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LETTER
Synchronization of canards in resistively and capacitively coupled
canard-generating Bonhoeffer–van der Pol oscillators

Kundan LAL DAS†, Nonmember, Munehisa SEKIKAWA†, Member, and Naohiko INABA††, Nonmember

SUMMARY This letter presents an investigation into the synchroniza-
tion of an autonomous system comprising two nearly identical canard-
generating Bonhoeffer–van der Pol (BVP) oscillators coupled via a resistor
and a capacitor in parallel. We first demonstrate via numerical simula-
tions that this system exhibits butterfly synchronization, i.e., a phase shift
between the canards in a weakly coupled system of nearly identical canard-
generating BVP oscillators. Furthermore, the butterfly synchronization in
the coupled system is observed experimentally.
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1. Introduction

Synchronization is a widespread phenomenon in nature, sci-
ence, and engineering [1]. In this letter, we numerically
investigate the occurrence of a special type of synchroniza-
tion that is referred to as “butterfly synchronization” [9] in
the autonomous system consisting of two nearly identical
canard-generating Bonhoeffer–van der Pol (BVP) oscillators
coupled via a resistor and a capacitor in parallel. In addi-
tion, we verify the occurrence of this synchronization via
experimental work.

In recent years, high-dimensional autonomous systems
that generate canards have attracted considerable research
interest [2]–[9]. In such systems, the synchronization of
canards can be observed. In previous works, the complete
and in-phase synchronization of canards in identical and
nearly identical canard-generating BVP oscillators coupled
via a resistor have been investigated [8], [9]. It has been
found that both complete and in-phase synchronization can
be observed across a wide range of coupling parameter val-
ues. However, in experimental work, it was found that both
the complete and in-phase synchronizations break when the
coupling parameter is even slightly decreased from the value
at which complete synchronization is observed. At lower
values of the coupling parameter, a special synchronization
phenomenon, which was termed “butterfly synchronization”,
was observed [9].
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Fig. 1 Two BVP oscillators coupled via a resistor and a capacitor in
parallel.

It was hypothesized that the appearance of butterfly syn-
chronization could be due to the noise in the electric circuit.
A non-autonomous system with two sinusoidal perturbations
with a moderate phase difference was then investigated, and
it was found that butterfly synchronization could be observed
numerically in this non-autonomous system that was subject
to perturbations [9]. This letter presents another system
in which butterfly synchronization can be observed numer-
ically. Here, we propose a system comprising two BVP
oscillators coupled via a capacitor and a resistor in parallel
(see Fig. 1). The capacitor in the system considered in this
study is of interest because we hypothesize that such a cir-
cuit inherently exhibits stray capacitance; it is thus of interest
to study the behavior of a system containing this coupling
element. The inherent stray capacitance in the circuit may
be sufficient to explain the discrepancy between the results
of numerical and experimental results observed in previous
work [9]. We find that butterfly synchronization can occur in
our proposed autonomous system when the system is char-
acterized by a low coupling conductance and a low coupling
capacitance. We also find that complete synchronization is
seen when the system is characterized by a high coupling
conductance. In addition, we successfully observe butterfly
synchronization experimentally.

2. Numerical analysis of the resistively and capacitively
coupled BVP oscillators with a mismatch in capaci-
tances

In this section, we discuss the synchronization of canards
that are generated by nearly identical coupled BVP oscilla-
tors. Figure 1 shows the circuit diagram of the system that
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we propose in this study; this system consists of two-coupled
BVP oscillators with a conductance 𝑔 and a capacitance 𝐶0.
We introduce a slight parameter mismatch between the two
oscillators to avoid an unintended complete synchroniza-
tion that may occur as a result of the finite precision of the
computations in the absence of such a mismatch. Further-
more, since it is difficult to construct qualitatively similar
elements with nonlinear conductance using diode arrays, a
10% parameter mismatch in the two capacitances 𝐶1 and
𝐶2 is introduced. This mismatch permits the results of the
numerical investigations to accurately represent the results
obtained experimentally.
The governing equations of the coupled circuits can be ex-
pressed by the following system of four autonomous ordinary
differential equations:



𝐶1
𝑑𝑣1

𝑑𝑡
= −𝑖𝑑1 + 𝑖1 +

(𝑣1 − 𝑣2)
𝑅𝑐

− 𝐶0
𝑑 (𝑣1 − 𝑣2)

𝑑𝑡
,

𝐿
𝑑𝑖1
𝑑𝑡

= 𝐸1 − 𝑣1 − 𝑖1𝑅,

𝐶2
𝑑𝑣2

𝑑𝑡
= −𝑖𝑑2 + 𝑖2 +

(𝑣1 − 𝑣2)
𝑅𝑐

+ 𝐶0
𝑑 (𝑣1 − 𝑣2)

𝑑𝑡
,

𝐿
𝑑𝑖2
𝑑𝑡

= 𝐸2 − 𝑣2 − 𝑖2𝑅.

(1)

Here, we utilize the following variable transformations:

𝑣1 =
√

𝑔1

𝑔3
𝑥1, 𝑣2 =

√
𝑔1

𝑔3
𝑥2, 𝑖1 = 𝑔1

√
𝑔1

𝑔3
𝑦1,

𝑖2 = 𝑔1

√
𝑔1

𝑔3
𝑦2, 𝑡 = 𝐿𝑔1𝜏, 𝐸1 =

√
𝑔1

𝑔3
𝐵1, 𝐸2 =

√
𝑔1

𝑔3
𝐵2,

𝑘 = 𝑔1𝑅, 𝜀1 =
𝐶1

𝐿𝑔2
1
, 𝜀2 =

𝐶2

𝐿𝑔2
1
, 𝜀0 =

𝐶0

𝐿𝑔2
1
, 𝛼 =

𝑔

𝑔1
.

(2)

Using these transformations, the governing equations can be
rewritten in a normalized form:



¤𝑥1 =
𝜀2 (𝑦1 + 𝑥1 − 𝑥3

1 − 𝛼(𝑥1 − 𝑥2))
𝜀1𝜀2 + 𝜀0 (𝜀1 + 𝜀2)

+
𝜀0 (𝑥1 + 𝑥2 + 𝑦1 + 𝑦2 − (𝑥3

1 + 𝑥3
2))

𝜀1𝜀2 + 𝜀0 (𝜀1 + 𝜀2)
,

¤𝑦1 = −𝑥1 − 𝑘𝑦1 + 𝐵1,

¤𝑥2 =
𝜀1 (𝑦2 + 𝑥2 − 𝑥3

2 + 𝛼(𝑥1 − 𝑥2))
𝜀1𝜀2 + 𝜀0 (𝜀1 + 𝜀2)

+

𝜀0 (𝑥1 + 𝑥2 + 𝑦1 + 𝑦2 − (𝑥3
1 + 𝑥3

2))
𝜀1𝜀2 + 𝜀0 (𝜀1 + 𝜀2)

,

¤𝑦2 = −𝑥2 − 𝑘𝑦2 + 𝐵2.

(3)
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Fig. 2 (a) Numerical results showing the almost-complete (pseudo-
complete) synchronization of canards for 𝛼 = 1.2. Trajectories projected
onto the (a.1) 𝑥1–𝑥2, (a.2) 𝑥1–𝑦1, and (a.3) 𝑥2–𝑦2 planes; (a.4) the time-
series waveform for 𝑥1 (blue) and 𝑥2 (green). (b) Numerical results showing 
the phase shift of canards for 𝛼 = 0.5. Trajectories projected onto the (b.1)
𝑥1–𝑥2, (b.2) 𝑥1–𝑦1, and (b.3) 𝑥2–𝑦2 planes; (b.4) the time-series wave-forms 
for 𝑥1 (blue) and 𝑥2 (green). (c) Numerical results showing the butterfly 
synchronization of canards for 𝛼 = 0.01. Trajectories projected
onto the (c.1) 𝑥1–𝑥2, (c.2) 𝑥1–𝑦1, and (c.3) 𝑥2–𝑦2 planes; (c.4) the time-
series waveforms for 𝑥1 (blue) and 𝑥2 (green) of the autonomous system
for 𝜀0=0.01.



3
LETTER

Here, 𝐵1 and 𝐵2, which are the parameters that contain 
information related to the DC bias voltages 𝐸1 and 𝐸2, re-
spectively, were both set to 0.4897. This parameter value 
was found to yield a canard in both oscillators. The pa-
rameters 𝜀1 and 𝜀2 describe the capacitors within the BVP 
oscillators. As mentioned above, a 10% parameter mismatch 
was introduced in the capacitances of the capacitors in the 
BVP oscillators; the actual values of the parameters describ-
ing the capacitors in the system in this work were 𝜀1 = 0.1, 
𝜀2 = 0.09, and 𝜀0= 0.01. We note that the values of these 
parameters (𝐵1, 𝐵2, 𝜀0, 𝜀1, and 𝜀2) are the same as those used 
in Ref. [9]. Furthermore, we note that 𝛼 is a parameter that 
corresponds to the conductance 𝑔; the parameter 𝑔 is used as 
the bifurcation parameter in this section. We also note that 
𝜀0 corresponds to the coupling capacitance 𝐶0.

For large values of 𝛼 (for example, 𝛼 = 1.2), the sys-
tem comprising two BVP oscillators coupled via a resistor 
and a capacitor in parallel exhibits almost-complete 
synchro-nization, as shown in Fig. 2(a). The trajectory in the 
𝑥𝑖–𝑦𝑖 plane for 𝑖 = 1, 2 shows a canard. However, for very 
small values of 𝛼 (for example, 𝛼 = 0.01), the phase 
difference between the two oscillators increases. As a result, 
butterfly synchronization occurs, as shown in Fig. 2(c). We 
also note that in the time-series of this system (with the 
capacitive coupling element), at this smaller value of 𝛼, the 
attractor is not smooth as observed in our previous work [9] 
and we notice that there are areas where the stagnation 
occurred as indicated by the arrows in Fig. 2(c.4). This may 
be due to the effect of the coupling capacitor.

In addition, for intermediate values of 𝛼 (for example, 
𝛼 = 0.5), the phase shift between the two oscillators appear 
as shown in Fig. 2(b) where the 𝑥1–𝑥2 plot starts to bloat and 
eventually results in butterfly synchronization after the 
value of 𝛼 is further decreased to 0.01 as described above.

In the next section, we present the results of circuit 
experiments on the system proposed here in order to verify 
the results of the numerical analysis.

3. Experimental study of two nearly identical canard-
generating coupled oscillators

In the circuit experiment, we first investigate the properties
of the system for large values of the coupling conductance
𝑔. The capacitor used to couple the two BVP oscillators
(placed in parallel with the resistor) has a capacitance of
10 pF. Similar to previous works [9], for large values of 𝑔,
when 𝑔 ' 445𝜇S (𝛼 ' 1.2), the oscillators exhibit an almost-
complete (pseudo-complete) synchronization state, as shown
in Fig. 3(a.1). Figures 3(a.2) and (a.3) show the attractors of
the canard shape projected onto the phase plane.

(a.1) (a.2)

(a.3) (a.4)

(b.1) (b.2)

(b.3) (b.4)

(c.1) (c.2)

(c.3) (c.4)

Fig. 3 Experimental measurements of the synchronized canards. The 
almost-complete (pseudo-complete) synchronization in the planes (a.1) 𝑣1–
𝑣2, (a.2) 𝑣1–𝑖1𝑅, and (a.3) 𝑣2–𝑖2𝑅; (a.4) the time-series waveforms of 𝑣1 
(upper trace) and 𝑣2 (lower trace) in a system with a coupling of 𝑔 = 445𝜇S 
and a small coupling capacitance of 𝐶0 = 10 pF. Phase shift of canards in 
the planes (b.1) 𝑣1–𝑣2, (b.2) 𝑣1–𝑖1𝑅, and (b.3) 𝑣2–𝑖2𝑅; (b.4) the time-series 
waveforms of 𝑣1 (upper trace) and 𝑣2 (lower trace) in a system with a 
coupling of 𝑔 = 100𝜇S and a small coupling capacitance of 𝐶0 = 10 pF. 
The butterfly synchronization in the planes (c.1) 𝑣1–𝑣2, (c.2) 𝑣1–𝑖1𝑅, and 
(c.3) 𝑣2–𝑖2𝑅; (c.4) the time-series waveforms of 𝑣1 (upper trace) and 𝑣2 
(lower trace) in a system with coupling described by a low conductance 𝑔 = 
0.425𝜇S and a small coupling capacitance 𝐶0 = 10 pF. The grid meshes 
represent 0.5 V/div in both the horizontal and vertical directions in figures 
(a.1), (a.2), (a.3), (b.1), (b.2), (b.3), (c.1), (c.2), and (c.3); the grid meshes 
represent 0.5 V/div and 100 µs/div in the vertical and horizontal directions, 
respectively, in figures (a.4). (b4), and (c.4).
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When the coupling parameter 𝛼, which represents the 
coupling conductance, is decreased to a very small value 
(for example, 0.425𝜇S) in the presence of a coupling capac-
itor, the phase difference between 𝑣1 and 𝑣2 can be clearly 
observed. At such a small conductance, the in-phase syn-
chronization of the two oscillators collapses, as shown in 
Fig. 3(c.1). Due to the shape of the Lissajous diagram of 
the synchronized attractor projected onto the 𝑣1–𝑣2 plane, 
this complex synchronization behavior has been referred to 
as the “butterfly synchronization” of canards [9]; this name 
reflects the shape of the attractors observed in the system. 
Our experimental results obtained here are in qualitatively 
agreement with the results obtained from the numerical sim-
ulations.

Also, for intermediate value of coupling conductance 
of 𝑔 ' 100𝜇S, the oscillators exhibit a phase shift, as shown 
in Fig. 3(b.1). Figures 3(b.2) and (b.3) show the attractors of 
the canard shape projected onto the phase plane. Behavior 
for the intermediate value of conductance is in agreement 
with the numerical simulation where the 𝑣1–𝑣2 plot starts to 
bloat indicating the phase shift occurrence which eventually 
results in butterfly synchronization upon further decrease in 
the coupling conductance as discussed above.

Conclusion

In this study, we discussed the synchronization of an au-
tonomous system consisting of two nearly identical canard-
generating BVP oscillators coupled via a resistor and a ca-
pacitor in parallel. We demonstrated via numerical sim-
ulations that butterfly synchronization can be observed in 
an autonomous system comprising nearly identical canard-
generating BVP oscillators for small values of the pa-
rameter corresponding to the coupling conductance (here, 
𝛼 = 0.01) and small values of the coupling capacitance 
(here, 𝜀0 = 0.01). Additionally, we carried out circuit exper-
iments and observed butterfly synchronization in two BVP 
oscillators coupled via a resistor with a high resistance and 
a capacitor with a low capacitance in parallel. It will be of 
interest to investigate the bifurcation phenomena that occur 
when the coupling strength is varied in the system proposed 
here.
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