE 𝐺 times where the 𝑔-th transmission over 𝑛-th sub-
carrier includes known pilot x(𝑔) [𝑛] ∈ C𝑀𝑡 . The signal at
time 𝑔 that was sent over the 𝑛-th sub-carrier is expressed as
F(𝑔) [𝑛]x(𝑔) [𝑛], where F(𝑔) [𝑛] ∈ C𝑁𝑡×𝑀𝑡 is the beamform-
ing matrix. We assume that there are 𝐿 well-separated paths
in the channel. The matrix channel on the 𝑛-th subcarrier
can be written as

H [𝑛] = AR [𝑛]𝚪[𝑛]AT [𝑛]⊤, (1)

†Code is available at https://github.com/SonUET/DStOMP
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where, 𝚪[𝑛], AT [𝑛], and AR [𝑛] are the complex channel
gain matrix, the steering matrix, and the response matrix
over 𝑛-th subcarrier, respectively [8]. The received signal
over 𝑛-th subcarrier can be written as

y(𝑔) [𝑛] = H[𝑛]F(𝑔) [𝑛]x(𝑔) [𝑛] + w(𝑔) [𝑛], (2)

where, w is the complex Gaussian noise with zeros mean
and variance 𝑁0/2 per real dimension. Our purpose is to
estimate the channel H[𝑛] when knowing received signal y,
beamforming matrix F and pilot sequence x.

2.2 Beamspace channel and sparse channel estimation

To reveal the channel sparsity, we multiply the H matrix by
two unitary transformation matrices, say URx and UTx, as
defined in [8]. Then, we call the quantity UH

RxH[𝑛]UTx the
beamspace channel. Its essence is Dirichlet kernel [5] and
can be illustrated by Fig. 1a. In addition to the main lobe,
it also has many side lobes spanning the domains of AOA
and AOD. Intuitively, the expansion of side lobes forms a
cross line over the column and row space of the channel
matrix. Assuming the paths do not affect each other, we call
the position with the highest peak in the main lobe the main
support.

For the 𝑔-th transmission, let 𝛀[𝑛] =
(
UH

TxF[𝑛]x[𝑛]
)⊤

and h[𝑛] = vec
(
UH

RxH[𝑛]UTx
)
, we obtain

y[𝑛] = 𝛀[𝑛]h[𝑛] + w[𝑛] . (3)

We refer to (3) as the distributed setting where sensing matrix
𝛀 over all sub-carriers shares the same support set. Sparse
algorithms such as OMP and its family are the best candidates
to find sparse h[𝑛] in (3) when knowing y[𝑛] and 𝛀[𝑛].

3. Proposed Methods

3.1 Proposed Distributed Stagewise Orthogonal Matching
Pursuit algorithm: The Procedure

Stacking the observations of all subcarriers to obtain y, h
and n, we innate the algorithm with counter 𝑠 = 0, solution
h(0)

= 0 and residual as r(0) = y. It then calculates the
correlation between each column in the sensing matrix and
the corresponding residual. In the distributed case, we have

𝑐
(𝑠)
𝑘

=

𝑁∑︁
𝑛=1

|⟨r(𝑠−1) [𝑛],𝝎𝑖 [𝑛]⟩| (4)

where 𝝎𝑖 [𝑛] is the normalized column of 𝛀[𝑛]. With 𝐺 = 1
and 𝑁 = 1, 𝑐𝑘 is can be written as

𝑐𝑘 =

[(
uH

T,𝑖Fx
)⊤

⊗ uR, 𝑗

]H (
UH

T Fx
)⊤

⊗ URr

=

[(
uH

T,𝑖Fx
)⊤]H (

UH
T Fx

)⊤
⊗ uH

R, 𝑗URr

= u⊤
T,𝑖

[
(Fx)⊤

]H (Fx)⊤
[
(UT)H]⊤ ⊗ uH

R, 𝑗URr

(5)

where uT,𝑖 and uR, 𝑗 are 𝑖-th and 𝑗-th column of UT,𝑖 and UR, 𝑗 ,
respectively and 𝑖, 𝑗 ∈ [𝑁𝑏], 𝑘 = 𝑖 + 𝑁𝑏 ( 𝑗 − 1) assuming
𝑁𝑡 = 𝑁𝑟 and 𝑁𝑏 is number of virtual angles. We next
identifies all coordinates with amplitudes exceeding a hard
threshold.

J (𝑠) = {𝑘 : 𝑐 (𝑠)
𝑘

> 𝑡 (𝑠)𝜎 (𝑠) }, (6)

where 𝜎 (𝑠) is the noise level and 𝑡 (𝑠) is the threshold pa-
rameter. Since the number of rows of the sensing matrix
increases by 𝑁 times compared to a single carrier case and
𝑐𝑖 is accumulated by 𝑁 sub-carriers, the noise level and
the threshold should be scaled by 𝑁 and become ∥r(𝑠) ∥2

𝑁
√
𝑁𝑡𝐺

and 𝑁𝛿 (𝑠) , respectively, where 𝛿 (𝑠) is some noise-dependent
number. After that, we updates the estimates by merging the
previously determined support with the newly subset as

I (𝑠) = I (𝑠−1) ∪ J (𝑠) (7)

After this step, if |I (𝑠) | = |J (𝑠) |, we only need to complete
the remaining steps once and terminate the procedure since
the algorithm cannot find a new column. Let 𝛀I [𝑛] ∈
C𝑁𝑡𝐺×|I | be the matrix that includes columns chosen from
the support set I over the 𝑛-th sub-carrier, we construct the
matrix 𝛀I ∈ C𝑁𝑡𝐺𝑁×|I |𝑁 as

𝛀I = blkdiag (𝛀I [1],𝛀I [2], ...,𝛀I [𝑁]) (8)

to estimate the channel gains for all sub-carrier

h(𝑠)
I (𝑠) =

(
𝛀

H
I (𝑠)𝛀I (𝑠)

)−1
𝛀

H
I (𝑠) y (9)

Next, we subtract the effect of them from the received signal
as

r(𝑠) = y −𝛀h
(𝑠)

(10)

The procedure is terminated when number of stage reach to
S. Finally, we obtain hI (𝑠) as an estimate.

3.2 Proposed algorithm for estimating number of path and
locating main supports

At the end of the above procedure, we obtain a set of supports
whose number of elements is usually greater than the number
of paths present in the channel. This is both a strength
and a weakness of the StOMP algorithm compared to OMP.
The essence of OMP family algorithms is to determine the
support set based on the correlation between the columns
of the sensing matrix and the received signal. They must
ensure the following events occur with high probability [7].

𝐸 = { max
1≤𝑖≤𝑚

|𝝎H
𝑖 [𝑛]w[𝑛] | < 𝜏} (11)

where 𝜏 := 𝜎
√︁

2(1 + 𝛼) log𝑚 for some constant 𝛼 > 0, 𝑚 is
the length of 𝝎𝑖 and 𝜎 is the noise standard deviation. Under
the influence of noise 𝜎, OMP cannot guarantee selecting
the correct support with only one column selected at each
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Algorithm 1: Modified Silhouette method for the
DStOMP algorithm

Input: Supports with coordinates: X
Initialization: Number of clusters one want to test: 𝐾 ,

Beamwidth of the main lobe (assuming
𝐺𝑡 = 𝐺𝑟 ): 𝑟 .

for 𝑘 = 2 → 𝐾 do
1. Perform k-means clustering: [i,C] = kmeans(X, 𝑘 );
for 𝑗 = 1 → 𝑘 do

2. Get the data points in the 𝑗-th cluster:
p = X( 𝑗 == i, :);

3. Calculate the distance of each point in the cluster to
the centroid: d = ∥p − C( 𝑗 , :) ∥2

2 ;
if max(𝒅) > 𝑟 then

4. Increase the number of clusters by 1: 𝑘 = 𝑘 +1;
5. Perform k-means clustering again with the new
𝑘: [i,C] = kmeans(X, 𝑘 );

break;
end

end
6. Calculate silhouette values: s = silhouette(X, i);
7. Calculate average silhouette value: c(𝑘 − 1) = mean(s);

end
8. Find the optimal number of clusters: [:, �̂� ] = max(c);
9. Retain supports that satisfy (12) and (13);
Output: Estimated channel

step. In contrast, StOMP selects multiple columns in each
step based on a hard threshold and ensures that those sets of
columns contain the correct support with a higher probability
compared to OMP. In this way, it, however, adds a vagueness
to the support set identification.

To overcome this phenomenon, we introduce a modi-
fied Silhouette method [4] to estimate the number of path
and retain those are belong to the main lobe. We add to
conventional Silhouette method three constraints. The first
constraint bound the radius of the main lobe in each angular
direction. By this way, the K-means algorithm, which is
often used in conjunction with the Silhouette method, will
ignore cases where the distance from the cluster center to a
data point is greater than the width of the main lobe. Using
Silhouette method with the first constraint, we obtain the
number of clusters and choose the largest value in each clus-
ter as their main support. Let X = {X𝑘} be the estimated
support set after allying the first condition with each support
X𝑘 =

[
𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘

]
, 𝑘 = 𝑖 + 𝑁𝑏 ( 𝑗 − 1), where 𝑥𝑖 , 𝑦 𝑗 , and 𝑧𝑘

are the AOD, AOA and amplitude of that AOD-AOA pair,
respectively. To exclude a support that does not belong to the
main lobe, we look for supports that satisfy two following
conditions

X𝑘 =
{
𝑘

���� max
1≤𝑖≤𝑁𝑏

𝑧𝑘 for each 𝑗

}
(12)

X𝑘 = {𝑘 | 𝑧𝑘 > 𝜂} (13)

where 𝜂 is small positive constant. The second constraint
concerns the physical agreement of the estimates returned
by the StOMP algorithm. If multiple supports have the same
AOA, the algorithm will only retain the largest one. The
third constraint concerns magnitude of support whose are

in arbitrary position. If a support have magnitude smaller
than a small threshold, the algorithm will exclude it. The
modified Silhouette method is given by Algorithm 1.

4. Simulation and Discussion

We consider a wideband mmWave MIMO OFDM system,
where 𝑁𝑡 = 𝑁𝑟 = 16. The downlink channel includes one
LOS path and one NLOS path. It is modeled as [8] for sim-
ulation with 5000 realizations. In this work, our proposed
method is compared with the standard OMP and Simulta-
neous OMP (SOMP)[3]. We employ successful recovery
probability (SRP) and mean square error (MSE) as two in-
dicators to assess the estimation performance as

SRP =
number of successful trial

toal number of trial
, (14)

MSE =
∥H − Ĥ∥2

𝐹

∥H∥2
𝐹

. (15)

4.1 On the visual simulation results

The visual simulation results of the proposed methods are
given in Fig. 1. Fig 1b shows the channel reconstruction
ability when using only the DStOMP algorithm at a high
SNR level. In this case, undesirable supports degrade the
overall performance of the DStOMP algorithm due to (9),
especially in terms of channel amplitude. To preserve the
main support’s amplitude, LS should only be performed on
a single column of the sensing matrix. When it comes to
StOMP, the amplitude of the main support is shared with
different side supports. As a result, the channel amplitude
of the estimated highest peak is far different from the correct
amplitude. Fig. 1c shows the estimated beamspace channel
when using both the DStOMP algorithm and the modified
Silhouette method. Thanks to the ability to determine the
number of clusters using the modified Silhouette method and
physical rules, undesirable supports are eliminated, and the
final estimate retains only main supports.

4.2 Performance of proposed method under different con-
dition of 𝑁

This simulation evaluates the SRP and MSE of the three
methods when changing the number of 𝑁 while holding the
number of 𝐺. The simulation results are given in Fig. 2.
We observe that the two methods using multiple carriers
have a higher SRP than the standard OMP which uses only
a single carrier. It is worth noting that SOMP outperforms
our proposed method in the low SNR range (-10 to 0 dB).
However, it should be remembered that SOMP is a method
that requires prior knowledge of signal sparsity, which is an
informational advantage compared to the proposed method.
It can be said that the gap between the two methods is created
when Algorithm 1 is wrong in estimating the number of paths
that exist in the channel. As shown in Fig. 2, we can write
lim𝑁→∞ SRP = 1 since the noise present in y is white noise.
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Fig. 1 Visualization of beamspace channel with different estimation schemes
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Fig. 2 SRP and MSE performance of all method with 𝐺 = 5

Increasing 𝑁 only makes the power of noise in Eq. (5)
smaller and smaller. At SNR ranges from -10 to 10, the
MSEs of the methods show differences simply because their
SRPs are different. In this case, lower MSEs correspond
to higher SRP values. However, at SNR ranges from 15
to 20, the multi-carrier methods have near the same MSE.
This is caused by the fact that an atom on one sub-carrier
is essentially an alternate, rotated form of an atom with
the same index on another sub-carrier. Then, increasing
N does not decrease MSE because the projection of y[𝑛]
onto subspace spanned by support set with different 𝑁 is
essentially the same.

4.3 Performance of proposed method under different con-
dition of 𝐺

In this simulation, we evaluate the performance of the pro-
posed method when varying 𝐺 while keeping 𝑁 fixed. The
results of the two indicators are shown in Fig. 3. Similar
to the assessment in Sec. 4.2, increasing G also increases
performance in terms of SRP. This occurs because 𝐺 ap-
proaches infinity means transmit signals in all directions,
i.e, lim𝐺→∞

[
(Fx)⊤

]H (Fx)⊤ = I. This makes coefficients
𝑐𝑘 in (5) tend to form an identical version of the original
channel but amplified by a constant. Finally, it increases
the chance to select the exact main support. It is notewor-
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Fig. 3 SRP and MSE performance of all method with 𝑁 = 5

thy that as 𝐺 increases, the performance in terms of MSE
decreases. This happens because we estimate the channel
coefficients through LS. With the same noise static, a sys-
tem with a larger 𝐺, i.e., with more measurements, will give
a LS estimate with lower error. As 𝐺 increases to infin-
ity, the MSE is expected to not decrease to infinity since
the reconstructed channel is composed of quantized channel
parameters. In the range of high SNR and with the same
𝐺, the MSE of the proposed method and that of SOMP are
identical because they have the same channel coefficient es-
timation mechanism, i.e., projecting the received signal onto
subspace spanned by the same support set.

5. Conclusion

In this study, we have presented a novel approach for MIMO
mmWave channel estimation in a hybrid analog-digital ar-
chitecture. In contrast to earlier work, our approach provides
a practical solution with a distributed StOMP algorithm. To
reduce the ambiguity of the DStOMP algorithm, we intro-
duced a novel algorithm that estimates the number of paths
present in the channel using a modified Silhouette method.
Simulation results have shown that our proposed method,
without prior knowledge of signal sparsity, can overcome
the standard OMP method and achieve nearly the same per-
formance as the SOMP method.
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