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Bisection Method Assisted Affine Projection Algorithm in
ADMM-LP Decoding of LDPC Codes

Rui CHENG†, Yun JIANG†, Qinglin ZHANG†, and Qiaoqiao XIA†a), Nonmembers

SUMMARY Many researchers have proposed optimization methods to
reduce the computational complexity of the Euclidean projection onto check
polytope in the alternating direction method of multipliers (ADMM) decod-
ing for Low-Density Parity-Check (LDPC) codes. Existing the sparse a�ne
projection algorithm (SAPA) projects the vector to be projected onto an
𝜒-dimension a�ne hull and the dimension𝜒 is �xed, resulting in dete-
riorating decoding performance. In this letter, bisection method assisted
a�ne projection algorithm is proposed to determine the correct projection
dimension for each the vector to be projected with the bisection method
iterative algorithm. Simulation results show that the proposed algorithm
can improve the accuracy of projection results by 68.2%. The FER perfor-
mance of the proposed algorithm is almost the same as that of the exact
projection algorithm, and compared with the sparse a�ne projection algo-
rithm (SAPA), it can improve the FER performance by 0.14dB as well as
save average number of iterations by 3.2%.
key words: Alternating direction method of multipliers (ADMM), low-
density parity-check (LDPC) codes, check polytope projection, bisection
method, sparse affine projection algorithm.

1. Introduction

The performance of Low-Density Parity-check (LDPC)
codes is close to Shannon capacity, have been widely used
in the �eld of channel coding and decoding research. Lin-
ear programming (LP) decoding of low-density parity check
(LDPC) codes was �rst proposed by Feldman in [1], hav-
ing all-zeros assumption and the maximum likelihood (ML)
certi�cate property. However, LP decoding was not well de-
veloped because of its high complexity. Recently, Barman
et al. applied the alternating direction multiplier method
(ADMM) [2] in the �eld of decoding and proposed an LP
decoding algorithm model based on ADMM (ADMM-LP)
[3]. The ADMM-LP decoding algorithm can reduce the
complexity of LP decoding and eliminate the error oor
phenomenon that occurs in the traditional belief propagation
(BP) decoding algorithm. However, the ADMM-LP decod-
ing algorithm still had relatively high complexity, and its
decoding performance at the low SNRs was inferior to that
of the BP decoding algorithm. In order to improve the decod-
ing performance, Liu et al. proposed the ADMM penalized
decoding algorithm by adding penalty terms to make the
decoding result closer to the integer codeword [4], thereby
improving the decoding performance. Jiao et al. proposed
a method for irregular LDPC codes, using di�erent penalty
parameters for variable nodes of di�erent degrees [5]. Wang
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et al. designed the improved piecewise penalty functions for
ADMM penalized decoder [6]. As the most complex and
time-consuming operation in ADMM-LP, Euclidean projec-
tion has been studied by many scholars. To simplify the
Euclidean projection operation and reduce the complexity in
ADMM decoding algorithm, Zhang et al. proposed a pro-
jection algorithm based on cut search algorithm (CSA) [7].
Wasson et al. proposed to combine CSA with simplex pro-
jection algorithm and implement in hardware [8]. G. Zhang
et al. replaced the projection onto the check polytope with
the projection onto the simplex [9]. Jiao et al. proposed
to simplify the projection operation by using simple table
lookup operations [10]. Subsequently, Jiao et al. reduced
storage resources and facilitate hardware implementation by
applying a non-uniform quantization method of projection
vector [11]. Moreover, Wei et al. proposed an iterative
check polytope projection algorithm [12]. However, this
algorithm requires more iterations to achieve convergence.
Inspired by [12] Lin et al. proposed a fast iterative check
polytope projection algorithm by bisection method [13]. Xia
et al. proposed the even-vertex projection algorithm (EVA)
[14], [15], projecting onto the closest even-vertex. Refer-
ence [16] proposed the line-segment algorithm which made
a projection onto a line segment consisting of two closest
even-vertices. Asadzadeh et al. proposed the sparse a�ne
projection algorithm (SAPA) [17], projecting onto the a�ne
hull of a small number of vertices of the polytope. However,
experiments show that the FER performance of these ap-
proximation algorithms can be deteriorated in low iteration
regime.

In this letter, bisection method assisted a�ne projection
algorithm is proposed in order to improve the FER perfor-
mance in low-iteration regime. Di�erent from the sparse
a�ne projection algorithm (SAPA), the proposed algorithm
selects the di�erent dimension𝜒 of the a�ne hull for dif-
ferent vectors to be projected. Simulation results show that
the algorithm can maintain the FER performance and con-
vergence rate of the exact projection algorithm (CSA), the
accuracy of projection results is as high as 99.6%. Com-
pared with the sparse a�ne projection algorithm (SAPA),
the proposed algorithm can improve the accuracy of pro-
jection results by 68.2% and improve the FER performance
by 0.14 dB as well as save average number of iterations by
3.2%.

Copyright© 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. ??, VOL.Exx{??, NO.xx XXXX 200x

2. Preliminaries

Consider an LDPC code𝑪 de�ned by an𝑚 × 𝑛 parity
check matrixH. Let 𝑖 ∈ 𝐼 = {1, 2, 3..., 𝑛} and 𝑗 ∈ 𝐽 =

{1, 2, 3..., 𝑚} be the set for variable nodes and check nodes
of 𝑪, respectively. Let𝑑𝑖 (𝑑 𝑗 ) denotes the degree of variable
node𝑣𝑖 (check node𝑐 𝑗 ). The set of check nodes (variable
nodes) adjacent to variable node𝑣𝑖 (check node𝑐 𝑗 ) is de-
noted by𝑁𝑣(𝑖) (𝑁𝑐 ( 𝑗 ) ).

Suppose that a codeword𝒙 ∈ 𝑪 is transmitted over a
symmetric memoryless channel andy is the received vector.
The LP decoding model with ADMM can be described as
follows:

min
𝑛∑︁
𝑖=1

𝛾𝑖𝑥𝑖

𝑠.𝑡.𝑷 𝑗𝑥 = 𝒛 𝑗 , 𝒛 𝑗 ∈ 𝑃𝑑 𝑗
,∀ 𝑗 ∈ 𝐽

(1)

Where𝜸 is the vector of log-likelihood ratios (LLRs),
and the𝑖-th entry of𝜸 can be de�ned as𝛾𝑖 = log( Pr(𝑦𝑖 |𝑥𝑖=0)

Pr(𝑦𝑖 |𝑥𝑖=1) ).
𝑷 𝑗 is the𝑑 𝑗 × 𝑛 transfer matrix which selects the𝑑 𝑗 compo-
nents ofx involved in the𝑗-th check node.𝒛 𝑗 is the auxiliary
variable of the check node𝑐 𝑗 . 𝑃𝑑 𝑗

is the check polytope,
implying the convex hull of all permutations of a length-𝑑 𝑗

binary vector with even number of ones.
The augmented Lagrangian function corresponding to

formulation (1) can be described as follows:

𝐿𝜇(𝒙,𝒛,𝝀)=𝜸𝑇𝒙+
𝑚∑︁
𝑗=1

𝝀 𝑗
𝑇(𝑷 𝑗𝒙−𝒛 𝑗)+

𝜇

2

𝑚∑︁
𝑗=1

𝑷 𝑗𝒙−𝒛 𝑗
2

2

(2)

Where𝝀 𝑗 ∈ R𝑑 𝑗 represents the Lagrangian multiplier,
and𝜇 > 0 is the penalty parameter.

The iterative update rules of𝒙, 𝒛 and𝝀 can be described
as follows:

𝒙𝑖
𝑘+1 =

∏
[0,1]

1
𝑑𝑖
(
∑︁
𝑗∈𝑁𝑖

((𝒛𝑘𝑗 )𝑖 −
1
𝜇
(𝝀𝑘

𝑗 )𝑖) −
1
𝜇
𝛾𝑖) (3)

𝒛 𝑗
𝑘+1 =

∏
𝑃𝑑𝑗

(𝑷 𝑗𝒙
𝑘+1 + 𝝀𝑘

𝑗 /𝜇) (4)

𝝀 𝑗
𝑘+1 = 𝝀 𝑗

𝑘 + 𝜇(𝑷 𝑗𝒙
𝑘+1 − 𝒛𝑘+1𝑗 ) (5)

where𝑘 ≥ 0 is the iteration number,
∏
[0,1] is the projec-

tion to the interval [0,1], and
∏

𝑃𝑑𝑗
is the check polytope

projection operation.

3. ADMM-LP Decoding Algorithm With Bisection
Method Assisted Affine Projection Algorithm

Projection onto the parity polytope is considered to be
the most complicated and time-consuming operation in the
ADMM-LP decoding algorithm, as it requires sorting a vec-
tor of size𝑑 𝑗 and �nding the proper shift to yield a con-
vex combination of the closest even-weight vertices of𝑃𝑑 𝑗

.

Hence, many scholars have conducted research on this issue,
proposing various exact projection algorithms and approxi-
mate projection algorithms and enhancing the decoding per-
formance of ADMM-LP. In this section, we will propose the
bisection method assisted a�ne projection algorithm (BM-
SAPA) inspired by SAPA and illustrate it in detail.

3.1 SAPA

A�ne Projection Algorithm (APA) is to project a 𝑑 𝑗 -
dimensional vector onto the a�ne hull of the𝑑 𝑗 vertices
instead of the check polytope projection, avoiding sorting
operations and complex comparison operations. However,
simulation results show that APA reduces the decoding per-
formance. On this basis, A. Asadzadeh et al. further pro-
posed the sparse a�ne projection algorithm (SAPA), pro-
jecting onto the a�ne hull of the𝜒 even-vertices closest to
the vector to be projection and𝜒 ∈

{
1, 2, 3, ..., 𝑑 𝑗

}
. Based

on the value of𝜒, SAPA is denoted as𝜒-SAPA. The speci�c
steps of𝜒-SAPA are shown in Algorithm 3 of reference [17].

As shown in line 1-2 of Algorithm 3 in reference [17],
SAPA only involves a partial sorting on the𝜒 minimum
elements in the vector to be projected and calculates the sum
of those elements as the a�ne shift. It is worthy of mention
that𝜒-SAPA does not need to perform projection operations
on the unit cube because its projection region is the a�ne
hull composed of even vertices.

Reference [17] shows that the outcome of 1-SAPA is
equal to that of EVA. The di�erence between 2-SAPA and
LSA is that LSA projects on a line segment, while 2-SAPA
projects on an entire straight line. In addition, the experi-
mental results in reference [17] show that 3-SAPA has the
best FER performance. Therefore, 3-SAPA is adopted for
experimental simulation in the following experiments.

3.2 BM-SAPA

Although SAPA can achieve similar decoding performance
to CSA in the high-iteration regime, some projection results
of SAPA may not be on the check polytope in low-iteration
regime, resulting in the deterioration of decoding perfor-
mance.

In order to make the projection more accurate for low-
iteration regime, we try to propose the bisection method
assisted a�ne projection algorithm (BM-SAPA). Asadzadeh
proves that there exists at least one value𝜒 ∈

{
1, 2, 3, ..., 𝑑 𝑗

}
for which 𝜒-SAPA will reproduce the exact projected point.
For di�erent vectors to be projected, their correspond-
ing correct projection dimensions are di�erent, so the di-
mension 𝜒 of the a�ne hull that can achieve accurate
projection is also di�erent. In BM-SAPA, according to
the description of the bisection method iterative algorithm
(BMIA) in reference[13], we can reduce the value range
[𝛽𝑙𝑜𝑤, 𝛽𝑢𝑝] of coe�cients 𝜂 in the exact projection calcu-
lation 𝑧 =

∏
[0,1] (𝑣 − 𝜂𝜃𝑉 ) by the bisection method. The

BM-SAPA aims to select the correct projection dimension
for di�erent vectors to be projected.
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The speci�c process of BM-SAPA is shown in Algo-
rithm 1.

Algorithm 1 The Bisection Method Assisted A�ne Projec-
tion Algorithm (BM-SAPA)
Input: Vector𝒗 ∈ R𝑑 𝑗 , indicator vector𝜽𝑉 ,𝐼𝑚𝑎𝑥

Output: Projection𝒛

1: 𝛽𝑚𝑎𝑥 ← 1
2

(
min

𝜃𝑉,𝑖=1
𝑣𝑖 − max

𝜃𝑉, 𝑗=−1
𝑣 𝑗

)
, 𝑝 ←

��{𝑖 | 𝜃𝑉,𝑖 = 1
}�� − 1

2: Initialize 𝛽𝑙𝑜𝑤 ← 0, 𝛽𝑢𝑝 ← 𝛽𝑚𝑎𝑥 , 𝑖𝑡𝑒𝑟 ← 0
3: for 𝑖𝑡𝑒𝑟 = 1 to 𝐼𝑚𝑎𝑥 do
4: 𝛽 ← 1

2
(
𝛽𝑢𝑝 + 𝛽𝑙𝑜𝑤

)
5: 𝒛 ←∏

[0,1]𝑑𝑗
(𝒗 − 𝛽𝜃𝑉 )

6: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
7: if 𝜽𝑇

𝑉
𝒛 < 𝑝 then

8: 𝛽𝑢𝑝 ← 𝛽

9: else
10: 𝛽𝑙𝑜𝑤 ← 𝛽

11: end if
12: end for
13: 𝜒 =

��{𝑖 |0 < 𝑣𝑖 − 𝛽𝑙𝑜𝑤𝜃𝑉,𝑖 < 1
}��

14: 𝒛 = 𝜒 − 𝑆𝐴𝑃𝐴(𝒗)
15: return 𝒛

The bisection method iteration can be described in lines
1-11 of Algorithm 1, the number of iterations is𝐼max. The
values of𝛽𝑙𝑜𝑤 and𝛽𝑢𝑝 are very close through𝐼max iteration,
𝛽𝑙𝑜𝑤 is selected to judgment the number of elements in the
interval [0,1] in 𝑣 − 𝛽𝑙𝑜𝑤𝜃 and the number is taken as the
dimension of the a�ne hull.∏

[0,1] (𝑣𝑖 − 𝛽𝑙𝑜𝑤𝜃𝑉,𝑖) is the estimate of the projection
result. Step 12 indicates that there are𝜒-element in [0,1],
and the remaining𝑑 𝑗 − 𝜒-element is outside [0,1]. The
value of 𝜒 has no e�ect on the projection results outside
the interval [0,1], so we choose𝜒 as the dimension of a�ne
projection.𝐼max is the pre-determined value in the algorithm.
Simulation experiments are used to illustrate the𝐼max in the
next section.

4. Simulation Results

In the simulations, the additive white Gaussian noise
(AWGN) channel with binary phase shift keying (BPSK)
modulation is assumed. Moreover, we consider three LDPC
codes with di�erent rates: the regular (2640, 1320) rate-1/2
Margulis code𝐶1, the regular (1920, 640) rate-1/3 Gallager
code𝐶2, the irregular (576, 432) rate-3/4 code𝐶3 from IEEE
802.16e standard [18]. The check node degrees of𝐶1, 𝐶2
and𝐶3 are 6, 4 and{14,15}, respectively.

The ADMM-LP decoding algorithm with L2 penalty
combined with over-relaxation technique is adopted in the
simulations, and the relaxation coe�cient is 1.9. Penalty
coe�cient 𝜇 are set to 4.0, 5.5 and 5.5 for𝐶1, 𝐶2 and𝐶3,
respectively. Parameter𝛼 are set to 0.9, 0.8 and 1.9 for𝐶1,
𝐶2 and𝐶3, respectively. The maximum number of iterations
for ADMM-LP decoder is set to 20. The points plotted in
all FER curves are obtained by generating at least 100 error
frames.
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Fig. 1 The FER performance of𝐶3 for di�erent 𝐼max in BM-SAPA.

Table 1 The average error of𝒛 𝑗 between BMIA, SAPA, BM-SAPA and
CSA for𝐶1, 𝐶2 and𝐶3

Code SNR(dB) BMIA[13] SAPA[17]
BM-SAPA
(Proposed)

𝐶1

2.0 6.54× 10−4 1.33× 10−2 2.02× 10−4

2.2 6.55× 10−4 1.44× 10−2 2.86× 10−4

2.4 6.60× 10−4 1.53× 10−2 3.36× 10−4

2.6 6.50× 10−4 1.65× 10−2 4.07× 10−4

2.8 6.65× 10−4 1.78× 10−2 4.33× 10−4

𝐶2

1.5 3.61× 10−4 1.30× 10−2 2.07× 10−5

2.0 3.67× 10−4 1.52× 10−2 2.37× 10−5

2.5 3.66× 10−4 1.84× 10−2 2.39× 10−5

3.0 3.73× 10−4 2.27× 10−2 2.73× 10−5

3.5 3.86× 10−4 2.74× 10−2 2.89× 10−5

𝐶3

2.5 6.99× 10−4 1.11× 10−2 3.26× 10−5

3.0 7.24× 10−4 1.10× 10−2 3.57× 10−5

5.5 7.59× 10−4 1.07× 10−2 4.01× 10−5

4.0 7.80× 10−4 1.02× 10−2 4.71× 10−5

4.5 7.89× 10−4 1.02× 10−2 5.39× 10−5

Table 2 The accuracy of𝒛 𝑗 for SAPA, BM-SAPA for𝐶1, 𝐶2 and𝐶3

Code SNR(dB) SAPA[17]
BM-SAPA
(Proposed)

𝐶1

2.0 24.0% 96.9%
2.2 24.6% 97.3%
2.4 26.1% 97.4%
2.6 27.0% 97.6%
2.8 28.7% 97.9%

𝐶2

1.5 30.1% 99.6%
2.0 31.5% 99.7%
2.5 33.5% 99.7%
3.0 35.5% 99.8%
3.5 37.5% 99.8%

𝐶3

2.5 36.2% 88.3%
3.0 34.6% 88.4%
3.5 33.6% 88.8%
4.0 30.6% 89.6%
4.5 27.7% 90.7%

Figure 1 shows the FER performance of di�erent𝐼max
for 𝐶3 in BM-SAPA. When 𝐼max = 1, BM-SAPA has the
worst FER performance, when𝐼max ≥ 3, the FER perfor-
mance is no longer improved with the increase of𝐼max.
Therefore, in our simulations,𝐼max in bisection method iter-
ative is set to 3.

Table 1 describes the average error of𝒛 𝑗 between ap-
proximate projection algorithm (BMIA, SAPA and BM-
SAPA) and exact projection algorithm (CSA) for𝐶1, 𝐶2
and𝐶3. The speci�c de�nition of average error : average er-
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Fig. 2 The FER performance for BMIA, CSA, SAPA and BM-SAPA for𝐶1, 𝐶2 and𝐶3.
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Fig. 3 The average number of iterations for BMIA, SAPA, BM-SAPA and CSA for𝐶1, 𝐶2 and𝐶3.

ror = (∑ ∥ 𝒛 𝑗𝑎𝑐𝑐 − 𝒛 𝑗𝑎𝑝𝑝𝑟𝑜𝑥 ∥)/𝑁, where𝒛 𝑗𝑎𝑐𝑐 represents
the projection result of the exact projection (CSA),𝒛 𝑗𝑎𝑝𝑝𝑟𝑜𝑥
represents the projection result of approximate projection
(BMIA, SAPA and BM-SAPA),𝑁 is the total number of
projections.

In the experiment, at least 1000000 projections, the dis-
tances between the di�erent approximate projection and the
exact projection are recorded in each projection operation,
and calculate the average error, respectively. The smaller the
value of error, the closer the result of approximate projection
is to the exact projection. As can be seen from the table, the
average error of𝒛 𝑗 between BM-SAPA and CSA is much
smaller than that between SAPA and CSA. For example, the
average error of𝒛 𝑗 between BM-SAPA and CSA is only
2.37× 10−5 for 𝐶2 at 2.0 dB, and it is about 1‡ of SAPA.

Table 2 shows the accuracy of𝒛 𝑗 for SAPA, BM-SAPA
for 𝐶1, 𝐶2 and𝐶3, that is , the proportion of𝒛 𝑗 obtained
by approximate projection that is equal to𝒛 𝑗 obtained by
CSA. BMIA approaches the exact value of the approximate
projection result in an iterative manner, therefore, BMIA
was not included in the comparison in this experiment. The
accuracy of𝒛 𝑗 for BM-SAPA is much higher than that of
SAPA. For example, for𝐶2, when SNR= 2𝑑𝐵, the accuracy
of 𝒛 𝑗 for BM-SAPA is 99.7%, which is 68.2% more than that
of SAPA.

Figure 2 shows the FER performance for di�erent pro-
jection algorithms for𝐶1,𝐶2 and𝐶3 for low-iteration regime
(maximum set to 20). It is suggested that the FER perfor-
mance of BM-SAPA is almost the same as that of the exact
projection algorithm CSA and outperforms that of SAPA.
Speci�cally, for 𝐶2, when FER= 2× 10−4, the FER perfor-
mance of SAPA is worse than that of BM-SAPA about 0.14

dB.
Figure 3 plots the average number of iterations for

BMIA, SAPA, BM-SAPA and CSA for𝐶1, 𝐶2 and𝐶3 for
low-iteration regime. In the simulations, we adopt the early-
termination technology based on𝐻𝑇𝑥 = 0, the actual number
of iterations during decoding may be less than the maximum
number of iterations set. Therefore, fewer actual iterations
mean faster convergence. It can be seen from the �gure, the
average number of iterations of the decoder with the pro-
posed BM-SAPA is almost the same as that of the decoder
with CSA and less than that of the decoder with SAPA, which
means that the proposed algorithm converges quickly. For
instance, for𝐶1, when SNR= 2.2𝑑𝐵, the average number of
iterations of the proposed BM-SAPA is reduced by 3.2%.

5. Conclusion

To summarize, we propose a bisection method assisted a�ne
projection algorithm (BM-SAPA), by replacing check poly-
tope projection with projection onto the a�ne hull of the
𝜒 even-vertices closest to the vector to be projected. For
di�erent vectors to be projected, we select di�erent correct
projection dimensions𝜒 through bisection method iteration.
Many existing approximate projection algorithms sacri�ce
certain decoding performance at low iterations in order to
reduce the complexity of decoding and save time. The FER
performance and convergence rate of BM-SAPA are almost
the same as that of the exact projection algorithm for low iter-
ation. Compared with the sparse a�ne projection algorithm
(SAPA), the proposed algorithm can improve the accuracy
of projection results by 68.2%, the FER performance by 0.14
dB as well as save average number of iterations by 3.2%.
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