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based on terminal second-order sliding mode 
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SUMMARY Considering the problem that the vector speed control 
system of permanent magnet synchronous motor (PMSM) is 
susceptible to uncertainties such as load disturbances, a model-free 
control strategy based on terminal second-order sliding mode (TSOSM-
MFC) is proposed. First, the mathematical model of PMSM is analysed 
and processed, and the corresponding ultra-local model of the system is 
summarised; then, the model-free terminal sliding mode speed 
controller is designed according to the ultra-local model of the system, 
and the chattering phenomenon in the system is suppressed by 
designing the second-order sliding mode reaching law (SOSMRL). 
Then, the sliding mode disturbance observer (SMDO) is designed to 
estimate the unknown part of the ultra-local model and compensate the 
speed loop to improve the robust performance of the system. Finally, 
the feasibility and effectiveness of the proposed control method are 
verified by simulation. 
key words: PMSM; Chattering; Sliding Mode; Model-Free Control. 

1. Introduction 

PMSMs are commonly utilised in various fields such as 
robotics, industrial production, and wind power 
generation due to their superior torque, power density, 
and energy conversion efficiency. However, PMSMs are 
complex systems that are strongly coupled and 
multivariable, making them susceptible to parameter and 
load disturbances [1-3]. Therefore, control algorithms 
that can improve the robustness of the speed control 
system have become a popular topic in motor speed 
control research. 

PMSM speed control systems typically employ 
proportional-integral controllers (PI). These controllers 
are easy to implement but require an accurate system 
model. They are highly sensitive to uncertainties in the 
actual system and do not provide high control accuracy 
under complex operating conditions [4]. To address these 
issues, scholars worldwide utilise modern control 
theories, including sliding mode control [5-6], model 
predictive control [7-8], model-free control (MFC) [9], 
and intelligent control [10-11]. MFC, proposed by 
Michel Fliess, is a robust control method for systems 
with unknown parameters and complex coupling 
structures [12]. Literature [13] proposes an adaptive 

model-free control approach by analysing the ultra-local 
model in model-free control. This approach adopts an 
adaptive law for online parameter tuning, which reduces 
the workload of related parameter tuning. The model-free 
control method applies to the PMSM speed control 
system by designing a model-free current controller to 
overcome the effects of parameter variations. Literature 
[14] utilised a sliding mode controller to substitute the PI 
controller in the model-free algorithm for achieving 
robust fault-tolerant control of the motor under 
degaussing faults. However, the analysis of the impact of 
external disturbances on the system was not conducted. 
In the literature [15], an extended state observer is used 
to estimate the unknown part of the ultra-local model, 
which is fed back into the speed loop control to improve 
the robustness of the system, but the design process of 
the observer is complex and cumbersome. 

Therefore, for the PMSM vector control system, this 
paper combines the terminal sliding mode control with 
the model-free control, and proposes a model-free speed 
controller based on the terminal second-order sliding 
mode to improve the robustness and speed of the system. 
Firstly, an ultra-local model of the speed loop is 
established based on the mathematical model of the 
motor. Then the non-singular fast terminal sliding mode 
surface is constructed according to the system error to 
ensure the system converges in finite time, and the 
second-order sliding mode reaching law is introduced to 
achieve the purpose of weakening the sliding mode 
chattering. Secondly, a sliding mode disturbance 
observer is constructed to estimate the unknown part of 
the ultra-local model, which is fed back into the speed 
loop, thus improving the robust performance of the 
system. Finally, the proposed control strategy is verified 
by simulation. The effectiveness of the proposed control 
strategy is verified by system simulation. 

2. Model of System 

In this paper, the mathematical model of surface-
mounted PMSM (  𝐿𝐿𝑑𝑑 =  𝐿𝐿𝑞𝑞 = 𝐿𝐿𝑠𝑠 ) is the object of 
research: 
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Where 𝑖𝑖𝑑𝑑 , 𝑖𝑖𝑞𝑞 , 𝑢𝑢𝑑𝑑 , 𝑢𝑢𝑞𝑞 ,  𝐿𝐿𝑑𝑑 ,  𝐿𝐿𝑞𝑞 represents for the stator 
current as well as stator voltage and stator inductance in d-
q coordinate system, separately, 𝑅𝑅  is the stator 
resistance, 𝜔𝜔𝑒𝑒 represents the electrical motor angular speed; 
𝜓𝜓𝑓𝑓 represents magnetic flux.  

The equation of motion for SPMSM can be expressed 
as: 

d 1.5m q f L mpi T B
dt J J J
ω ϕ ω

= − −  (2) 

Where 𝑇𝑇𝑒𝑒 , 𝑇𝑇𝐿𝐿 , 𝑝𝑝 , 𝜔𝜔𝑚𝑚 ,  𝐵𝐵  and 𝐽𝐽  are the electromagnetic 
torque, load torque, number of pole pairs, mechanical 
angular speed, damping coefficient and rotational inertia 
respectively. When internal and external disturbances are 
considered, Eq. (2) is rewritten as: 

   ( ) ( ) ( )d m
q ma a i b b c c

dt
ω ω= + ∆ − + ∆ − + ∆  (3) 

Where 𝑎𝑎 = 1.5𝑝𝑝𝜓𝜓𝑓𝑓 𝐽𝐽⁄ ; 𝑏𝑏 = 𝐵𝐵 𝐽𝐽⁄ ;  𝑐𝑐 = 𝑇𝑇𝐿𝐿 𝐽𝐽⁄ ; Δ𝑎𝑎 =
1.5𝑝𝑝Δ𝜓𝜓𝑓𝑓 Δ𝐽𝐽⁄ , Δ𝑏𝑏 = Δ𝐵𝐵 Δ𝐽𝐽⁄ , Δ𝑐𝑐 = Δ𝑇𝑇𝐿𝐿 Δ𝐽𝐽⁄  represents the 
uptake of the motor parameters. 

3. Design of TSOSM-MFC 

3.1 Speed loop ultra-local model 
For single-input-output nonlinear control systems, no 

matter how complex their mathematical models are, 
these can be represented by traditional ultra-local models 
as: 

( ) ( )vy g x u
y x

α = +


=
 (4) 

Where 𝑦𝑦(𝑣𝑣) is a 𝑣𝑣-order derivative of 𝑦𝑦, 𝑣𝑣 = 1; 𝑔𝑔(𝑥𝑥) is 
the unknown of the system; 𝛼𝛼 is a constant. Based on the 
principle of the new ultra-local model, the 𝑔𝑔(𝑥𝑥) part is 
further decomposition [13]: 

( )g x x Fβ= +  (5) 

Where 𝛽𝛽  is a constant; 𝐹𝐹  is the system disturbance. 
Substituting Eq. (5) into Eq. (4) gives: 

x u x Fα β= + +  (6) 

Combining Eq. (3) extends the equations of motion of 
the PMSM to a new ultra-local model: 

d m
q mF i

dt
ω α βω= + +  (7) 

Where 𝛼𝛼 = 1.5𝑝𝑝𝜓𝜓𝑓𝑓 𝐽𝐽⁄  , 𝛽𝛽 = −𝐵𝐵 𝐽𝐽⁄ , 𝐹𝐹 = 𝛥𝛥𝛥𝛥𝑖𝑖𝑞𝑞 −

𝛥𝛥𝛥𝛥𝜔𝜔𝑚𝑚 − 𝑐𝑐 − 𝛥𝛥𝛥𝛥. 
3.2 Design of TSOSM-MFC 

Based on Eq. (7), Eq. (8) is designed: 

   m s
q

F ui βω
α

− − +
=  (8) 

Where 𝑢𝑢𝑠𝑠 is the control law. Define system state error: 
*

m me ω ω= −  (9) 

Where 𝜔𝜔∗
𝑚𝑚  is the reference mechanical angular speed. 

Combined Eq. (7), Eq. (8) and Eq. (9) gives: 

se u= −  (10) 

To ensure that the system state error converges to 0 in 
finite time, the design of the non-singular fast terminal 
sliding mode surface for: 

( )1 2

g
c k

ds edt edt eλ λ= + +∫ ∫  (11) 

Where 𝜆𝜆1  and 𝜆𝜆2  are constant; 𝑔𝑔 , 𝑐𝑐 , 𝑘𝑘 , 𝑑𝑑  are odd 
integers; 𝑔𝑔

𝑐𝑐
> 𝑘𝑘

𝑑𝑑
, 1 < 𝑘𝑘

𝑑𝑑
< 2. The derivation of Eq. (11) is 

obtained: 

( )
1

1
1 2

g
c k

dg ks e e edt e e
c d

λ λ
−

−
= + +∫   (12) 

In order to allow the state variables of the control 
system to enter the sliding mode, the second-order 
sliding mode reaching control law is designed as [16]: 

( ) ( )
1
21 2s s sign s sign s dt Fϑ ϑ= − − +∫  (13) 

Where 𝜗𝜗1, 𝜗𝜗2 are constant. 
Theorem 1 When   𝜗𝜗1 > 0  and  𝜗𝜗2 > 0  , the second 

order sliding mode reaching law can converge in finite 
time to 0 [16]. Therefore, when �𝐹̇𝐹� ≤ 𝛾𝛾, then: 

( )
1

3 2
1 1

2 2
1 1

  8
2

4
4 8

ϑ

ϑ ϑ γ
ϑ

ϑ ϑ






>

−
>

−

+  (14) 

When the state of the system enters the sliding mode, 
i.e: 𝑠𝑠 = 𝑠̇𝑠 = 0, Combined Eq. (12), Eq. (13) and Eq. (3) 
lead to: 

( )

( ) ( )

12*
1

2

1
21 2

1 1
gk
cdq m

d gi e edt F
k c

s sign s sign s dt

λ βω
α λ

ϑ ϑ

−−  
= + − −     

+ + 


∫

∫
 (15) 

Where 𝑖𝑖∗𝑞𝑞  is the reference q axis current. To prove the 
stability of the Eq. (15), the Lyapunov function is used as: 
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21
2

V s=  (16) 

The derivation of Eq. (16) is obtained: 

( )

( ) ( )

1 1
1 2
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22 1 2

31
22 1 2

g k
c d

k
d

k
d

V s s

g ks e edt e e e
c d

ks e s sign s sign s dt
d

k e s s
d

λ λ

λ ϑ ϑ

λ ϑ ϑ

− −

−

−

= ⋅

 
= + + 

  

 = − −  

 ≤ − −  

∫

∫







 (17) 

Due to 1 < 𝑘𝑘
𝑑𝑑

< 2, then 0 < 𝑘𝑘
𝑑𝑑
− 1 < 1; Due to 𝑘𝑘 and 

𝑑𝑑  are positively odd, then 𝑒𝑒
𝑘𝑘
𝑑𝑑−1 > 0 , Then Eq. (17) is 

rewritten as: 
3
21 2V s sϑ ϑ≤ − −  (18) 

According to Eq. (18), when 𝜗𝜗1, 𝜗𝜗2  satisfy Eq. (14), 
the non-singular fast terminal sliding mode control based 
on second order sliding mode reaching law converges to 
0 in finite time.  

To prove that  𝜗𝜗1 and  𝜗𝜗2  satisfy Eq. (14), the class of 
quadratic Liapunov functions is chosen as [17]: 

( ), = TV s κ Η ΖΗ  (19) 

Where: 
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( )
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2 1 1
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2

T
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Z

s dt F
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ϑ ϑ ϑ
ϑ
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
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


 
=  

  −

∫
 (20) 

Where 𝑍𝑍 is the positive definite symmetric matrix. The 
derivation of Eq. (19) is obtained: 

( )

( )
T

T

T 2 2

T 2 T 2

T 2

, =2
1 2 2

1 2 2

1 2 2

1

T T

T T

T T T

T T T

V s H ZH

H D FE ZH
s

H D ZH FE ZH s F
s

H D ZH FE ZH H P PH F
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H D Z ZD P P ZEE Z H
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κ

γ

γ

γ
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 ≤ + + −  

 = + + −  

 ≤ + + + 

 



 

 

 

 

 

 
 

(21) 

 

Where: 

[ ]
[ ]

( )

1

2

1 1
2 2

0

0 1
 1 0

1

T

D

E
P

F s F

H DH EF
s

ϑ

ϑ

  −  =  
−  


=

 =

 =



= +




 



 

 (22) 

Let be 𝐺𝐺 = −(𝐷𝐷𝑇𝑇𝑍𝑍 + 𝑍𝑍𝑍𝑍 + 𝛾𝛾2𝑃𝑃𝑇𝑇𝑃𝑃 + 𝑍𝑍𝑍𝑍𝐸𝐸𝑇𝑇𝑍𝑍) , then 
𝑉̇𝑉(𝑠𝑠,𝜅𝜅) ≤ − 1

�|𝑠𝑠|
𝐻𝐻𝑇𝑇𝐺𝐺𝐺𝐺, at which point it is obtained: 

3 2 2
1 1 1 12

1 2

2
1 1 1

2 4 2
2

2 2

G

ϑ ϑ ϑ ϑϑ ϑ γ

ϑ ϑ ϑ

 −
+ − − 

 =
 − −
  

 (23) 

If 𝐺𝐺 > 0 , then 𝑉̇𝑉(𝑠𝑠,𝜅𝜅) < 0. From the Shur 
complementary property, we get that 𝐺𝐺  is a positive 
definite symmetric matrix when  𝜗𝜗1 and  𝜗𝜗2   satisfy Eq. 
(14). The use of Theorem 1 it is known that the second 
order sliding mode reaching law can converge to 0 in 
finite time. 
3.3 Design of an SMDO 

For Eq. (7) construct SMDO as: 

ˆd ˆ ˆ

ˆd

m
q m smo

smo

F i u
dt

F ku
dt

ω α βω = + + +

 =

 (24) 

Where 𝜔𝜔�𝑚𝑚  , 𝐹𝐹�  are the estimates of the corresponding 
values, respectively. 𝑘𝑘 is constant and 𝑢𝑢𝑠𝑠𝑚𝑚𝑚𝑚 is the SMDO 
output value. Combining Eqs. (7) and (24), the error 
dynamic equation of the observer can be obtained as: 

( )

m m smo

smo

e F e u

F ku f t

ω ωβ = + +


= −









 (25) 

Where 𝑓𝑓(𝑡𝑡)  as the rate of change of 𝐹𝐹 . 𝐹𝐹� = 𝐹𝐹� − 𝐹𝐹 , 
𝑒𝑒𝜔𝜔𝜔𝜔 = 𝜔𝜔𝑚𝑚� − 𝜔𝜔𝑚𝑚. 
The sliding mode surface is selected as: 

1 ms eω=  (26) 

The derivation of Eq. (26) is obtained: 

1 1m smos e F s uω β= = + +

 
 (27) 

To effectively suppress the chattering and reduce the 
convergence time, the constant reaching law is chosen as: 
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( )11 ls n ss ig−=  (28) 

Where 𝑙𝑙 is sliding mode gain. Combined Eq. (27) and Eq. 
(28), and consider 𝐹𝐹� as a disturbance of 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠 is obtained: 

( )11smou ss l ign sβ= − −  (29) 

The Lyapunov function is chosen: 

2
1 1

1
2

V s=  (30) 

The derivation of Eq. (30) is obtained: 

( )

1 1 1

1

1 1

1 1

m smo

V s s

s

s F lsign s

F s

F u

s

e

l

ωβ

= ⋅

 

≤

+ +

−

=  
 =  

−











 (31) 

To ensure that 𝑉̇𝑉1 ≤ 0, 𝑙𝑙 should be satisfied: 

l F≥   (32) 

From Eq. (32), 𝑠𝑠1 is converging asymptotically to 0, 
i.e., 𝑒̇𝑒𝜔𝜔𝜔𝜔 = 𝑒𝑒𝜔𝜔𝜔𝜔 = 0. At this point, Eq. (25) is rewritten 
as follows: 

( )

smo

smo

F u

F ku f t

 = −


= −







 (33) 

The Eq. (33) is rewritten as: 

( ) 0F kF f t+ + =

   (34) 

The solution to Eq. (34) is: 

( )e ( )e dkt ktF C f t t−= + ∫  (35) 

Where 𝐶𝐶 is a constant. When 𝑘𝑘>0, 𝐹𝐹� converges to 0. By 
taking  𝐹𝐹� into Eq. (15), the expression of 𝑖𝑖∗𝑞𝑞 is rewritten 
as: 

( )

( ) ( )

12*
1

2

1
21 2

1 ˆ1
gk
cdq m

d gi e edt F
k c

s sign s sign s dt

λ βω
α λ

ϑ ϑ

−−  
= + − −     

+ + 


∫

∫
 (36) 

4. Simulation 

The simulation model of the SPMSM-driven motor is 
built in the MATLAB2022a/Simulink environment, the 
system parameters are: 𝑅𝑅 = 1.124 𝛺𝛺, 𝜓𝜓𝑓𝑓 = 0.36 𝑊𝑊𝑊𝑊, 
 𝐿𝐿𝑠𝑠 = 0.00219 H, 𝑝𝑝 = 10 ,  𝐽𝐽 = 0.0246𝑘𝑘𝑘𝑘 · 𝑚𝑚2 , 𝐵𝐵 =
0.001 𝑁𝑁 · 𝑚𝑚2.  In this paper, PI, Terminal Sliding Mode 
Model-Free Control (TSM-MFC) and TSOSM-MFC are 

simulated and compared to verify the effectiveness of the 
proposed strategy, and each control parameter is 
respectively: PI: 𝐾𝐾𝑝𝑝 = 0.15,  𝐾𝐾𝑖𝑖 = 10; TSM-MFC: 𝜆𝜆1 =
0.01, 𝜆𝜆2 = 5000, 𝑔𝑔 = 7, 𝑐𝑐 = 3 , 𝑘𝑘 = 5, 𝑑𝑑 = 3, 𝑙𝑙 =
5000, 𝑘𝑘 = 100, 𝜀𝜀 = 0.002, 𝑞𝑞 = 300; TSOSM-MFC: 
𝜆𝜆1 = 0.01, 𝜆𝜆2 = 15000, 𝑔𝑔 = 7, 𝑐𝑐 = 3 , 𝑘𝑘 = 5, 𝑑𝑑 = 3, 
𝑙𝑙 = 5000, 𝑘𝑘 = 1000, 𝜗𝜗1 = 2.1,𝜗𝜗2 = 3000. 

The system is started with no load, the initial given 
speed is 400 Rpm, at 0.1s the load increases abruptly 
from 0 N·m to 30 N·m, at 0.2s the speed rises to 600 
Rpm, at 0.3s the load becomes 0 N·m, at 0.4s the speed 
becomes 300 Rpm and the results are shown in Figs. 1, 2 
and 3. Based on Fig. 1 and Fig. 2, it is clear that the 
speed waveform of the PI controller has a large amount 
of overshoot in both the system start-up, speed change 
and disturbance change phases, which are 72 Rpm, 33 
Rpm and 27.5 Rpm, respectively. Compared with the PI, 
the TSM-MFC has basically no starting overshoot, and 
due to the combination of the SMC and the MFC, the 
amount of disturbance is feed-forward compensated, 
which makes it better able to cope with disturbance 
changes, and its overshoot in the disturbance change 
phase is 12 Rpm. Compared with the TSM-MFC, the 
TSOSM-MFC has the smallest overshoot of 4.7 Rpm in 
response to the disturbance change and the smallest time 
to recover to the steady state phase, thus it can be seen 
that it not only has the strongest anti-disturbance 
capability but also has the fastest response speed. 

 
Fig. 1 Speed response at 400 Rpm. 
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Fig. 2 Speed response at 600 Rpm. 

 

Fig. 3 Speed response at 300 Rpm. 

According to Fig. 3, when the system speed is reduced 
to 300 Rpm and the system is running to a stable state, 
the speed fluctuations of PI and TSM-MFC are basically 
the same, compared with the previous two control 
strategies, TSOSM-MFC greatly weakened the sliding 
mode chattering due to the introduction of the second-
order sliding mode control law, which makes its speed 
fluctuation the smallest, that is to say, its control 
accuracy is the highest. 

5. Conclusions 

For the SPMSM speed control system, a TSOSM-
MFC is proposed in this paper, which ensures the finite 
time convergence of the system state. And the simulation 
comparison with PI, TSM-MFC proves that the method 
is not only robust and fast response speed, but also can 

significantly reduce chattering and improve of the 
operational quality of the system. 
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