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Integrated Path Planning, Spectrum and Power Allocation for
Multi-UAV via Deep Reinforcement Learning∗

Hongbin ZHANG†, Ao ZHAN†a), Jing HAN††, Chengyu WU†, Nonmembers, and Zhengqiang WANG†††, Member

SUMMARY The application of deep reinforcement learning(DRL) has
become a hot research topic in unmanned aerial vehicle (UAV) path plan-
ning and resource allocation. However, current DRL methods do not con-
sider coordination among spectrum, path and power, leading to a waste
of spectrum resources. A coordinated routing and resource allocation Q
network(CRRQN) algorithm with low computing complexity in multiple
UAVs scenarios is proposed, and a co-optimization module is proposed to
enhance coordination among path planning, spectrum and power allocation
in CRRQN by designing their reward functions. Moreover, double deep
Q network(DDQN) is employed to guarantee its stability. The simulation
shows that the CRRQN algorithm reduces the flight time by about 4% and
improves the channel capacity by about 15% compared to the existing al-
gorithms. The running time per test epoch of CRRQN reduces by about
35%.
key words: Multi-UAVs, path planning, resource allocation, deep rein-
forcement learning, joint optimization

1. Introduction

With the rapid development of wireless communication
technology, multi-unmanned aerial vehicles (multi-UAVs)
systems have shown great potential in both military and civil
sectors[1]. Path planning and resource allocation are key
factors to ensure effective communication and mission ex-
ecution in these systems. Traditional methods have been
widely used to solve these issues[2][3]. However, these
methods typically depend on precise mathematical models
and ideal assumptions, making them inefficient in large-
scale or dynamically changing environments.

With the rise of Deep Reinforcement Learning (DRL)
techniques, novel perspectives are proposed for solving
these complex problems. The issue of deep reinforcement
learning-based UAV-assisted communication trajectory de-
sign and resource allocation in a single UAV scenario is
explored in [4]. Some DRL based works consider multi-
UAV scenarios, optimizing paths and resource allocation,
respectively. In [5], the communication capability of UAVs
is enhanced by using a simulated annealing algorithm for
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path planning and then using a double Deep Q Network
(DDQN) for resource allocation. In [6], a real-time dynamic
solution is proposed that utilizes DRL for UAV path plan-
ning and task allocation respectively, to reduce latency and
improve decision quality in resource-constrained environ-
ments. However, these methods are typically inefficient in
large-scale or dynamically changing environments.

In [7], a DRL-based dynamic trajectory control algo-
rithm is proposed to minimize user equipment (UE) energy
consumption by optimizing user associations, resource al-
location, and UAV trajectories. In [8], a DRL-based trajec-
tory design and resource allocation algorithm is proposed to
maximize the overall system utility of multi-UAV networks.
None of these works consider spectrum allocation. How-
ever, spectrum allocation is crucial for maximizing wireless
efficiency and minimizing interference.

This letter presents a novel coordinated routing and
resource allocation Q-network (CRRQN) algorithm with
low computing complexity in multi-UAVs scenarios. CR-
RQN employs DDQN to ensure stability by reducing over-
estimation bias in Q-value updates. We also propose a
co-optimization module, and its joint optimization reward
functions consider both path distance and spectrum inter-
ference, improving the coordination among path planning,
spectrum and power allocation for multi-UAVs performing
tasks. Simulation shows that the CRRQN reduces the flight
time by about 4% and improves the channel capacity by
about 15% compared with the separated optimization algo-
rithm in some scenarios with many UAVs. The running time
per test epoch of CRRQN reduces by about 35%.

2. System model

2.1 Flight model

The flight scenario of the UAVs is shown in Fig.1,
where an {M ∗ M} square area is randomly distributed with
obstacles such as buildings and trees. A base station is set
up at the center of the area for perform the proposed train-
ing learning process. A number L of UAVs start from the
same starting point and fly to their respective random desti-
nations. These UAVs are required to fly in one of the eight
predefined discrete flight directions while satisfying specific
cornering constraints [9]. The UAVs perform their tasks in
consecutive time slots denoted as t, t ∈ {1, 2, ...,T }, and the
total time slot is denoted as T . Each UAV forms a commu-
nication link with three neighboring UAVs, and a total of U
communication links.
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Fig. 1 UAV flight scenario

2.2 Path loss model

To simulate the communication environment more re-
alistically, we consider the effect of path loss links, and the
relationship between received power and transmitted power
can be expressed as follows

PR,u = PT,u − PLu (1)

where PR,u denotes received power, PT,u denotes transmit
power and PLu denotes path loss.

The communication link between UAVs is dominated
by line-of-sight(LOS) propagation and determined by dis-
tance[10]. It can be expressed as

PLu = 20 log10

(
d
d0

)
+ 10 · β · log10(d) + X0 (2)

where β is the path loss exponent, the distance d represents
the straight line propagation distance between two UAVs,
the reference distance d0 is used for normalization, and X0
adjusts for link-specific loss.

2.3 Communication model

In this letter, we divide the total bandwidth W equally
into L orthogonal sub-bands. These sub-bands are occupied
by the communication links between L UAVs and the base
station. To improve the efficiency of using limited spectrum
resources, each inter-UAV communication link is allowed to
reuse one uplink spectrum. Combined with the Shannon-
Hartley theorem, the communication capacity of the u-th
link at time t can be expressed as

Cu
t = W log2

(
1 +

PT,ugU,u

σ2 + Iu
t

)
(3)

where W is the bandwidth, and σ2 represents the noise
power. The transmit power is denoted by PT,u. The channel
gain gU,u depends on factors such as distance and the prop-
agation environment. The interference power Iu

t includes
contributions from other links and environmental factors. It
can be expressed as follows

Iu
t =

∑
i,u

PT,ig̃U,u (4)

where g̃U,u denotes the interference power gain of links
sharing the same spectrum resource.

The optimization goal is to minimize the flight time and
maximize the sum capacity of multi-UAVs.The optimization
goal is limited by a series of constraints, including path plan-
ning for UAVs to effectively avoid obstacles while adhering
to fixed flight altitude and speed, as well as maximizing sys-
tem capacity through precise spectrum and power alloca-
tion, while also considering the impact of mutual interfer-
ence between drones on communication links.We propose a

reinforcement learning framework to address this optimiza-
tion issue.

3. Reinforcement Learning Framework

This section first introduces the three fundamental ele-
ments of DRL, including state, action, and reward, and then
describes the CRRQN framework.

3.1 RL elements

State The state is defined as a collection of parameters at
time step t, which includes flight path position information
and communication link state information. The state space
vector can be expressed as

st = {pi
t,D

i
t, d

i,Di
obs,t, I

u
t ,C

u
t ,Z

u
t } (5)

where pi
t represents the position of UAV i at time t, di de-

notes the position of the destination corresponding to UAV
i, Di

obs,t denotes the distance between UAV i and the nearest
obstacle, Iu

t denotes the interference power, Cu
t denotes the

channel capacity and Zu
t represents the remaining transmis-

sion time.
Action The action space A defines the possible actions for
agents. In this letter, these actions include the selection of
discretized flight direction, spectrum, and power. The flight
directions are divided into eight basic directions, and the
agent selects the next action based on the current Q-value.

Spectrum selection involves the agent choosing the
reused spectrum sub-band to send its data. In addition, the
agent needs to select a discretized power level P that is
discretized into four levels to balance the transmission ef-
ficiency and interference limitations, while maintaining pol-
icy diversity and adaptability.
Reward The reward functions include the efficiency of
flight and communication, we consider the following. Rpath
denotes the reward of path planning, defined as

Rpath =

L∑
i=1

 κ1

∥pi
t − di∥

−
κ2

Di
obs,t

 (6)

where ∥pi
t−di∥ denotes from UAV i to its destination, κ1 and

κ2 is weighting parameters. The Rpath goal is to minimize the
distance of the UAV to reach the destination and to consider
the distance to the obstacles when planning the path.

Rpower is a reward for power allocation and can be de-
fined as

Rpower =

U∑
j=1

(
η1 ·C

j
t − η2 · I

j
t

)
(7)

where η1, η2 are weighting parameters, and the power al-
location reward goal is to maximize channel capacity and
minimize interference.

Rspec represents the reward for spectrum allocation,
only when the selected channel is idle and data is sent within
the maximum allowable transmission delay Zu

0 , is it consid-
ered successful,

Rspec = −(Zu
0 − Zu

t ) (8)
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Considering high interference situations may have an
impact on the safety of the UAV, we propose the interactive
impact of path planning and interference power as Rp_int.

Rp_int = −

L∑
i=1

U∑
j=1

(
ϵ · ∥pi

t − di∥ · I j
t

)
(9)

where ϵ is a weight parameter. The goal is to minimize
the product of the distance from the UAV to its destination
and the interference. In this way, the interference of the
communication link is taken into account in path planning
to avoid high interference paths.

Therefore, the joint reward function at time slot t is

Rt = δ1 · Rpath + δ2 · Rpower + δ3 · Rspec + δ4 · Rp_int (10)

where δ1, δ2 , δ3 and δ4 are weighting parameters.

3.2 CRRQN framework

In this letter, we propose a CRRQN algorithm for com-
plex multi-UAV environments as shown in Fig. 2.
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Fig. 2 CRRQN Framework

The UAV network interacts with the environment to ob-
tain the state s(t). Using the actor network Q1, it selects the
optimal action a(t) for the current state to guide UAV oper-
ations. The obtained s(t) and a(t) are then input into the co-
optimization module, which includes four specific reward
functions. Among these, the joint optimization reward func-
tion correlates the path deviation distance of the target point
with the interference level. This minimizes the product of
the UAV’s distance to the destination and the interference,
thus obtaining the reward r(t) and transitioning the system
to a new state s(t + 1).

The experiences of these interactions [s(t), a(t), r(t), s(t+
1)] are stored in a memory buffer, and the experiences ac-
cumulated in this buffer will be randomly sampled to form
small batches of data for training. At each training step, a
mini-batch of experiences [s(t), a(t)] is randomly selected
from memory. This small batch is crucial to breaking the
correlation between successive experiences and stabilizing
the learning process. Next, the actor network predicts the
Q1-value Q(s(t), a(t); θ) for each action in a given state, and
the critic network evaluates these actions by computing the
Q2-values.The loss function is calculated based on the Q1-
value and the Q2-value,

Loss(θ) =
(
r(t) + γQ

(
s(t + 1),max

a′
Q′ (s(t + 1), a′(t); θ) ; θ′

)
− Q (s(t), a(t); θ)

)2

(11)

where γ is the discount factor. θ and θ′ are the weight pa-
rameters of the actor network and critic network, respec-
tively. The gradient is computed based on the loss and back-
propagated through the actor network. The weights of the
actor and critic networks are updated accordingly to min-
imize the loss. The updated actor network generates im-
proved strategies to guide the UAV’s movements. This net-
work learns continuously to maximize the expected cumu-
lative reward, leading to more efficient path planning and
resource allocation over time.

4. Simulation

In this letter, a 20 × 20 grid simulation environment
is constructed with each grid cell representing 0.25 km to
simulate a 5 km × 5 km UAV operation space. Twenty ob-
stacles are randomly arranged in the area, and each UAV
departs from the map coordinates (1,1) with the destination
randomly generated on the map. The UAVs fly at a fixed
altitude and speed. We simulate using RTX 3090 and AMD
R9 5950X, the training cycle is divided into 100 epochs, and
each epoch has 2000 time steps.The detailed parameter set-
tings are shown in Table 1.

Table 1 Parameters setting

Parameters Value
L {8, 16, 24, 32, 40}
X0 5dB
β 3.5

δ1, δ2, δ3, δ4 0.2,0.2,0.2,0.4
η1, η2 1.0,0.5
ϵ 0.2
d0 1m

PT,u {10,15,20,25}dBm
σ2 -100dB
γ 0.6

4.1 Simulation results

This letter focuses on the average total capacity and
average flight duration of different algorithms for different
numbers of UAVs. This letter compares the proposed CR-
RQN with three baseline methods derived from reference
[5]: The separated optimization algorithm performs sequen-
tial optimization, first applying simulated annealing for path
planning and then using reinforcement learning for resource
allocation, allowing for separated optimization of route and
resource allocation tasks. The PSO-based method refines a
candidate allocation strategy by assessing its quality and ad-
justing based on the best-known solutions from neighboring
particles to converge efficiently. In the random allocation
strategy, each agent randomly selects a communication sub-
band and transmits power at each time step.

In Fig.3, the flight time is slightly longer than the sep-
arated optimization algorithm when the number of UAVs is
small is because CRRQN requires more computational re-
sources in the initial phase to coordinate and optimize the
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Fig. 3 Average flight time of different algorithms
global task allocation. As the number of UAVs increases,
CRRQN can utilize resources more efficiently and reduce
redundant flights, reducing the flight time by about 4%.

In Fig.4, the CRRQN also shows its superiority, espe-
cially when dealing with a large number of UAVs, it can
allocate tasks more reasonably, improving the channel ca-
pacity by about 15%.
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Fig. 4 Average sum capacity of different algorithms
To visualize the results of the path planning more, Fig.5

shows the flight trajectories of four UAVs guided by the CR-
RQN, where the black squares represent obstacles and the
different colored lines indicate the path of each UAV. The
interference power significantly affects the flight trajecto-
ries, this adjustment may cause the UAVs to choose not the
shortest path, but the path that maximizes the overall reward
according to the joint reward function, even if this requires
bypassing obstacles or increasing the flight distance.

starting 

point
destination obstacle

starting 

point
destination obstacle

Fig. 5 UAV flight paths
When the number of UAVs is 32, the total training time

takes about 16 hours, and the specific test time complexity
for the four methods is shown in Table 2. The CRRQN si-
multaneously considers path planning, spectrum and power
allocation, resulting in a shorter testing time. On the other

hand, the separated optimization algorithm decomposes the
problem into several sub-problems, increasing the complex-
ity and thus slightly extending the testing time. PSO-based
methods have a relatively long testing time due to evaluat-
ing and updating a large number of particles. Random al-
gorithms have the shortest testing time, but the optimization
results may be poor.

Table 2 The test time complexity

Algorithms Test time
Random 0.047s

PSO_based 0.706s
Separated optimization algorithm 0.459s

CRRQN 0.296s

4.2 Parameter analysis and ablation experiment

To achieve optimal performance of the model, param-
eter settings are crucial, so we conduct detailed analyses on
the parameters.The detailed analyses of η1 and η2 are shown
in Fig.6 (a). By adjusting η1 (0.5, 1.0, 1.5, 2.0) and η2 (0.3,
0.5, 1.0), we observe that the combination of η1 = 1.0 and
η2 = 0.5 provides the best balance. As shown in Fig.6 (b),
for ε, we compare the effect of different parameter values on
the system performance. Taken together when ε = 0.2, the
results are optimal.
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Fig. 6 η1 η2 and ε detailed analysis

To further investigate the effectiveness of each re-
ward function and the effect of the weighting parame-
ters on the performance, we perform detailed analysis by
varying the weighting parameters δ1, δ2, δ3 and δ4. We
conduct experiments by varying each parameter between
[0,0.1,0.2,0.3,0.4,0.5,0.6], while evenly distributing the re-
maining three. The results, shown in Fig.7 (a) and Fig.7
(b), indicate that different parameter values significantly af-
fect performance. However, overemphasizing any single pa-
rameter leads to a decline in the complementary metric.This
analysis identifies δ1 = 0.2, δ2 = 0.2, δ3 = 0.2, δ4 = 0.4 as
the optimal configuration, balancing flight time and channel
capacity.
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Fig. 7 Reward weighting parameters
To verify the validity of the four reward functions, we

conduct an ablation experiment in the above experiment by
setting the weighting parameters of each reward to zero. As
shown in Fig. 7, removing any reward significantly leads to
longer average flight time and lower average sum capacity.
This confirms that each reward function plays a crucial role
in improving flight efficiency and communication quality.

5. Conslusion

This letter proposes the CRRQN based on DDQN with
low computing complexity. It improves the coordination of
multi-UAVs through co-optimization modules, significantly
reducing flight time and increasing channel capacity. Exper-
imental results show that the CRRQN reduces the flight time
by 4% and increases the channel capacity by 15% compared
to the separated optimization algorithm.
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